Table 2. Summary of deep architectures used in this work.
Architecture | No. of Conv layers |
No. of FCC layers |
No. of training parameters |
Minimum image size |
Number of extracted features |
Top 5 error on ImageNet |
---|---|---|---|---|---|---|
DenseNet121 | 120 | 1 | 7 million | 221×221 | 1,024 | 7.71% |
InceptionV3 | 42 | 1 | 22 million | 299 × 299 | 2,048 | 3.08% |
VGG16 | 13 | 3 | 134 million | 227 × 227 | 4,096 | 7.30% |
MobileNet | 53 | 3 | 3.4 million | 224 × 224 | 1,024 | -% |