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Abstract
Purpose: Adaptive proton therapy (APT) of lung cancer patients requires fre-
quent volumetric imaging of diagnostic quality.Cone-beam CT (CBCT) can pro-
vide these daily images, but x-ray scattering limits CBCT-image quality and
hampers dose calculation accuracy. The purpose of this study was to generate
CBCT-based synthetic CTs using a deep convolutional neural network (DCNN)
and investigate image quality and clinical suitability for proton dose calculations
in lung cancer patients.
Methods: A dataset of 33 thoracic cancer patients, containing CBCTs, same-
day repeat CTs (rCT), planning-CTs (pCTs), and clinical proton treatment plans,
was used to train and evaluate a DCNN with and without a pCT-based correction
method.Mean absolute error (MAE),mean error (ME),peak signal-to-noise ratio,
and structural similarity were used to quantify image quality. The evaluation of
clinical suitability was based on recalculation of clinical proton treatment plans.
Gamma pass ratios,mean dose to target volumes and organs at risk,and normal
tissue complication probabilities (NTCP) were calculated. Furthermore, proton
radiography simulations were performed to assess the HU-accuracy of sCTs in
terms of range errors.
Results: On average, sCTs without correction resulted in a MAE of 34 ± 6 HU
and ME of 4 ± 8 HU. The correction reduced the MAE to 31 ± 4HU (ME to 2 ±

4HU). Average 3%/3 mm gamma pass ratios increased from 93.7% to 96.8%,
when the correction was applied. The patient specific correction reduced mean
proton range errors from 1.5 to 1.1 mm. Relative mean target dose differences
between sCTs and rCT were below ± 0.5% for all patients and both synthetic
CTs (with/without correction). NTCP values showed high agreement between
sCTs and rCT (<2%).
Conclusion: CBCT-based sCTs can enable accurate proton dose calcula-
tions for APT of lung cancer patients. The patient specific correction method
increased the image quality and dosimetric accuracy but had only a limited influ-
ence on clinically relevant parameters.
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1 INTRODUCTION

Proton therapy can deliver highly conformal dose dis-
tributions, leading to lower normal tissue dose, sparing
of organs at risk (OAR), and target dose escalation.
The dosimetric advantages of proton therapy can be
achieved by the characteristic depth-dose profile as pro-
tons traverse matter and deposit most of their dose at
an energy dependent depth (Bragg peak) after which
protons rapidly stop.1 Compared to conventional photon
beam therapy, this behavior results in a lower entrance
and exit dose.

However, the beneficial depth-dose characteristic of
proton beams leads to an increased sensitivity of pro-
ton dose distributions to density changes along the
beam path. Density shifts can occur due to anatomi-
cal variations, patient alignment errors, and changes in
tumor size (growth/shrinkage). Adaptive proton therapy
(APT) aims at detecting such anatomical changes and
re-adjusting treatment plans according to the updated
patient anatomy.2–4 Frequent patient imaging is a piv-
otal part of APT and provides the foundation for adap-
tation decisions. For daily APT, cone-beam computed
tomography (CBCT) images have the potential to serve
as an alternative to conventional computed tomogra-
phy (CT). In proton therapy, CBCTs are often routinely
acquired for daily pre-treatment patient alignment. The
CBCT acquisition protocols used in radiotherapy are
optimized to deliver significantly lower imaging dose
than conventional diagnostic CT scans, making CBCTs
more suitable for repeated imaging. Although the image
quality of CBCTs is sufficient for position verification,
they suffer from severe image artifacts which prevent
them from being suitable for accurate proton dose
calculations.

To correct CBCT deficiencies and enable CBCT-
based adaptive radiotherapy workflows, several meth-
ods have been developed and investigated in the con-
text of photon and proton dose calculations in various
anatomical locations. For the thorax, this includes tech-
niques based on CBCT calibration,5–7 HU-overrides,8–11

deformable image registration,11–15 and Monte Carlo
simulations.16,17 Recently, research activities focused
heavily on developing and evaluating deep learning
methods to correct CBCTs and generate the so-called
synthetic CTs (sCTs).18–22 In previous studies, deep
learning methods have shown the ability to generate
sCTs suitable for proton dose calculations for head and
neck,23,24 pelvis,25 and prostate cancer patients.26,27

However, regarding lung cancer treatment adaptation,
only results for photon dose calculations have been
reported.22,28

In this study, we investigated the generation of
CBCT-based sCTs for adaptive proton therapy of lung
cancer patients. Synthetic CTs were generated using
a deep convolutional neural network (DCNN) which

was previously evaluated for H&N cancer patients.23,24

Furthermore, we proposed an accompanying patient-
specific correction strategy to further improve image
quality of the resulting sCTs. Synthetic CTs were eval-
uated in terms of image quality and proton range error.
The clinical suitability was assessed by recalculating
clinically used treatment plans on sCTs and same-day
repeat CTs. Based on these dose distributions, gamma
pass ratios, dose statistics for target volumes (TV) and
organs at risk (OAR), and normal tissue complication
probabilities (NTCP) were calculated.

2 MATERIALS AND METHODS

2.1 Patient datasets

A dataset containing 33 thoracic cancer patients, treated
with pencil beam scanning proton therapy (PBS-PT) at
the University Medical Center Groningen (UMCG), was
used in this study to train and evaluate a DCNN with an
accompanying patient-specific correction technique. 27
patients were treated for lung cancer, while the remain-
ing six patients were either diagnosed with thoracic thy-
moma or mediastinal lymphoma. All 33 patients were
imaged with the same acquisition protocols. Only lung
cancer patients were included in the dosimetric evalu-
ation of the sCTs. The lung cancer patients (15 female,
12 male) were aged between 46 and 83 years, with a
median age of 69 years. For eight patients, the tumor
was located in the left lung; for 18 in the right lung;and in
one patient, tumor tissue was present on both sides.The
tumor position also varied between upper (13 patients)
and middle/lower lobe (14 patients). A table with patient
demographic information is available in the Supporting
Information (Table S1).

2.2 Imaging data

For each patient CBCT, planning CT and repeat CT
images were used.CBCT images were acquired with an
IBA Proteus Plus (IBA, Belgium) and reconstructed with
the clinically used protocol. Repeat 4D-CT and planning
4D-CT scans were acquired on a Siemens SOMATOM
Confidence (Siemens Healthineers, Germany) and on a
Siemens SOMATOM Definition AS scanner, respectively,
using the same imaging protocol. For treatment plan-
ning and dose calculation, average 4DCTs were gener-
ated from the 10 breathing phases of pCTs and rCTs.
More detailed imaging and reconstruction parameters
for CBCT,rCT,and pCT are listed in the Supporting Infor-
mation (Table S2).

Repeat CT scans were acquired on the same day as
the CBCT, used for training of the DCNN and selected
as reference for image quality and dosimetric evaluation.
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There was a time difference of a few weeks between
the pCT acquisition, used within the patient specific cor-
rection workflow, and the rCT/CBCT acquisition. For all
patients, the first available rCT-CBCT pair (acquired in
the first week of treatment) was chosen.

2.3 Image pre-processing

Before training the DCNN with CBCT-rCT image pairs,
several pre-processing steps were performed. First,
CBCTs were rigidly registered to the same-day rCT
and the patient outline was automatically segmented on
CBCT and rCT using Plastimatch29 (www.plastimatch.
org).Voxels outside the patient outline were set to−1000
HU on CBCT and rCT. To account for the limited CBCT
field-of -view (FOV) in superior-inferior direction, the rCT
and the respective mask were cropped to cover the
same FOV. To reduce residual errors between CBCT
and rCT, a deformable image registration (DIR) algo-
rithm, implemented in the open-source MATLAB tool-
box openREGGUI (www.openreggui.org), was used to
deformably register the rCT to the CBCT. This DIR-
algorithm has been found to be suitable for CBCT/CT
image registration in previous studies.14,30,31 The result-
ing image pairs of CBCT and deformed rCT were used
to train the neural network.

2.4 Neural network

To generate CBCT-based sCTs, a deep convolu-
tional neural network (DCNN), previously described by
Spadea et al.32 was utilized. Figure S3 in the Support-
ing Information depicts the network architecture. The
DCNN is composed of an encoding and decoding path
to extract features from the CBCT and reconstruct it
with accurate CT-numbers. Similar to Spadea et al.,
three individual networks were trained exclusively with
axial, sagittal, or coronal slices. A final sCT was cre-
ated by averaging the network outputs from each train-
ing. Mean absolute error together with L1-regularization
was used as loss function to train the network. Due to
the limited dataset size, threefold cross validation was
applied. This allowed utilizing all 33 patients for evalua-
tion purposes. We randomly split the dataset into three
subsets of 11 patients each. Two subsets were used
for training, and the third subset was used for evalu-
ation. The training was repeated so that each subset
was used for evaluation once. Based on previous expe-
rience with this network architecture, a batch size of 1
was used, and the training process was stopped when
no decrease in loss was observed for five consecu-
tive epochs.23,24 A NVIDIA GTX 1080 Ti with 11 GB of
VRAM was used for training and inference of the neural
network.

2.5 Planning CT-based patient-specific
correction method

In addition to the DCNN, we introduced a patient-
specific correction method. The correction workflow uti-
lizes each patient’s pCT, which contains accurate lung
CT-numbers but was acquired several weeks before
the CBCT acquisition. In a first step, the planning CT
was deformably registered to the synthetic CT using
openREGGUI. Afterward, the registered pCT was sub-
tracted from the original sCT (sCTorig), generating a dif-
ference image. A threshold was applied to the differ-
ence image to exclude differences bigger than ±150
HUs. This thresholding makes the correction method
insensitive to major anatomical changes (e.g., tumor
growth, alignment errors) since it is excluding areas that
significantly change between pCT and CBCT acquisi-
tion. The threshold value (150 HU) controls the impact
the pCT has on the final sCT and was found empiri-
cally by calculating gamma pass ratios for sCTs with
a variety of threshold values. Afterwards, three HU-
regions were segmented on the sCT: region 1, contain-
ing air volumes and lung tissue (−1000 HU to −300
HU); region 2, covering soft tissues (−300 to 200 HU);
and region 3, containing bones (> 200 HU). Using the
above-described segmentation masks, each HU-region
of the difference image was smoothed individually using
a 3D Gaussian kernel (6 voxel standard deviation) and
combined into the final correction map. Smoothing each
region individually ensures sharp edges between vary-
ing tissues (e.g., lung tissue—soft tissue, soft tissue—
bone). In a final step, the correction map was sub-
tracted from the original sCT to create the corrected
sCT (sCTcor).

2.6 Image evaluation

The image similarity between the synthetic CTs (sCTorig/
sCTcor) and the deformed same day rCT was evaluated
by calculating mean absolute error (MAE), mean error
(ME),peak signal noise ratio (PSNR),and structural sim-
ilarity index (SSIM),33,34 defined in Equations (1) to (4):

MAE =

∑n
i=1 |rCTi − sCTi|

n
, (1)

ME =

∑n
i=1 (rCTi − sCTi)

n
, (2)

PSNR = 10 log10

⎛⎜⎜⎝
Q2

∑n
i = 1

1

n
(rCTi − sCTi)

2

⎞⎟⎟⎠ , (3)

http://www.plastimatch.org
http://www.plastimatch.org
http://www.openreggui.org
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SSIM =
(2𝜇sCT𝜇rCT + C1)

(
2𝛿sCT,rCT + C2

)
(
𝜇2

sCT + 𝜇2
rCT + C1

)(
𝜎2

sCT + 𝜎2
rCT + C2

) ,

c1 = (0.01 ∗ L)2 , c2 = (0.03 ∗ L)2, (4)

where rCTi and sCTi are the respective HU values of
sCT and rCT, n is the total number of voxels within the
patient outline, Q is the maximum HU value of sCT and
rCT, 𝜇sCT and 𝜇rCT are the mean pixel values of sCT
and rCT, 𝜎sCT and 𝜎rCT are the variances of sCT and
rCT, 𝛿sCT,rCT is the covariance between sCT and rCT,
and L is the dynamic range of sCT and rCT. All image
similarity metrics were only calculated for voxels within
the patient outline. To analyze the MAE of various tis-
sues, an MAE spectrum was generated for sCTorig and
sCTcor by grouping voxels in bins of 20 HU and calcu-
lating MAE for each bin. Wilcox signed-rank tests were
used to check for statistical significance of differences
between sCTorig and sCTcor.

2.7 Dosimetric evaluation

For the 27 lung cancer patients, clinical treatment
plans were recalculated on both sCTs (sCTorig,/sCTcor)
and compared to the same-day rCTs using global
gamma analysis (dose threshold of 10%,2%/2 mm,and
3%/3 mm criteria). Dose calculations were performed
in RayStation Research (Version 9A) using the clinical
Monte Carlo dose engine with an uncertainty of 1%
and a dose grid of 3 × 3 × 3 mm3. Clinical treatment
plans consisted of three beam directions and were gen-
erated on the average 4D pCT using multi-field and
robust optimization, with a range uncertainty of ±3%
and a setup error of 6 mm as defined in our clinical
protocol.35 Dose was prescribed to the ITV. All dosi-
metric evaluations were performed for the entire plan
(all fields combined). The clinical suitability was evalu-
ated by calculating mean dose differences in TVs (GTV,
CTV) and selected OARs (heart, lung,esophagus,spinal
cord). For the CTV, additional dosimetric parameters
were also investigated (Dmax,D95,D98,V95,and V100).
For the spinal cord, maximum dose instead of mean
dose was reported.Delineations of TVs and OARs were
transferred from the pCT, which for this purpose was
deformably registered to the rCT.

2.8 Comparison between sCTcor and
deformed pCT

Deformable image registration (DIR)-based strate-
gies for CBCT-based proton dose calculations have
been investigated in previous studies.31,14 Within these
approaches, the patient-specific pCT, containing accu-

rate HUs, is deformed to the CBCT to represent the
daily patient geometry. Our proposed sCT correction
method also relies on the deformed pCT for HU cor-
rection but is combined with additional smoothing and
thresholding operations. Therefore, we performed an
image quality and dosimetric comparison between a
pure DIR-based strategy (pCTdef ) and our corrected
sCT (sCTcor). pCTdef was generated with the same
DIR-algorithm and settings used in the patient-specific
correction described above. The comparison includes
image quality metrics (MAE and ME) and gamma
analysis. The same-day rCT was used as reference for
image quality and dosimetric evaluations.

2.9 NTCP

Based on the recalculation of clinical treatment plans,
we also calculated NTCP,using NTCP-models described
in the Dutch National Indication Protocol for proton ther-
apy of lung cancer (NIPP).36 NTCP models are used
to estimate the risk of developing certain side effects
during radiation therapy. The indication protocol for lung
cancer includes models for radiation pneumonitis,37

acute dysphagia,38 and 2-year mortality.39 Certain clin-
ical parameters (e.g., age, smoking status, and tumor
location) and mean dose values of OARs (heart, lung,
and esophagus) are used as input parameters for the
NTCP models. At Dutch proton therapy centers, NTCP
models are used within the patient selection process
for proton therapy. In our work, we used these models to
evaluate the clinical similarity of rCTs and sCTs, by cal-
culating the NTCP difference (ΔNTCP) between them.

2.10 Radiography simulations

To visualize and quantify the similarity between rCT and
sCTs in terms of proton range, we performed proton
radiography simulations (PR) on rCT,sCTorig,and sCTcor
using a dedicated proton radiography module of open-
REGGUI (ww.openreggui.org). It employs a direct ray
tracing algorithm to simulate PRs as acquired with a
multi-layer ionization chamber.40 PRs were simulated
from a gantry angle of 0 degrees (anterior–posterior
direction), a pencil beam spacing similar to the rCT
imaging grid (1 mm left-to-right, 2 mm inferior–superior),
and an energy of 210 MeV. Range error maps were
computed between rCT and sCTorig and between rCT
and sCTcor for all patients. Range error was calculated
similarly to previous studies.41–43 The resulting range
error maps were analyzed by calculating mean abso-
lute range error (MARE) and mean range error (MRE).
The influence of lung tissue on range errors was investi-
gated by calculating MARE only including pencil beams
traversing the lungs. To select these beams, the lungs
were segmented on the rCT and the resulting lung mask



SYNTHETIC CT FOR THORACIC PROTON THERAPY 7677

F IGURE 1 Axial and coronal slices of CBCT, sCTorig, sCTcor, and the reference rCT together with difference maps between sCTorig/cor and
rCT. A HU-window of 2000 (width)/ 0 (level) was used for sCTorig, sCTcor, and rCT

was projected along the proton beam direction. This
resulting 2D-lung mask was applied to the range error
maps.

3 RESULTS

3.1 Image evaluation

Figure 1 presents an overview of CBCT, sCTorig, sCTcor,
and the reference rCT together with difference images
between rCT and sCTorig/sCTcor. On average, sCTcor
resulted in a significantly lower MAE than sCTorig with
respective values of 30.7 ± 4.4 HU and 34.1 ± 5.5 HU
(p-value: < 1 × 10–6). Average ME changed from 4.3 ±

7.7 HU for sCTorig to 2.4 ± 3.9 HU for sCTcor, but the
difference was not found to be statistically significant (p-
value > 0.05). Overall, ME showed a trend toward pos-
itive values indicating lower HU values on sCTs when
compared to rCTs. SSIM remained virtually unchanged
with values of 0.938 ± 0.019 for sCTorig and 0.941 ±

0.019 for sCTcor. The PSNR showed a slight improve-
ment from sCTorig to sCTcor with values of 30.7 ± 3.3 dB
to 31.2± 3.4 dB respectively but was not statistically sig-
nificant (p-value > 0.05).

Detailed MAE and ME results for each patient individ-
ually are visualized in Figure 2. Individual results for the
other metrics are reported in the Supporting Information
(Figure S4).

Figure 2c shows the MAE spectrums for sCTorig and
sCTcor. For voxels below 300 HU, sCTcor shows slightly
lower MAE than sCTorig, indicating the effectiveness of

the patient-specific correction. Error regions however
overlap for the entire HU-range.

3.2 Dosimetric evaluation

Results from the gamma analysis of clinical treat-
ment plans are shown in Figure 3a (3%/3 mm and
2%/2 mm criteria). The patient-specific correction tech-
nique increased average 3%/3 mm gamma pass ratios
from 93.7 ± 4.8% to 96.8 ± 2.4%. This difference was
found to be statistically significant (p-value:4*10–4).Fur-
thermore, the lowest observed 3%/3 mm pass ratio
increased from 82.8% (sCTorig, patient 23) to 90.7%
(sCTcor, patient 20). A similar trend was observed for
2%/2 mm pass ratios.

Figure 3b presents boxplots of relative dose differ-
ences for TVs and OARs. For GTV and CTV, both sCTs
showed very good agreement with mean doses cal-
culated on the rCT. The mean dose differences were
within±0.5% for all patients.For the CTV,also Dmax,D95,
D98, and V95 agreed well with the rCT for both sCTorig
and sCTcor. Differences for all patients were within ±5%
and mean differences close to 0%. Only V100 values
showed larger discrepancies of up to −15% for sCTorig.
Applying the correction reduced the maximum V100
difference to −7%. A figure containing CTV dose dif-
ferences for these dosimetric parameters is presented
in the Supporting Information (Figure S5). For OAR,
mean doses varied greatly,with values between 0.3 and
37.9 GyRBE. Results for OAR with an absolute dose
below 1 Gy were excluded. Overall, higher relative dose
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F IGURE 2 (a) MAE and (b) ME for sCTorig and sCTcor for each patient. The dashed lines indicate the average values. (c) Average MAE
spectrum of sCTorig and sCTcor. The shaded area indicates one standard deviation. In green, an average image histogram is presented
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F IGURE 3 (a) Gamma pass ratios (top: 3%/3 mm,
bottom: 2%/2 mm) of sCTorig and sCTcor for each
patient individually. The dotted line in the corresponding
color indicates the mean value of sCTorig and sCTcor.
This figure shows results for lung cancer patients only.
(b) Relative dose differences between sCTs and rCT for
target volumes and selected organs at risk. Mean dose
was used for all structures, except the spinal cord (max
dose)

differences were observed for OAR. The largest dif-
ferences occurred in the heart (mean dose) and the
spinal cord (max dose), with values up to 10%. For lung
and esophagus, values were within ±5% for all patients.
Across all TVs and OARs, sCTcor resulted in a slightly
lower variance than sCTorig.

In Figure 4, HU and dose profiles of rCT, sCTorig, and
sCTcor are presented for patient 12. The selected pro-
files run parallel to the proton beam direction (gantry
angle of 300 degrees) and the displayed dose values
are only for the 300 degree beam direction instead of the
entire plan.The HU- and dose-profiles visualize the rela-
tionship of lung tissue inaccuracies of sCTorig and the
resulting dose shift. Applying the patient-based correc-
tion (sCTcor) restored accurate proton range, and good
agreement with the rCT dose profile can be observed.

3.3 Comparison between pCTdef and
sCTcor

Almost similar MAE and ME values were observed
for pCTdef and sCTcor. Average MAE/ME values were

31.5 ± 6.6 HU/2.9 ± 4.7 HU for pCTdef and 30.7 ± 4.4
HU/2.4 ± 3.9 HU for sCTcor. The comparison of pro-
ton dose distributions resulted in higher gamma pass
rates for sCTcor than for pCTdef (3%/3 mm: 96.8% vs.
95.6%, 2%/2 mm: 93.1% vs. 91.6%). For three patients,
a 3%/3 mm pass rate below 85 % was observed for
pCTdef ,while for sCTcor,all patients achieved pass rates
above 90%.These pCTdef outliers appeared when a sig-
nificant anatomical change occurred between acquisi-
tion of pCT and CBCT. An example of such an anatom-
ical change and figures showing evaluation results are
presented in the Supporting Information (Figure S7).

3.4 NTCP

A boxplot of ΔNTCP values for sCTorig and sCTcor is pre-
sented in Figure 5. A high level of agreement between
NTCP values, calculated on rCT and both sCTs, was
observed for all patients and across all predicted tox-
icities. For radiation pneumonitis, the average ΔNTCP
values were 0.0 ± 0.3% for sCTorig and 0.0 ± 0.2%
for sCTcor (max. ΔNTCP values for pneumonitis: −1%
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F IGURE 4 HU and dose profiles for rCT, sCTorig, and sCTcor. The selected profile is indicated with the blue arrow. Solid lines represent the
HU-profiles; dashed lines the corresponding dose profiles. The displayed dose is from the 330◦ beam direction only and does not represent the
full plan dose

F IGURE 5 Delta NTCP values (NTCPrCT − NTCPsCT) for
dysphagia, radiation pneumonitis, and 2-year mortality, calculated on
sCTorig and sCTcor

for sCTorig, −0.9% for sCTcor). For dysphagia, average
ΔNTCP values were−0.2 ± 0.4% for sCTorig and−0.1 ±
0.3% for sCTcor (max. values of −1.3% and −0.9%,
respectively). The endpoint of 2-year mortality resulted
in average ΔNTCP values of 0.0 ± 0.3% for sCTorig
and 0.0 ± 0.2% for sCTcor (max. values of −1.1% for
sCTorig and −0.7% for sCTcor). Individual NTCP values
for each patient and toxicity are presented in the Sup-
porting Information (Figure S6).

3.5 Proton radiography simulations

In Figure 6,range error maps between the reference rCT
and the two synthetic CTs (Figure 6a: sCTorig; Figure 6b:
sCTcor) are presented for patient 23, in which the largest
relative MARE decrease was achieved by using the
patient-specific correction. Figure 6c shows an accom-
panying water-equivalent thickness map. A reduction in
range errors is clearly visible in the lungs, while the sur-
rounding areas remain mainly unchanged. On average,
MARE was reduced from 1.5 ± 0.5 mm on sCTorig to
1.1 ± 0.4 mm on sCTcor.This difference was found to be
statistically significant (p-value:< 10–5).MRE decreased
from 0.6 ± 0.8 mm on sCTorig to 0.3 ± 0.6 mm on sCTcor
(not significant, p-value: 0.2).

Figure 7 shows MARE and MRE results for each
patient individually. Overall, MRE is shifted toward pos-
itive values, indicating that an increased proton range
was found on PR simulations based on sCTs. This is
consistent with the observation of a positive shift in ME
values. The MARE calculation considering only beams
traversing lung tissue resulted in an average MARE of
2.1 ± 0.9 mm for sCTorig and 1.6 ± 0.6 for sCTcor. The
MARE for the remaining beams is significantly lower on
both sCTorig and sCTcor, with values of 0.9 ± 0.6 and
0.7 ± 0.5 mm, respectively. This indicates that the over-
all range error is mainly determined by the range error in
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(a) (b)

(c)

F IGURE 6 Range error maps for patient 23
between rCT and sCTorig (a) and between rCT and
sCTcor (b). Panel (c) shows the corresponding water
equivalent thickness map (calculated based on the
rCT). Positive range errors indicate larger range on
sCTs than rCTs; negative range errors lower range on
sCTs than rCTs

F IGURE 7 (a) Mean absolute range error for sCTorig
and sCTcor. (b) Mean range error of sCTorig and sCTcor.
The dashed lines indicate the mean values

lung tissue. Additional range error maps are presented
in the Supporting Information.

4 DISCUSSION

Frequent imaging is a prerequisite for APT in lung can-
cer patients. Deep convolutional neural networks have
previously shown their ability to correct HU deficiencies
of routinely acquired CBCTs and thus enable CBCT-
based APT in other treatment sites. This study aimed
at investigating image quality, dosimetric accuracy, and

clinical suitability of deep learning based sCTs for lung
cancer patients. We also proposed an accompanying
patient-specific correction technique, utilizing HU infor-
mation from the pCT, which further improved the sCT in
terms of dosimetric accuracy and image quality.

The patient-specific correction method reduced the
average MAE from 34.1 ± 5.5 HU to 30.7 ± 4.4 HU.
This MAE is lower than previously reported results in
literature. Maspero et al. achieved an MAE of 83 ± 10
HU. Their study used a single network for head and
neck, lung, and breast cancer patients and a different
network architecture (generative adversarial network,
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GAN).22 Eckl et al. used a similar GAN architecture and
reported a comparable MAE of 94 ± 32 HU.28 However,
image quality comparisons between different studies
are challenging since sCT image quality depends on
the specific CBCT acquisition protocols and image
similarity metrics, such as MAE, are sensitive to the
CBCT field-of -view and the used reference image (e.g.,
same- day, rigid- or deformable registration).

The studies by Maspero et al. and Eckl et al. only
reported results for photon dose calculations. In the
present study, for the first time, proton dose calculation
accuracy of deep learning based synthetic CTs for APT
of lung cancer patients was presented. We achieved
average gamma pass ratios (3%/3 mm) of 93.7 ± 4.8%
for the uncorrected and 96.8 ± 2.4% for the corrected
sCTs. The lowest observed pass ratios increased from
82.8% to 90.7%. The results showed that sCTs with
the lowest pass ratio benefited most from the patient-
specific correction strategy. This outcome is relevant
for clinical implementation of sCTs, where outliers have
to be avoided and consistent sCTs for a large patient
cohort are desired. Besides investigating global dose
differences using gamma analysis, we also performed
a local dose evaluation for target volumes and organs
at risk. The observed difference in mean dose to tar-
get volumes was below ± 0.5% for both sCTorig and
sCTcor. Larger differences of up to 12% were measured
for organs at risk (spinal cord and heart). However, the
absolute dose in organs at risk varied greatly between
patients and the largest relative deviations were seen
for the lowest absolute doses. By calculating NTCP, we
also showed that these dose differences are negligi-
ble for calculating the risk of developing certain side
effects (dysphagia, radiation pneumonitis and 2-year
mortality). The average differences between NTCP cal-
culated on the reference rCT and both sCTorig and
sCTcor were below 0.2% and maximum ΔNTCP values
did not exceed 2%.

The evaluation of several image quality and dose met-
rics shows the need for a broad evaluation of sCTs.
Global image quality (MAE, ME, PSNR, SSIM) and dose
(gamma analysis) metrics alone do not provide enough
insights to assess the clinical suitability of sCTs. Local
dose metrics (target and organ at risk doses,NTCP mod-
els) and proton radiography are valuable tools that pro-
vide evidence on the locality and clinical impact of sCT
errors.

Proton radiography simulations served two purposes:
1) to visualize the similarity of HU values obtained in
sCTs with respect to rCTs and thereby highlight anatom-
ical areas with less accurate HUs and 2) to quan-
tify the differences in proton range between rCTs and
sCTs (with and without correction). Applying the patient-
specific correction reduced the overall MARE between
rCT and sCT from 1.5 ± 0.5 mm to 1.1 ± 0.4 mm. This
confirms the effectiveness of the correction strategy
and is consistent with improvements seen in MAE and

gamma pass ratios. Exclusively evaluating range errors
for the lung region showed significantly higher MARE for
both sCTorig (2.1 ± 0.9 mm) and sCTcor (1.6 ± 0.6 mm),
which approximately doubles the range error observed
in the remaining tissues. Based on these results, we
conclude that it is more challenging for the DCNN to
accurately reproduce HUs of lung tissues and that the
patient-specific correction technique is able to partially
correct for it. The proton radiography simulations were
performed for the entire patient,which were beneficial to
assess the HU accuracy but do not represent a clinically
feasible field size. Due to the detector size, in vivo pro-
ton radiography measurements using a multi-layer ion-
ization chamber are usually limited to small fields of a
few square centimeters.40,42 In vivo proton radiography
measurements are envisioned to be utilized as a qual-
ity control tool to verify deep learning based sCTs within
APT workflows.44

The proposed patient-specific correction technique
was introduced to correct low frequency HU variations
of the sCTs, which were most prevalent in lung tissue.
Lung tissue is prone to scatter artifacts on the CBCT,
which lead to a lack of detail and interferes with the fine
structure. Correction maps and proton radiography sim-
ulations highlight the larger errors of lung tissue. The
patient-specific correction relies on accurate CT HU-
values. For the first few treatment fractions, the pCT is
the only available CT image and was therefore chosen
for our study. However, in a clinical workflow, pCTs can
also be replaced with more recent rCT images if avail-
able. The results presented in our study show a worst-
case scenario, in which the correction is based on a CT
image acquired several weeks before treatment (pCT).
Although, by deforming the pCT to the sCT, threshold-
ing the difference map and applying a smoothing fil-
ter, the influence of time and anatomical differences of
the pCT are mitigated. Some patients (e.g., patients 8,
17, and 20) showed increased ME after applying the
DIR-based patient-specific correction. However, no cor-
relation between the deformation vector field properties
(e.g., mean vector amplitude, Jacobian) and the ME was
found. An increased ME after applying the correction
does not necessarily indicate worse image quality. ME
alone is not suitable as an image quality and similarity
metric, since negative and positive HU errors can can-
cel each other out.ME should be considered in combina-
tion with a metric that also uses the absolute differences
between two images (e.g., MAE).

The comparison of pure deformable image registra-
tion (pCTdef ) and sCTcor highlighted the benefit of the
combination of DCNN-based sCT and patient-specific
HU-correction. sCTcor resulted in an accurate repre-
sentation of the daily anatomy and provided improved
HU accuracy. For many patients, pCTdef resulted in
comparable dosimetric accuracy as sCTcor, but for
some patients, anatomical changes between acqui-
sition of pCT and CBCT, which cannot always be
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modeled accurately by DIR, lead to outliers with sig-
nificantly lower dose calculation performance (gamma
pass ratio decrease of up to 17%). This makes clinical
implementation of pure DIR-based sCT generation chal-
lenging and favors DCNN-based sCTs in combination
with a pCT-based correction method.

This study was performed with a limited dataset of
33 thorax cancer patients. To efficiently use the entire
dataset for image and dose evaluation,a threefold cross
validation procedure was used. Our dataset was limited
since the treatment of lung cancer patients with pro-
ton therapy only recently started at our institution. The
patient number will increase in the future and will enable
studies to investigate the influence of the dataset size
on image and dosimetric quality. The image quality of
the initial CBCT has a major influence on sCT quality
too.Higher image quality,especially of lung tissue,could
further improve sCT accuracy. Currently, CBCT imaging
parameters are chosen for patient alignment purposes.
Better CBCT image quality would most likely be con-
nected to an increased imaging dose, which would have
a large impact on the imaging dose burden, particularly
if CBCT images are acquired daily. Therefore, potential
gains in image quality have to be carefully balanced with
the dose exposure of patients. The influence of imaging
parameters on lung sCTs should be investigated in fur-
ther studies.

We used a similar neural network architecture in pre-
vious head and neck cancer patient studies,23,24 which
enables to establish a comparison of image quality and
dosimetric accuracy between these anatomical loca-
tions. Lung sCTs (sCTorig) resulted in an average MAE
of 34.1 ± 5.5 HU (sCTorig), which is lower than the MAE
observed for H&N sCTs (40.2 ± 3.9 HU).This is contrary
to the observed 3%/3 mm gamma pass ratios of clini-
cal treatment plans, which were significantly higher for
H&N cancer patients (98.8% vs. 93.7%). Even with the
applied patient specific correction, lung sCTs resulted in
a lower pass ratio (98.8% vs. 96.8%). This discrepancy
is caused by the different tissue compositions, larger tis-
sue heterogeneity, and the increased radiological depth
in the lung region. The evaluation of NTCP values and
target/OAR doses show similar accuracy for H&N and
lung cancer patients, indicating similar clinical suitability
of deep learning based sCTs for both treatment sites.

5 CONCLUSION

In this study,we proposed and evaluated a CBCT-based
sCT generation method for APT of lung cancer patients.
We have shown that a DCNN in combination with a
patient-specific correction method can generate accu-
rate sCTs for proton dose calculations.Clinically relevant
dose statistics and NTCP values showed high agree-
ment between sCTs and same-day rCTs, indicating the

potential suitability of the generated sCTs for application
in APT workflows for lung cancer patients.
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