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Technical lignins are increasingly available at industrial scale,
offering opportunities for valorization, such as by (partial)
depolymerization. Any downstream lignin application requires
careful tailoring of structural properties, such as molecular
weight or functional group density, properties that are difficult
to control or predict given the structure variability and
recalcitrance of technical lignins. Online insight into changes in
molecular weight (Mw), to gauge the extent of lignin depolyme-
rization and repolymerization, would be highly desired to
improve such control, but cannot be readily provided by the
standard ex-situ techniques, such as size exclusion chromatog-

raphy (SEC). Herein, operando attenuated total reflectance
infrared (ATR-IR) spectroscopy combined with chemometrics
provided temporal changes in Mw during lignin depolymeriza-
tion with high resolution. More specifically, ex-situ SEC-derived
Mw and polydispersity data of kraft lignin subjected to aqueous
phase reforming conditions could be well correlated with ATR-
IR spectra of the reaction mixture as a function of time. The
developed method showed excellent regression results and
relative error, comparable to the standard SEC method. The
method developed has the potential to be translated to other
lignin depolymerization processes.

Introduction

Lignin, an aromatic biopolymer that gives plants their structural
integrity, holds considerable potential for the production of
renewable chemicals and materials.[1–10] Several biorefining
operations, including the pulp and paper industry and 2nd-
generation bio-ethanol plants generate streams of so-called
technical lignins. Some of these technical lignins are available at
scale in isolated form. As the supply of these is anticipated to
increase, economic valorization of such streams beyond energy
recovery is necessary, for example, to renewables-based materi-

als or biobased chemical building blocks. The latter strategy
would require (partial) lignin depolymerization as a first step.[11]

Lignin depolymerization specifically aims to reduce the
feed’s molecular weight (Mw) by breaking the inter-unit linkages
to ultimately produce low-Mw aromatics, such as monomers
that can serve as pure platform molecules for further
upgrading[1,2,7] or lower- to intermediate-Mw oligomers that can
be used as mixture in various applications.[12] While native
lignins are rich in relatively easily cleavable aryl� alkyl ether β-O-
4 bonds, technical lignins are typically characterized by highly
condensed and highly variable structures that depend not only
on botanical origin but also strongly on the chemical isolation
method, with kraft, alkali or organosolv processes being typical
examples.[7,13,14] Technical lignins have significantly less cleav-
able ether bonds and contain more carbon–carbon bonded
units.[2] The latter are the result of condensation reactions
between soluble monomeric and oligomeric compounds origi-
nating from bond cleavage in the native lignin;[15] such C� C
bond forming processes thus lead to molecular weight
increases in the lignin product. Various approaches, including
oxidation, hydrodeoxygenation, pyrolysis, hydrolysis, and hy-
drogenolysis reactions, have been explored to (partially)
depolymerize technical lignins.[16–22] Base-catalyzed depolymeri-
zation of lignin using sodium hydroxide proved to be an
effective strategy to depolymerize technical lignin,[23] for
example. The alkaline conditions ensure good solubilization of
the lignin feedstock and generated fragments. Base-catalyzed
depolymerization followed by catalytic hydrodeoxygenation
has also been thoroughly investigated to depolymerize lignin
into gasoline-range aromatic fuels.[24–26] For example, Beckham
and co-workers depolymerized kraft lignin and other technical
lignins into low-molecular-weight, water-soluble species with
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relatively high yields.[23] Aqueous phase reforming (APR) and
liquid phase reforming (LPR) of technical lignins can also be
performed under alkaline conditions, typically producing mod-
erate to good monomer yields under somewhat milder temper-
atures and pressures.[11,22,27] Under APR and LPR conditions both
ether and, to some extent, C� C bond cleavage can occur,[15]

both of which can lead to molecular weight reduction.
Control over and thus knowledge of Mw and polydispersity

(PD) are often central to the valorization of technical lignins. Mw

and PD are key parameters for lignin applications in materials
synthesis, indicating functionality, homogeneity, and viscosity
regimes, as well as valuable indicators of the extent of overall
lignin depolymerization when small chemical building blocks
are targeted. Most commonly, size exclusion chromatography
(SEC) is used as standard technique to determine the molecular
weight of lignin. However, Mw analysis by SEC can be tedious,
involving continuous calibration, careful sample preparation,
and lengthy data acquisition. Furthermore, SEC only offers ex-
situ analysis, limiting sampling frequency, possibly introducing
sampling effects, and temporally separating process and
analysis. In-situ analysis of Mw and PD changes would of course
be highly desirable as this could address the issues listed above
and would allow one to deal with lignin-specific issues of
batch-to-batch and process-dependent differences in lignin
structure and, hence, reactivity. Therefore, an alternative,
simple, non-destructive, and fast analytical technique that can
reliably supply information on Mw and PD in real time would
offer great advantages. Fourier-transform infrared (FT-IR) spec-
troscopy combined with multivariate regression is a powerful
approach to provide quantitative structural information and in
principle could supply this information since the FT-IR spectra
contain a wealth of chemical information on the lignin sample,
including relative abundance of linkages and functional groups
and even, somewhat surprisingly, information on molecular
weight. Indeed, partial least squares (PLS) regression combined
with FT-IR spectroscopy has already been used for quantifica-
tion of some structural units and functional groups in lignin,[28,29]

and the characterization of whole biomass.[30–36] Recently, it was
reported that Mw values and inter-unit linkage abundances
could also be obtained for a wide range of technical lignins
directly from their attenuated total reflectance (ATR)-IR spectra
by chemometrics.[37] The FT-IR spectra were simply acquired
from the solid lignin powder under ambient conditions using a
standard ATR-IR accessory. This demonstrates that information
on Mw is in principle tractable from FT-IR spectra and poses the
question if this method for off-line solid sample analysis could
be extended to on-line monitoring of a lignin depolymerization
reaction, for example, as part of a prospective biorefinery
operation.

Reliably extracting Mw information from operando ATR-IR
spectroscopy measurements comes with considerable analytical
challenges, given that the depolymerization reactions are often
operated at elevated temperature and pressure and are run in
IR light-absorbing solvents, including water. These contributions
to the ATR-IR spectra must be adequately addressed before-
hand. Previously, we reported on an analytical protocol to deal
with such challenges and to acquire high-quality ATR-IR spectra,

for example, under APR reaction conditions.[38] Here, we now
turn to the challenge of acquiring information on the Mw from
the ATR-IR spectra by multivariate regression, using an ex-situ
SEC Mw dataset to calibrate the operando spectroscopic
method. Hence, a multivariate regression model was developed
with the potential to replace off-line SEC measurements with
online operando spectroscopy measurements to monitor
changes in the Mw value of kraft lignin.

Results and Discussion

Solvent-corrected operando spectra

The depolymerization of kraft lignin was monitored over time
under alkaline (3.5 wt% NaOH, pH=13.58) APR conditions
(225 °C, 30 bar He) using a commercially available Pt/Al2O3

catalyst in an autoclave setup equipped with a bottom-
mounted ATR-IR probe (Figure S1). In total, 19 samples were
taken over the course of the reaction for ex-situ SEC determi-
nation of the Mw and PD values, data needed as input to build
the chemometrics model. The first three samples were taken
before reaching the set temperature, as depicted in Figure 1.

The 19 operando ATR-IR spectra obtained during kraft lignin
APR that correspond with the 19 samples drawn from the
reaction for SEC analysis are shown in Figure 2A. To prepare the
operando ATR-IR spectra for chemometric analysis, interfer-
ences due to solvent and temperature contributions, baseline
shift, and light scattering due to the presence of solid particles
must be corrected. To do so, the operando ATR-IR spectra were
first corrected for background and temperature-resolved sol-
vent contributions using the temperature-dependent single-
beam approach reported previously.[38] To this extent, the ATR-
IR spectra acquired in absorption mode were first converted to
the corresponding single-beam ATR-IR spectra (Figure S2A),
using the background spectrum of the empty ATR-IR probe-
equipped reaction vessel under ambient conditions. The single-
beam operando ATR-IR reaction spectra were then ratioed

Figure 1. Heating profile vs. operando ATR-IR spectroscopy acquisition time
and sampling time for SEC analysis. The APR reaction of kraft lignin was
conducted over a Pt/Al2O3 catalyst with 3.5 wt% NaOH in a 100 mL Parr
autoclave equipped with a bottom-mounted ATR-IR accessory.
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against the corresponding single-beam spectra of the solvent
measured at the identical temperatures. The single-beam
temperature-resolved operando ATR-IR spectra of the solvent,
at the same pH value as in the reaction run, (2.7 wt% aqueous
NaOH, pH=13.58) were obtained in a separate experiment
(Figure S2.B). The final, solvent-corrected operando ATR-IR
spectra are shown in Figure 2B. The noisy spectral regions of
4000–3160 (water OH stretching), 2360–1800 (diamond crystal
absorption, CO2 antisymmetric vibration), and 940–650 cm� 1

were removed as they adversely affected the modelling, leaving
the information-rich 3160–2360 and 1800–940 cm� 1 regions for
further analysis.

Towards a predictive model

Prior to spectral modelling, the operando ATR-IR spectra were
normalized with multiplicative scatter correction (MSC) to adjust
for any additive (i. e., baseline, if applicable) and multiplicative
scaling effects. Such scaling effects are mainly due to light
scattering from solid particles,[39,40] that is, either from the solid
catalyst or biomass-derived solids formed during the APR
reaction. The selected spectral regions preprocessed with MSC
are depicted in Figure 3A. In theory, MSC removes scaling due
to interfering systematic effects, such as scattering, while

scaling due to properties of interest (such as Mw variation) is
reserved.[39,40]

The normalized ATR-IR spectra were first explored with a
principal component analysis (PCA) model. The model was built
with five principal components (PCs) to minimize the root mean
square error of cross validation (RMSECV), resulting in an
explained variance of 99.84% (Figure 3B). The influence plot
(Figure 4A) shows the spectrum of sample 3 to have more
residuals than the other spectra. Notably, when only four PCs
were used instead, the spectrum of sample 3 did not produce
higher residuals. As the 5th PC explained only 0.19% of the
variance in the data, it would as such not be expected to have
significant leverage if kept in the model and was omitted. As
evident from the relatively high Hotelling’s T2 in the influence
plot, the ATR-IR spectra of samples 1 and 2 are the most
different. The Hotelling’s T2 statistic can be viewed as an
extension of the t-test[44] and is a common diagnostic tool to
detect outliers especially when automation of outlier detection
is needed, such as in online process monitoring. Hence, a
spectrum that is very different from the bulk of the measured
spectra will have extreme scores and thus a high Hotelling’s T2.
In this case, the spectra of samples 1 and 2 should, however,
not be considered as outliers as these are acquired at the
beginning of reaction and with temperatures very different
from the bulk set of spectra. The relatively extreme scores

Figure 2. (A) As-measured operando ATR-IR spectra, expressed as absorption,
for the 19 samples acquired throughout the APR reaction for kraft lignin. (B)
Solvent-corrected operando ATR-IR spectra where the solvent contribution
was removed by the single-beam method.

Figure 3. (A) Solvent-corrected operando ATR-IR spectra for 19 samples
acquired throughout the APR reaction of kraft lignin after MSC pre-
processing on the selected spectral regions. (B) RMSECV of the PCA used to
model the operando ATR-IR spectra of the 19 samples.
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obtained for the spectra of samples 1 and 2 can be understood
from looking at the scores contribution plot (Figure 4B).

The two spectra had relatively high contributions from kraft
lignin vibrations, that is, aromatic skeletal vibrations (1498 and
1493 cm� 1), the O� C� O mode in G units (1304 and
1287 cm� 1)[41] and the C� O� C stretching in the alkyl aryl ether
at 1127 cm� 1.[42] These two spectra are expected to have high
contributions from such bonds as they were acquired at early
reaction times. The spectra of samples 1–3 were therefore kept
in the subsequent regression efforts to check if they have
significant leverage on the performance of the constructed
model.

In general, the MSC-corrected ATR-IR spectra (Figure 3A)
provided insight into the structural changes that occur during
the APR reaction as a function of time. For example, lignin
vibrations in the 1150–1000 cm� 1 region dropped in intensity
during the APR reaction, while the band at 1265 shifted to
1250 cm� 1 and the one at 1287 to 1304 cm� 1 before being
diminished. These spectral changes are also evident from the
loadings of the PCA model (see Figure S3). The loadings of the
first (PC1) and second (PC2) principal components together
explained most (i. e., 95.54%) of the spectral variation taking
place during the reaction and thus provide a compact overview

to track these changes. Further insight can be gained from
plotting loadings and scores simultaneously in a so-called biplot
(Figure 5), a powerful PCA tool that allows observed variations
in the scores to be connected with the source of spectral
variation.[43] The lengths of the lines in the biplot reflects the
variance of the respective variable.[44]

The kraft lignin vibrations at 1032, 1127, 1155, 1291, 1306,
and 1496 cm� 1 were positively correlated (Figure S3). Looking at
the projection of a sample onto a variable line, samples 1–3
have the longest cut points and hence the highest value for
that variable[44] for all lignin-related bands; this is shown in
Figure 5 for the 1496 cm� 1 vibration. This indicates that these
samples are relatively richer in the IR bands assigned to kraft
lignin, as expected. Upon approaching the end of the APR
reaction (i. e., samples 12–19), the samples became richer in the
bands at 1459, 1248, and 1437 cm� 1. For example, the cut
points to the 1248 cm� 1 band show that sample 19 has the
strongest contribution from this vibration. This band can be
assigned to the aryl� O� C stretching vibration in guaiacol,
suggesting that the later spectra are more enriched in low-Mw

reaction products. These observations agree with ex-situ gas
chromatography (GC) and GC-mass spectrometry (GC-MS)
analysis (Figure S4), which shows that guaiacol is the major
product of the APR reaction resulting from a softwood lignin
rich in guaiacyl aromatic units. However, as the monomer yield
is limited (4.8% based on lignin intake) and as the vibrational
bands in the fingerprint region contain complex contributions
from various vibrational modes,[41] one should be cautious in
attributing this trend in the biplot to the formation of guaiacol
alone.

The results of the ex-situ SEC measurements are plotted in
Figure 6. The SEC samples showed a general shift to lower Mw

as the APR reaction of kraft lignin proceeded. Sample 2,
however, showed an anomalous profile, with an additional peak
at shorter retention time. The Mw values extracted from the SEC
traces gradually decreased (Figure 6B), eventually plateauing at
around 2000 gmol� 1; the 2nd sample instead showed an
increased Mw. The origin of the additional high-Mw contribution

Figure 4. (A) Hotelling’s T2 vs. the Q residuals (influence plot) of the PCA
model built on the MSC pre-processed ATR-IR spectra of the APR reaction
mixtures. (B) Scores contribution plot for the spectra of samples 1 and 2
reveals the vibrational modes that dominate the operando ATR-IR spectra.

Figure 5. Biplot of PC1 and PC2 showing the projection of samples (red) and
the important infrared bands (blue). Lines have been added only for the
most important bands.
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to sample 2 and its bimodal appearance is unclear and likely an
experimental (sampling or contamination) error. As this pro-
vided an illustrative real-world example of how online monitor-
ing models can encounter and should deal with unexpected
contributions, this sample was kept in the set, and the effect of
this anomaly on the modeling efforts is detailed below.

An interesting trend in the scores plot, shown in Figure 7A
and marked with the blue ellipse, showed that the drop in the
scores on PC1 and PC2 was associated with a concomitant
decrease in Mw and PD for samples 1–10, after which the Mw

levels out. Another interesting trend, highlighted in green,
shows that the model also picks up the formation of more
saturated structures, once the Mw and PD changes have leveled
out, as can be seen going from sample 10 to sample 12 and
further. Indeed, for samples 12 and higher the values for Mw

and PD only minimally decreased. Inspection of the scores
contribution plots of samples 10–12 (Figure 7B) substantiates
this: samples 11 and 12 have stronger contributions of the C� H
stretching modes in CH3 and CH2 (�2942 cm� 1), the CH2 scissor
mode (1472 cm� 1), and the aromatic skeletal and C� H out of
plane (trans) bending modes (1485 and 940 cm� 1, respectively).
The latter might be not reliably included, however, being
located at the edge of the spectra. Sample 10 showed a large
contribution of the 1660 cm� 1 vibrational mode, which is typical
for C=C in alkenes.[42] These olefins in kraft lignin can be found
in the cinnamyl alcohol, enol ether, and (β-1- and β-5-derived)

stilbene structures.[45] Such structures can be hydrogenated
under the applied APR conditions. The strong contribution at
1347 cm� 1 is assigned to an O� H in-plane bending mode.[42]

This closer inspection also led us to remove the 2600–
2360 cm� 1 region in the subsequent regression as it only added
noise (see Figures S3 and 7B) and better regression could be
obtained by doing so. Finally, that sample 2 is positioned
outside the blue ellipse is in line with its Mw and the PD being
higher than those of sample 1.

Partial least square regression

Next, we built a quantitative model to predict the molecular
weight values from the collected operando ATR-IR spectra by
multivariate regression of a training set of the ATR-IR spectra
and by applying a calibration set of SEC Mw values. To this
extent, the obtained data were split into a training set (i. e., two
thirds of the samples) and a validation set (i. e., the other third).
The validation samples were distributed evenly to cover the
whole range of variation. Partial least square (PLS) regression
was used for regression. Prior to PLS regression, the ATR-IR
spectra were normalized with MSC. Three PLS regression

Figure 6. (A) Overlay of the SEC traces of the 19 samples acquired during the
APR reaction of kraft lignin. (B) Mw and PD values, as determined by SEC, of
the 19 samples acquired during the APR reaction.

Figure 7. (A) The score plot of PC2 vs. PC1 of the operando ATR-IR spectra
corresponding to the 19 samples acquired during the APR reaction. Arrows
show the direction of the trends in the data. The score plot explains 95.82%
of the variance in the spectra. (B) Scores contribution plot of samples 10–12.
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models were evaluated (further denoted as A–C), and the best
prediction was obtained when non-logarithmic values were
used for Mw and PD and sample 2 was classified as outlier and
excluded (B). The results for the PLS regression models are
summarized in Table 1.

In PLS Model A, the outlier sample 2 was placed in the
validation set to check how the model would deal with it. A
RMSECV of 391 g mol� 1 and 0.21 for Mw and PD, respectively,
were obtained in this model. Figure S5A,B shows the perform-
ance of the model together with the important statistics. The
relatively high RMSECV value for the Mw was mainly due to
sample 11, which was part of the training set. Sample 11
exhibited a relatively high Mw of 2619 gmol� 1 compared to
sample 10 that had a Mw of 2242 gmol� 1. When sample 11 was
removed from the training set, the RMSECV value dropped to
240 gmol� 1; there was, however, no other clear argument to
exclude this sample, so it was left in. As inclusion of sample 2
did not lead to a satisfactory model, PLS Model A was discarded
and PLS Model B was established by excluding sample 2. This
significantly improved the prediction and produced a regres-
sion model with an excellent coefficient of determination
R2(pred.) of 0.97, small prediction error of 77 gmol� 1 and 0.09,
and small prediction bias of 7 gmol� 1 and � 0.02 for Mw and PD,
respectively. This PLS model showed improved performance in
prediction compared to its performance in cross validation. This
indicates that this PLS model is better in predicting this
particular dataset, but not necessarily better for a future
dataset. Figure 8A,B depicts the performance of PLS Model B to
predict the Mw and PD values, respectively. PLS Model C made
use of log10(Mw, PD) instead of the non-logarithmic values, as
shown in Figure S6 and Table 1. This model gave slightly less
precise cross-validation results for both Mw and PD and also
proved to be slightly less precise than PLS Model B when
comparing the root mean squared error of prediction (RMSEP)
and prediction bias. This was counter to expectation, as better
predictions were expected given that non-linearity is expected
in the SEC molecular weight data used to determine Mw and Mn

values of the calibration set.[37] For example, standard detection
methods (e.g., refractive index) in combination with sulfonated
polystyrene standards have shown substantial (non-linear)
errors in the molecular weight results.[37] Apparently this non-
linearity is not sufficiently pronounced in this particular data.
Indeed, given its lowest RMSECV and bias, Model B (non-
logarithmic values) is the optimum model for future prediction
as well as for this dataset. Importantly, this shows, for the first

time, that the operando ATR-IR spectra can be used to obtain
information about molecular weights of lignin if the spectra are
of sufficient quality. The regression vectors of Model B (Fig-
ure S7) show which wavenumbers have the greatest influence
in predicting the Mw and the PD; these wavenumbers can be
used in further work to optimize the models. Such optimization
may require testing different portions of the spectra (variable
selection), testing different preprocessing options (1st, 2nd
derivative with different smoothing options), and testing differ-
ent normalization options (MSC, SNV, etc.). Thus, the number of
possible models to be tested will rapidly increase. To deal with
the hundreds of models to be tested, future studies should
focus on automation, for example, through the model optimizer
tool available in the PLS_Toolbox.

Table 1. Results of PLS regression between average-weight Mw and PD, as determined by SEC of the reaction samples and their corresponding operando
ATR-IR spectra.

Entry Range Size[a] LV[b] RMSECV[c] RE[d] [%] RMSEP[e] Prediction bias R2 (pred.)[f]

Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD Mw

[gmol� 1]
PD

A 6380 6.23 19 4 5 391 0.21 4.70 3.21 563 0.62 � 121 � 0.16 0.81 0.62
B 3851 4.48 18 4 5 391 0.21 7.79 4.69 77 0.09 7 � 0.02 0.97 0.97
C[g] 3851 4.48 18 3 4 412 0.33 8.65 5.80 161 0.10 � 30 � 0.02 0.97 0.90

[a] Number of samples included in modeling. [b] LV= latent variable. [c] CV=cross-validation= leave out one. [d] RE= relative error=RMSECV/range. [e]
RMSEP= root mean squared error of prediction. [f] R2 (pred.)=coefficient of determination for prediction. [g] Logarithmic values of Mw and PD were used in
this model.

Figure 8. (A) Performance of PLS Model B upon prediction of Mw along with
important statistics. (B) Performance of PLS Model B upon prediction of PD
along with important statistics.
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Conclusions

Molecular weight (Mw) values of kraft lignin derivatives can be
obtained directly from operando attenuated total reflectance
infrared (ATR-IR) spectra recorded in lignin–water mixtures
under typical aqueous phase reforming (APR) reaction con-
ditions (i. e., at elevated temperatures and pressures). This is
possible provided that a suitable calibration set is available, for
example, obtained ex-situ by size exclusion chromatography
(SEC) measurements. A chemometric model, based on partial
least squares (PLS) regression, was developed that could
correlate and predict time-dependent Mw and polydispersity
(PD) values with the corresponding operando ATR-IR spectra of
the reaction mixture. Effective correction for the solvent and
temperature contributions to the ATR-IR spectra was key to
have operando spectroscopic data of sufficient quality to serve
as good predictor variables. Furthermore, principal component
analysis (PCA) proved highly useful in uncovering the nature of
the chemical changes evidenced by the spectroscopic data and
in identifying outliers. Two trends could be identified with PCA,
one related to the drop in Mw and PD and the other related to
an increased saturation (e.g., as a result of hydrogenation of the
aromatic bonds present in treated kraft lignin). A comparison of
models showed that future predictions are best obtained with
non-logarithmic values for Mw and PD. The obtained results
show that operando ATR-IR spectroscopy combined with multi-
variate regression can provide quantitative results that are
comparable to more traditional SEC measurements and thus
can ultimately replace these time-consuming SEC measure-
ments. Indeed, the developed ATR-IR/PLS model can be
integrated and automated, ultimately offering the possibility to
apply it for online process monitoring and control of lignin-
based conversion processes.

Experimental Section
Materials: Pt/γ-Al2O3 catalyst was obtained from Sigma-Aldrich and
used as received. Indulin AT kraft lignin (originating from softwood)
was obtained from a commercial supplier (Ingevity, USA).

IR spectroscopy: ATR FT-IR spectra of the reaction were recorded on
a MT ReactIR 45 m ATR-IR spectrometer equipped with an MCT
detector using a bottom mounted ATR Sampling Accessory with a
diamond/ZnSe plate. The spectra were collected in the range 4000–
650 cm � 1 using Mettler Toledo iC IR 4.2 software with 1 min
acquisition time, 128 scans per sample, and 4 cm� 1 spectral
resolution. The APR reaction was conducted in a bottom-mounted
ATR-IR equipped 100 mL Parr autoclave. For this purpose, 14.0 g
kraft lignin was dissolved in a 56.0 mL alkaline aqueous solution
(3.5 wt% NaOH, pH=13.58), while 4.62 g of the Pt/Al2O3 catalyst
was used to promote the catalytic reaction. APR was conducted at
225 °C and 30 bar He pressure for 320 min, while the pressure was
controlled by a back-pressure regulator and sampling from the
reactor was performed using a custom-built sampling line that
allowed sampling at high pressure and temperature. The reactor
was loaded with the above reaction mixture, purged three times
with He, and pressurized to 30 bar and then heated to 225 °C. The
FT-IR spectra were acquired starting from room temperature up to
the set temperature and continued till the end of the APR reaction.
After catalysis, the autoclave was air cooled. The single-beam

reaction spectra were reconstructed from the absorption reaction
spectra and the background spectrum used at the beginning of the
experiment. In a separate set of experiments to acquire the solvent
spectra at the same pH value as in the reaction run, 70 g of the
aqueous alkaline solvent (2.7 wt% NaOH, pH=13.58) was heated in
the ATR-IR bottom-mounted 100 mL Parr autoclave from room
temperature to 225 °C under 30 bar He pressure. The temperature-
resolved absorption ATR-IR spectra of the solvent were acquired
using optimum flushing time of at least 2.5 h with 1 min acquisition
time, 128 scans per sample, and 4 cm� 1 spectral resolution. The
single-beam solvent spectra were reconstructed from the absorp-
tion solvent spectra and the background spectrum used at the
beginning of the experiment.

SEC: Mw and PD of the samples taken from the APR reaction mixture
were determined by SEC as published by Constant et al. as SEC
method D.[13] Molar mass determination was performed on an
alkaline SEC using a Waters Alliance instrument equipped with a
TSK-gel guard column PWxl, column size: 6.0 mm I.D.×4 cm,
particle size: 12 μm, and two serial connected columns packed with
TSK-gel GMPWxl, column size: 7.8 mm I.D.×30 cm, particle size:
13 μm. Sodium polystyrene sulfonates with Mw range of 891–
976000 Da were used for the calibration of the molar mass
distribution. The APR reaction samples were diluted to a concen-
tration of 1 mgmL� 1 lignin in 0.5 m NaOH. SEC runs were performed
at 30 °C with 0.5 m NaOH eluent at a flow rate of 1 mLmin� 1 and
UV detection at 280 nm. The APR samples were measured in
duplicate.

GC and GC-MS: For the GC and GC-MS analyses, 0.5 mL sample was
passed over 0.5 g of silica gel padded with 0.2 g of magnesium
sulfate to remove water and the inorganic compounds, while the
organics were subsequently eluted with 3 mL ethyl acetate. 100 μL
(0.032 mmol) mesitylene was added to the eluent, which was then
analyzed by GC and GC-MS. GC measurements were performed on
a Varian GC instrument equipped with a VF-5 ms capillary column
and a flame ionization detector (FID), while GC-MS measurements
were performed on a Shimadzu GC-2010 instrument using a VF5-
ms column, coupled to a Shimadzu GCMS-QP2010 mass spectrom-
eter.

Multivariate analysis: The multivariate analysis was done using the
PLS Toolbox developed by Eigenvector Research, Inc. The PLS
Toolbox is an advanced chemometric analysis tool for use within
the MATLAB® computational environment. For each regression
case, the property of interest (Mw or PD) was modelled using a
separate PLS model for each property. The ATR-IR spectra were
normalized with MSC and then mean-centered, while the Mw and
PD values were mean-centered only. Furthermore, the minimization
of RMSECV along with the improved explained variance (� <2%
improvement) were the criteria to decide the number of LVs.
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