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Abstract

We applied our computational algorithm TRUST4 to assemble immune receptor (TCR/BCR) 

repertoires from approximately twelve thousand RNA-seq samples from The Cancer Genome 

Atlas (TCGA) and seven immunotherapy studies. From over 35 million assembled complete 

complementary-determining region 3 (CDR3) sequences, we observed that the expression of 

CCL5 and MZB1 are the most positively correlated genes with T-cell clonal expansion and 

B-cell clonal expansion, respectively. We analyzed amino acid evolution during B-cell receptor 

somatic hypermutation and identified tyrosine as the preferred residue. We found that IgG1+IgG3 

antibodies together with FcRn were associated with complement-dependent cytotoxicity and 
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antibody-dependent cellular cytotoxicity or phagocytosis. In addition to B-cell infiltration, we 

discovered that B-cell clonal expansion and IgG1+IgG3 antibodies are also correlated with better 

patient outcomes. Finally, we created a website, VisualizIRR, for users to interactively explore and 

visualize the immune repertoires in this study.

Introduction

T cells and B cells play central roles in adaptive immunity by recognizing viral, bacterial, 

or parasitic pathogens and tumor antigens through their diverse receptors (TCRs and BCRs). 

Upon antigen recognition, B cells further undergo somatic hypermutation (SHM) and 

class switch recombination [1] to evolve BCRs or antibodies with better affinities to the 

antigen. TCR and BCR analyses have been widely adopted in studies of infectious disease 

[2], allergy [3], auto-immune disorders [4], tumor immunity [5] and immuno-oncology 

[6]. Though TCR/BCR-seq allows detailed investigation of the immune repertoire in 

tumors [7], these technologies are expensive and sometimes infeasible with limited tissue 

biopsies. In comparison, TCR and BCR sequences are contained in RNA-seq data as 

expressed transcripts, especially the abundant and clonally expanded receptors, but they 

are usually ignored in transcriptome studies. Traditional analysis methods could not process 

the most diverse and critical region of antigen recognition on TCR/BCRs, complementary-

determining region 3 (CDR3), which is inherently different from the reference genome 

sequence. We and others have developed computational methods to de novo assemble 

immune receptor CDR3 sequences from RNA-seq data, such as TRUST [8–11], V’DJer 

[12], MiXCR [13], CATT [14] and ImRep [15]. Our previous work systematically 

characterized the TCR [8] and BCR [10] repertoires using earlier versions of the TRUST 

algorithm and thousands of tumor RNA-seq samples from The Cancer Genome Atlas 

(TCGA). These studies reveal a correlation between the immune repertoire and other tumor 

molecular features, such as immunogenetic somatic mutations and antibody-dependent 

cellular cytotoxicity.

We previously published TRUST4 [11] with significantly improved performance over 

previous versions of TRUST in terms of computational efficiency and the number of 

complete CDR3s recovered. This not only led to more accurate estimations of receptor 

diversities, but also allows a more detailed characterization of SHM in the CDR3s. TRUST4 

assembles longer receptor sequences, which improves antibody isotype identification and 

association with downstream immune signals. Together, these improved features of TRUST4 

motivated us to re-examine the immune receptor repertoires from TCGA tumors.

Immune checkpoint blockade (ICB) therapy has revolutionized tumor treatment by 

reactivating T cells and the immune system to eliminate cancer cells [16]. Studies also 

showed that B cells could promote immunotherapy response by forming tertiary lymphoid 

structures in tumors [17–19]. Therefore, we also extracted the immune receptor repertoires 

in 915 RNA-seq samples from seven ICB studies across four cancer types and investigated 

the repertoire difference between immunotherapy responders and non-responders.

To facilitate the characterization of immune repertoires under various oncology and 

immuno-oncology settings, we also developed an open-access web server VisualizIRR 
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(Visualized Immune Repertoire Report). Existing immune repertoire databases, such as 

TCRdb [20] and VDJdb [21], focus on the receptor sequences without the ability to 

associate them with clinical information. In VisualizIRR, we processed immune repertoire 

data from various resources including TCGA and immunoACCESS, integrating metadata 

from immunotherapy trials. We curated de-identified clinical information for each sample 

from their original manuscripts, which allows the users to interactively associate immune 

repertoires with different clinical metadata.

Materials and Methods

Sequencing data

The 10,970 RNA-seq samples from TCGA were downloaded through Genomic Data 

Commons, along with the gene expression file, of which 10,096 were from tumor tissue, 

724 were from adjacent tumor sites and the 150 acute myeloid leukemia (LAML) samples 

were from blood (more details in Table S1). We collected seven immunotherapy studies 

from Riaz [22], Gide [23], McDermott [24], Hugo [25], Mariathasan [26], Van Allen [27] 

and Kim [28]. In the Riaz study, the authors split the patients into naive (treatment naive) 

and progressive (progressed after Ipilimumab treatment) groups, so we indicated them 

as Riaz_naive and Riaz_prog in this work. The 915 RNA-seq samples from these seven 

immunotherapy studies were all from tumor tissues (Table S1). For the immune repertoire 

reconstruction, TRUST4 was applied on the alignment BAM files, which were available in 

TCGA and were generated by STAR [29] on the human hg38 reference genome for the 

seven immunotherapy cohorts.

Immune receptor repertoire analysis

We applied TRUST4 v1.0.0 to obtain TCRs and BCRs, along with their abundances, for 

each sample. We explored the diversity of TCR and BCR in TCGA and immunotherapy 

cohorts, where diversity was defined as the number of clonotypes per thousand CDR3 reads 

(CPK) as in our previous study [8]. The advantage of CPK is that it normalizes the effect 

of sequencing depths and immune cell infiltration in different samples. Lower CPK means 

fewer clonotypes given the same number of total CDR3 abundance and may suggest clonal 

expansion. In addition to CPK, we also measured Shannon entropy (e = − i = 1
N pi log pi) 

and clonality (1 − e
logN ) for each TCGA sample, where N is the number of distinct 

clonotypes. When computing the correlation of CPK and other genes’ expression, partial 

Spearman’s rank correlations were performed by controlling for the tumor purity of each 

sample. P-values were adjusted by the Benjamini-Hochberg method. Gene ontology analysis 

of genes highly correlated with CPK was performed by the clusterProfiler package v3.10.1 

[30], with significance thresholds set at p-value < 0.01 and q-value < 0.05. TCGA RNA-seq 

sample immune cell deconvolution results based on MCPcounter and CIBERSORT-ABS 

were downloaded from TIMER2 [31].

We clustered highly similar IGH CDR3 clusters within each sample and investigated the 

SHM patterns based on these clusters. To establish the threshold for the cluster similarity, 

we computed the similarities for two CDR3s from different samples of the same cancer 
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type as the null distribution. Due to the large number of IGH CDR3s found in each 

sample, we randomly selected at most one million pairs from each cancer type for the 

similarity analysis. Since small IGH CDR3 clusters contained too few sequence variations, 

we only considered the 1.3 million clusters with more than 30 CDR3s each to compute 

the substitute matrix. For each CDR3, we further exclude the first three residues, as they 

are highly conserved. Then, we followed the 5.0 version of the BLOSUM Matrices to 

produce the amino-acid substitution matrix. To study the co-evolution pattern in SHMs, we 

aligned TRUST4’s full-length assemblies to their corresponding IGHV genes and utilized 

AbRSA [32] to index the variations. We applied CCMpred v0.3.2, a well-established 

pseudo-likelihood maximization (PLM) tool, to discover the direct couplings between pairs 

of columns in the alignment results. The direct couplings indicated the co-evolution patterns 

in IGHs. We considered the 30 most confident co-evolution pairs from each IGHV gene 

analysis and computed the fraction for a pair across 67 IGHV genes with enough TRUST4 

full-length assemblies as the consensus co-evolution pair confidence. To illustrate the 

residues in co-evolution, a 3D model of a heavy chain was modeled by Modeller (Version 

9.0) [33] using the consensus sequence of the IGHV genes, and colored with the variation 

ratio at each position. The figure was plotted with VMD (version 1.9) [34].

To explore the association between immune features and immunotherapy outcomes, the 

fold change of immune features (including diversity, richness of IGH and TRB, expression 

of CTLA4, PD-1, PD-L1, etc.) were calculated between responders and non-responders 

for each cohort. P-value was given by the two-sided Wilcoxson signed-rank test. The 

p-values are combined with Fisher’s method or adjusted by the Benjamini-Hochberg method 

depending on the application. To increase the statistical power from all the samples, we used 

mixed-effect logistic regression to test the effect of each immune feature on immunotherapy 

response and regarded the cohort as random effects.

VisualizIRR

In order to curate a comprehensive collection of immune repertoire information for 

VisualizIRR, we collected data from multiple assays, including RNA-seq, TCR-seq, 

and BCR-seq. The RNA-seq immune repertoire cohorts were sourced from published 

immunotherapy studies and TCGA, and the repertoires were reconstructed with TRUST4. 

We included the results for the receptor chains of the human, being IGH, IGK, IGL, TRA, 

TRB, TRD, and TRG. The TCR-seq and BCR-seq samples were obtained from the cancer 

immunotherapy section of the immuneACCESS database. We included both human and 

mouse data. Human data includes the IGH and TRB loci and mouse data includes the TRB 

locus. Meta information was obtained by manually cleaning the sample tags available in 

immuneACCESS projects associated with the cohorts. If the cohort had no or incomplete 

clinical information from immuneACCESS, we extracted meta information from associated 

studies. The meta sheets we utilized when constructing the VisualizIRR cohort collection 

were manually constructed amalgamations of these two sources.

We then developed an R script that combs through each cohort and performs statistical 

analysis on the locus level. The R script largely automated the analysis of each cohort via the 

inclusion of a cohort-specific configuration file. For RNA–seq-derived data, partial CDR3s 
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were not included in analysis. This script produces sample-level and cohort-level analysis of 

CDR3 nucleotide sequence length distribution. Out-of-frame nucleotide sequences were also 

removed and compressed on the CDR3 amino acid sequence level to produce amino acid 

sequence length distribution analysis. Top amino acid sequence clonotypes were collected 

along with their associated frequencies within the repertoire. Clonotypes with out-of-frame 

nucleotide sequences were filtered out from the remainder of the analysis. Top V-gene 

and J-gene frequencies were collected, as well as combinational top V-gene and J-gene 

frequencies. Top C-gene frequencies were collected for the IGH locus and top D-gene 

frequencies were collected for the IGH and TRB loci.

To associate immune repertoire diversity and clinical conditions, we calculated commonly 

used diversity-associated statistics on the sample locus level, with the majority of 

calculations utilizing the TCR and BCR repertoire analysis R package immunarch v0.6.5 

[35]. Calculated statistics include Shannon entropy measure, effective number of types, Gini 

coefficient, Gini-Simpson index, inverse Simpson index, Chao1 index, clonal proportion, 

cumulative proportion clonotypes, CPK, and clonality. We also included average CDR3 

length and unique CDR3 count. For IGH analysis which includes C-gene information, 

compartmentalization by isotype is also available. Pooled IGK and IGL analysis is also 

performed. The analysis for each cohort is exported to its own directory with a data structure 

that allows VisualizIRR to parse it appropriately.

We utilized existing TCR annotation databases VDJdb and McPAS-TCR to perform CDR3 

annotation analysis. We merged the entries of the two databases by CDR3 amino acid 

sequence and associated species or pathology, with the names of these categories being 

unified between the databases. We then collected CDR3 overlap between samples and the 

merged database, with each overlapping CDR3 being weighted by its frequency in the 

sample repertoire. These overlap values were summed by associated species or pathology in 

a table. A special column was generated for the sum of all cancer-associated CDR3s. Top 

non-cancer and top cancer columns were kept intact, while the rest were summed in another 

special miscellaneous column.

Additional processing occurred for TCGA analysis. Cancer type and subtype-level CDR3 

distribution and segment usage was calculated, as well as survival analysis based on samples 

containing above- and below-median statistical values. Overview analysis, containing 

tumor vs normal sample statistical values from different cancer types and subtypes, is 

precalculated.

We developed an HTML web portal that utilizes widely used web development libraries, 

including jQuery, Plotly.js, and dataTables. The portal contains repertoire analysis modules 

which dynamically display the currently user-selected cohort and clinical conditions. 

Figures are displayed using Plotly.js so that they can be dynamically adjusted and 

exported. VisualizIRR is freely available at http://cistrome.org/visualizirr without the need 

for registration or login. It has been tested in Firefox, Google Chrome, and Apple Safari 

browsers as well as MacOS, Windows, and Linux operating systems.
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Data availability

TCGA data were downloaded through Genomic Data Commons. The de-identified immune 

repertoire from TCGA is available at Zenodo: https://doi.org/10.5281/zenodo.6326136.

All immunotherapy data are available at http://cistrome.org/visualizirr.

The TRUST4 code is available at https://github.com/liulab-dfci/TRUST4. The code for the 

analysis is available at https://github.com/liulab-dfci/TRUST4_analysis. VisualizIRR web 

server is at http://cistrome.org/visualizirr and the code for VisualizIRR is available at https://

github.com/liulab-dfci/visualizirr.

Results

Characterization of TCGA immune repertoires with TRUST4

We previously published the redesigned TRUST algorithm (version 4) with substantial 

improvements in efficiency and sensitivity [11]. When applied to TCGA, TRUST4 

recovered over 35 million complete CDR3 sequences across all TCR and BCR chains 

from the 10,970 TCGA samples (Table S2). Over 90% of high-quality IGH CDR3s found 

by TRUST3 were also recovered by TRUST4. This ratio was much higher than the 20% 

overlap ratio between the IGH CDR3s from the paired tumor and adjacent normal samples. 

In addition, TRUST4 consistently produced about seven times more complete CDR3s than 

previously published TRUST versions across TCGA samples (Figure 1a), which could lead 

to more accurate downstream analysis.

We analyzed the V gene and J gene pairing pattern on different chains and noticed that V-J 

pairing in T-cell receptor α (TRA) showed similar distances to the center (Figure 1b). In 

other words, the V-J recombination begins on the closest pair of V-J genes, and, if earlier 

attempts are unproductive, synchronously progresses to V-J genes further away from the 

center until successful recombination. This joining pattern was observed in mice [36] and 

used in a previous study to model α/β chain generation [37]. Due to the limited number of 

J genes on other chains (6, 5, 7, 14 for IGH, IGK, IGL, and TRB, respectively, as compared 

to 60 for TRA) and the involvement of D genes in TRB and IGH, we could not observe the 

joining pattern on other chains (Figure S1).

B cells improve BCR binding affinity against antigens by evolving their receptor sequences 

through SHM. TRUST4 reported full-length assemblies, whose sequences contain all the 

CDRs (CDR1/2/3) and framework regions. For BCR, the alignment similarity between the 

assembled V gene and the reference V gene could reflect the accumulated SHMs. We 

observed a higher accumulated SHM rate in the downstream isotypes, in agreement with 

the chronological splicing of constant genes in isotype switch [38] (Figure 1c). SHM rates 

across different isotypes seem to be higher in stomach adenocarcinoma (STAD), head and 

neck squamous cell carcinoma (HNSC), and colon adenocarcinoma (COAD) (Figure 1c). 

This may arise from the exposure to diverse food antigens in the gastrointestinal system or 

the gut microbiome, both of which could stimulate more activated and diverse B cells.
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We explored the correlation between patient age and immune repertoire diversity 

(represented as clonotypes per thousand T-cell or B-cell CDR3 reads or CPK) in tumors 

as we previously proposed [8]. Immunosenescence, a process of immune dysfunction 

which occurs with age, was reported in the lymphoid tissues [39] and in peripheral blood 

mononuclear cells [40,41]. We observed a negative Spearman correlation between BCR 

IGH diversity and age in 26 out of the 33 cancer types in TCGA, of which eight had 

statistical significance after multiple hypothesis correction (Figure 1d). There was a similar 

negative association between T-cell receptor β (TRB) diversity and age in TCGA (Figure 

S2), although less statistically significant due to the lower number of TCRs extracted 

from the tumors. Together, our observations suggest that immunosenescence also occurs in 

non-lymphoid tissues.

Genes associated with clonal expansion

To identify genes associated with TCR and BCR diversity, we computed the correlation 

between immune repertoire (TCR β chain TRB and BCR heavy chain IGH) diversity 

and the expression of each protein-coding gene (Figure 2a, 2b). We found that most 

genes significantly associated with diversity are negatively correlated with diversity. Clonal 

expansion can decrease the immune repertoire diversity measure CPK. Therefore, we 

hypothesized that some of the genes negatively correlated with CPKs might be involved 

in or associated with T-cell and B-cell clonal expansion or activation. Indeed, pathway 

analysis for the top 50 correlated genes revealed these genes to be significantly enriched in 

T-cell and B-cell activation pathways (Figure 2c, 2d), respectively. In addition, we calculated 

the correlation between CPK and clonality (the latter defined as the normalized Shannon 

entropy), and found they were significantly negatively correlated (TRB, IGH spearman 

correlations ⍴=−0.82, −0.54 respectively, p values < 1e-10 both, Figure S3a). The correlation 

between CPK and Shannon entropy is weaker (TRB, IGH Spearman correlation =−0.05, 

−0.29 respectively, Figure S3b), suggesting lower CPK corresponds to clonal expansion in 

tissue samples.

Detailed examination of the top 20 genes correlated to diversity revealed their potential 

function in lymphocyte activation. CCL5 (median Spearman correlation ⍴=−0.565 across 

cancer types) was the top negatively correlated gene with TRB diversity. CCL5 encodes the 

chemokine guiding T cells to the tumor site and was reported to play an important role in 

orchestrating tumor-infiltrating lymphocytes [42]. The next two most negatively correlated 

genes GZMH and GZMA (median Spearman correlations ⍴=−0.556, −0.548 respectively) 

are granzymes expressed in cytotoxic effector cells, including CD8+ T cells. Moreover, 

CD8A and CD8B, the signature genes for the coreceptor of CD8+ T cells, were ranked 5 and 

19 in the list (median ⍴=−0.536, −0.457 respectively). On the other hand, the CD4 gene’s 

highest rank was 154 in BRCA samples, and its median rank was 568 across all cancer types 

(median ⍴=−0.274). This suggests that CD8+ T cells might have a higher clonal expansion 

magnitude in the tumor environment than CD4+ T cells.

The genes negatively correlated with TCR diversity were consistent across different cancers 

with some notable exceptions (Figure S4a). First, thymoma (THYM) showed weak or even 

positive correlations between these genes and diversity, which might be explained by the 
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role of the thymus as the T-cell maturation organ, so TRB diversity is not driven by clonal 

expansion. In addition, many of the top 20 diversity-associated genes also had weak to no 

correlations with TRB diversity in pancreatic adenocarcinoma tumors (PAAD). This might 

be due to tumor immune evasion through MHC-I complex protein degradation in pancreatic 

cancer [43], thus making antigen presentation insufficient to stimulate TCR signaling for 

clonal expansion. EPHB6 and HMGA2 were the two most negatively correlated genes 

with TRB CPK in pancreatic cancer (PAAD ⍴=−0.537, −0.450 respectively; median 

⍴=−0.022,−0.026 respectively; Table S3). EPHB6 and HMGA2 have been shown to be 

overexpressed in T-cell acute lymphoblastic leukemia [44,45] where T cells are malignantly 

expanded. This may suggest abnormally high T-cell clonal expansion and dysfunction in 

pancreatic cancer.

A similar analysis with BCR diversity identified the genes most correlated to diversity 

to be related to plasma cells upon clonal expansion of memory or naive B cells. For 

example, MZB1 and TNFRSF17 (B-cell maturation antigen) (median ⍴=−0.451, −0.433 

respectively) are known plasma cell marker genes [46]. Another top-ranked gene, FCRL5 
(median ⍴=−0.427), is expressed on plasma cells [47]. It is the target of an antibody-based 

treatment for multiple myeloma where B cells show abnormal clonal expansion [48]. In 

addition to plasma cell marker genes, the top-ranked CD79A is a key gene in the MHC-II 

signaling pathway, which occurs during the T cell–dependent activation of B cells [49]. 

Although the correlation was observed across many cancer types, it is weak in diffuse large 

B-cell lymphoma (DLBC) where B cells exhibit malignant expansion (Figure S4b).

Amino acid residue preference in IGH somatic hypermutation

Highly similar IGH CDR3s at the nucleotide level from the same sample reflect SHMs in 

clonally expanded B cells of the same lineage. In order to find an appropriate threshold to 

cluster the highly similar IGH CDR3s, we compared the pairwise CDR3 similarities within 

the same patient tumor (intra-sample) and between different patient tumors (inter-sample). 

Similarly to the observations of our previous analysis on COAD [11], the intra-sample 

CDR3 similarities follow a bimodal distribution (Figure 3a). The left peak follows the 

inter-sample distribution which provides the null distribution of similarity among unrelated 

CDR3. The right peak is likely to arise from CDR3s of the same lineage, hence we used a 

conservative similarity threshold of 0.8 for CDR3 clustering.

Next, we sought to investigate amino acid residue composition in naive and expanded IGH 

CDR3s in the tumors. We found that residue usage in the CDR3 to be different from 

that of proteins in the UniProt database [50] (Figure 3b, Table S4), potentially supporting 

the unique function of IGH CDR3s in antigen recognition. From each CDR3 cluster, the 

relatively naive (since we might miss the original naive B-cell clone) and clonally expanded 

CDR3s can be readily distinguished. For example, in each cluster, the most abundant CDR3 

can be regarded as the expanded CDR3, and the CDR3 with the earliest isotype and the 

fewest mutations from the germline can be annotated as the naive CDR3. We observed that 

Tyrosine (Tyr, Y) not only was among the most frequently used residues in CDR3s, but also 

was the favored residue (6% more frequent) in expanded CDR3s compared to naive CDR3s 

(Figure 3b, Table S4). Our observation is consistent with a theoretical proposal of Tyr as 
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a favorable residue for antibody-antigen binding [51]. This is because Tyr is a hydrogen 

bond donor and can contribute a comparatively large hydrophobic surface to protein-protein 

interaction.

The CDR3 clustering also allowed us to evaluate residue substitution distributions in the 

CDR3s. We compared the BLOSUM matrix [52] derived from our CDR3 clusters with the 

public BLOSUM100 matrix which contained the general probabilities of residue substitution 

for evolutionarily divergent proteins. We found that CDR3 BLOSUM and BLOSUM100 

to be highly consistent with each other (Figure 3c), where residues with similar 

physicochemical properties tended to mutate to each other. For example, a hydrophobic 

residue has a substantially higher probability to mutate into another hydrophobic residue 

than to hydrophilic ones. The pattern implied that although SHMs occur randomly, there is 

a strong negative selection pressure in the tumors to eliminate the CDR3s deviating from the 

baseline physicochemical properties of the naive antibodies with initial binding.

The above analysis revealed the patterns of single residue mutations in CDR3s, and we 

further investigated SHMs constrained by protein structure. Whereas CDR3 is a single loop 

on the IGH chain, the V gene constitutes the major part of the IGH protein structure by 

providing two additional binding loops and seven beta sheets, thus it was the focus of our 

structural analysis. To this end, we employed the pseudo-likelihood maximization (PLM) 

method CCMPred [53] to compute the co-evolution of residue substitution in SHM based 

on the BCR sequences with shared V genes. The most significant co-evolutions between the 

residues in the framework regions are in proximity according to the 3D protein structure 

(Figure 3d, Table S5). For example, positions 82 and 67 of an IGHV gene are 24 residues 

apart but the estimated spatial distance is only 6.93Å, comparable with the average amino 

acid contour length of 4Å [54]. This observation suggests a structural restraint of SHMs of 

the global BCR sequences to maintain the original folding and interactions. The co-evolution 

information in BCR sequences can be particularly helpful to advance antibody design and 

engineering.

Immune mechanisms involving IgG antibodies

Since the antibody constant region is important for downstream immune signaling, we next 

investigated the association between different Ig isotypes and tumor immune signals in 

TCGA data. Our previous work [10] showed that IgG1 and IgG3 (denoted as IgG1+IgG3) 

antibody fractions are positively correlated with CD16a expression level, a surrogate of 

natural killer (NK) cell activation. This observation suggested that IgG1+IgG3 antibodies 

could promote antibody-dependent cellular cytotoxicity (ADCC) to control tumor growth. 

Besides ADCC, complement-dependent cytotoxicity (CDC) is another essential immune 

mechanism to eliminate malignant cells [55]. The classical CDC pathway is initiated by 

the binding of the C1Q molecule to IgM or IgG antibodies which are bound to surface 

tumor-associated antigens (TAAs) on the target cells. A cascade of events follows, which 

results in the formation of a membrane attack complex (MAC) and target cell lysis (Figure 

4a). We observed a positive correlation between IgM, IgG3 and IgG1 fractions and the 

expression of C1QA, C1QB, and C1QC across TCGA cancer types (Figure 4b, Figure S5a), 

consistent with these three isotypes being the most effective in activating the CDC pathway 
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[55]. The correlations between C2~C9’ expression and isotype fractions were weaker and 

sometimes opposite from that between C1Q and isotypes (Figure S5b). This may be due to 

the fact that soluble C2~C9 proteins are mostly expressed in the liver [56].

Neonatal Fc receptor (FcRn) binds to the IgG antibodies and prolongs their half-life [57] 

(Figure 4c). We hypothesized that higher FcRn abundance would maintain more IgG 

antibodies in the tumor microenvironment and result in stronger ADCC and CDC signals. 

Indeed, tumor samples with higher expression of the FcRn gene (FCGRT) had higher 

expression of CD16a and C1Q regardless of IgG fractions (Figure 4d). Furthermore, we 

noticed that FcRn expression had little or even negative correlation with IgG fractions across 

cancer types (Figure S6), suggesting that FcRn and IgG1+IgG3 antibodies could promote 

ADCC and CDC independently. In addition to individual gene expression, we applied 

MCPcounter [58] and CIBERSORT-ABS [46] to computationally deconvolve the tumor bulk 

RNA-seq samples. The inferred abundances of NK cells and macrophages can be regarded 

as the surrogates for ADCC and antibody-dependent cellular phagocytosis (ADCP). We 

observed the same pattern that higher IgG1+IgG3 fraction and FcRn expression related 

to stronger ADCC and ADCP (Figure 4d, Figure S7). Together, our findings support the 

antitumor role of IgG1+IgG3 antibodies and FcRn and their potential association with CDC, 

ADCC, and ADCP.

Immune repertoire for cancer immunotherapy studies

Previous studies using TCR-seq analyses have shown that ICB treatment can reshape T-

cell receptor repertoires [6,22]. In this study, we explored the tumor-infiltrating immune 

repertoires extracted from RNA-seq of tumors undergoing anti–PD-1, anti–PD-L1, or anti-

CTLA4 ICB treatments from seven clinical studies [22–28]. We first examined the two 

melanoma studies, Riaz [22] and Gide [23], both with pre-treatment and on-/post-treatment 

samples. We further split the Riaz study into ipiNaive (treatment-naive) and ipiProg 

(progressed after ipilimumab treatment) cohorts, as was done in the original study. We 

have established that the diversity measure CPK is significantly negatively correlated to 

clonality in TCGA analysis. By comparing the paired samples from the two time points, 

we observed trends of TRB clonal expansion and higher clonality upon ICB treatment 

regardless of therapy outcome in the three cohorts (Fisher’s method combined p-value 

0.095 for non-responders, 0.029 for responders; Figure 5a). For BCR, the responders’ 

diversity tends to decrease during the treatment in the patients from Gide and Riaz_naive 

(Fisher’s method combined p-value 0.238 for non-responders, and 0.045 for responders), 

suggesting B-cell clonal expansion could be beneficial in melanoma immunotherapy. The 

BCR diversity remained similar in Riaz_ipiProg, which suggested pre-existing BCR clonal 

expansion upon the initial ipilimumab treatment.

We extended the analysis to compare the immune repertoires between responders and 

non-responders across all the cohorts. We compared the fold change of various markers 

between responders and non-responders, before and after treatment, respectively (Figure 

5b). Higher expression of immune checkpoint genes, PDCD1 (PD-1), CD274 (PD-L1) and 

CTLA4, were associated with better immunotherapy outcomes in Gide [23] and Kim [28]. 

Though responders had higher T-cell infiltration based on MCPcounter in Riaz_ipiProg, 
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Gide, and Kim cohorts, we could not associate the TRUST4-derived TCR abundance and 

diversity with therapy outcome. This might be due to the limited number of samples and 

assembled TCRs. In BCR analysis, we observed a significant difference between responders 

and non-responders in B-cell infiltration, with higher infiltration in responders (Figure 5b). 

In addition, TRUST4-estimated IGH abundance, CDR3 richness and diversities were higher 

in responders in the Riaz_ipiProg, Gide, McDermott [24] and Mariathasan [26] cohorts. 

Responders had higher B-cell signals in these cohorts, suggesting that the B-cell immune 

repertoire measures could be useful for ICB treatment response prediction, as in previous 

studies [17–19]. Furthermore, a higher IgG1+IgG3 fraction was associated with a better 

ICB outcome (Figure 5b) in line with our earlier observations that IgG1+IgG3 antibodies 

could promote anti-tumor immunity. We repeated the analysis for the on-treatment samples, 

and found that T-cell infiltration, B-cell infiltration and IGH richness were also higher 

in responders. To combine the statistical power across different cohorts, we applied mixed-

effect logistic regression using the cohort as the random effect. The analysis confirmed 

that the responders had significantly higher B-cell abundance, IGH CDR3 richness, clonal 

expansions, and IgG1+IgG3 fractions (FDR<0.1, Figure 5b right, coefficient values and 

statistical test results are in Table S6).

Web server for tumor immune repertoire visualization and analysis

To help researchers analyze and explore the data from this study, we organized the TRUST4 

results on TCGA and immunotherapy RNA-seq samples into a website VisualizIRR (http://

www.cistrome.org/visualizirr). VisualizIRR provides a user-friendly interface for users to 

visualize immune repertoire features under different clinical conditions on either a computer 

or a smartphone (Figure S8). As an example, we explored TRB diversity in TCGA and 

confirmed our previous observations [8] that low-grade glioma (LGG) had low TRB 

diversity, whereas colorectal cancers (READ, COAD), non-small-cell lung carcinomas 

(LUSC, LUAD), mesothelioma (MESO) and melanoma (SKCM) had relatively higher 

diversity (Figure 6a). With TRUST4’s highly sensitive assembly results, VisualizIRR 

identified THYM samples as having the highest TRB diversity, which was consistent with 

the role of the thymus in T-cell maturation. Furthermore, VisualizIRR shows diversity 

comparisons between tumor samples and adjacent normal samples for each cancer type. We 

found that TRBs had significantly lower diversity in COAD and LUSC tumor sites than 

the adjacent normal sites, reflecting the lower T-cell infiltration in these tumor samples 

based on MCPcounter (Figure S9). In IGH isotype analysis, VisualizIRR showed that the 

IgG1 fractions are positively correlated with longer patient survival in SKCM, ovarian 

serous cystadenocarcinoma (OV) and acute myeloid leukemia (LAML) (Figure 6b). This is 

consistent with the beneficial role of IgG1 antibodies in tumor control in these cancer types 

[41,59].

In addition to RNA-seq immune repertoires, we collected TCR-seq and BCR-seq data from 

an additional 28 immunotherapy cohorts and included them in the VisualizIRR website. 

The website allows users to examine the immune repertoire diversity under various clinical 

conditions. For example, TCR-seq of peripheral blood mononuclear cell (PBMC) from 

healthy donors and newly diagnosed classical Hodgkin lymphoma (cHL) patients had 

greater TCR diversity than from relapsed/refractory patients [6](Figure S10a). VisualizIRR 
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also has a time series feature to reproduce the result that cHL patients with complete 

response have increased CD4+ T-cell diversity upon PD-1 blockade treatment (Figure S10b). 

In contrast, CD8+ T cells were clonally expanded in cHL patients with progressive disease 

(Figure 6c). Since cHL tumors are known to have MHC-I deficiency, this result suggests that 

CD4+ instead of CD8+ T cells might be the effector cells in anti–PD-1 response in cHL.

To identify pathogens stimulating T cells in patients, we further annotated the TCRs in 

VisualizIRR with the antigen information from the VDJdb and McPAS-TCR [60] databases. 

In each sample, VisualizIRR computes the fraction for different types of pathogens, such 

as CMV, or tumor antigens, such as lung cancer antigen. The TCR antigen annotation 

provides novel insights to explore the relationship between immune repertoire and other 

molecular or clinical information. For example, in a PBMC TCR-seq study of metastatic 

prostate cancer patients undergoing anti-CTLA4 treatment [61], VisualizIRR found that 

responders and non-rapid progressors had significantly more TCRs targeting tumor antigens 

than rapid progressors (Figure 6d). This result suggests that the ability of ICB in expanding 

tumor-antigen-specific TCRs might be the cause of the better patient response.

Discussion

In this work, we applied TRUST4, an improved de novo TCR and BCR assembler, on 

TCGA and immunotherapy cohort RNA-seq data to study the immune receptor repertoire 

in tumors. The exploration of gene expression and immune repertoire information from 

RNA-seq data helped us identify the relationships of T cells and B cells with other immune 

pathways or processes. Our study further supports the positive correlation of IgG1+IgG3 

antibodies with antitumor signals and immunotherapy outcomes and could inspire future 

research on establishing B cells as a biomarker for cancer patient survival or treatment 

predictions.

From TCGA data, we identified genes correlated with T-cell and B-cell clonal expansions 

such as CCL5, MZB1 and FCRL5 through correlation analysis between repertoire diversity 

and gene expression. Previously, there have been conflicting reports regarding the function 

of FCRL5 in promoting or inhibiting B-cell activation and clonal expansion [47,62]. Our 

analysis suggests that FCRL5 may play a more activating role in the tumor environment. 

We found that CD8+ T cells had more clonal expansion signals based on gene expression 

patterns, and this could be validated through CD4+ T-cell and CD8+ T-cell repertoire 

diversity analysis. CD4+ and CD8+ TCR information can be obtained after cell sorting, 

which is beyond the scope of the typical RNA-seq data in this study. We note that clonal 

expansion was measured by the CPK of TRB and IGH CDR3s, which might be affected 

by immune cell infiltration. For example, the lower CPK in elder patients could be due to 

clonal expansion from past infections or immune cell apoptosis in earlier life. Systematic 

evaluation of diversity measures or development of new metrics that are robust to the impact 

of T-cell or B-cell infiltrations are still needed.

In the SHM analysis, we found that Tyr was favored in BCR CDR3 SHMs, and the retained 

SHMs maintained the initial CDR3’s physicochemical properties. These discoveries could 

help researchers understand the binding affinity improvement during SHM and improve 
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tumor-targeting antibody design [63]. BCR is formed by heavy and light chains, where the 

light chain also undergoes SHM. We observed that SHMs were constrained by the protein 

structure within a chain but could not analyze the impacts from the paired chain. With the 

development of single-cell sequencing technology, future studies can include profiling of 

co-evolution between heavy and light chains.

The function of B cells in cancer immunotherapies has received increasing attention in 

clinical studies [17–19]. The observed elevated clonal expansion of B cells and higher 

IgG1+IgG3 fraction in immunotherapy responders could provide additional evidence that 

B cells may participate in anti-tumor immune responses to ICB treatment. Further, it is 

likely that the B cells in the tumor are activated by cancer-associated antigens, as evidenced 

by isotype class switch. Characterization of these antigens may lead to novel therapeutic 

targets, and thus is of high clinical interest. However, due to the limited epitope annotations 

of BCRs, we could not computationally infer the antigens based on sequences of the clonally 

expanded BCRs. With the growing size of annotation databases, such as IEDB [64], or the 

advances of computational approaches, such as DeepCAT [65] for TCRs, we may identify 

the dynamics of tumor-targeted BCRs during ICB treatment in the future.

We developed VisualizIRR to consolidate various immune repertoire analyses into an 

interactive open-access website. We have demonstrated how an end-user could reproduce 

previously published immune repertoire analyses and make new observations. The strength 

of VisualizIRR lies in the curated profiling of numerous immunotherapy and TCGA 

samples, combined with a variety of commonly useful repertoire analysis techniques. Going 

forward, we aim to not only build upon the functionality of VisualizIRR but also expand 

the number of collected datasets. Some potential functionality enhancements include single-

cell specific modules and cross-cohort analysis. We envision continued maintenance and 

development of VisualizIRR to benefit the cancer immunology and immunotherapy research 

communities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Synopsis

The immune repertoires from bulk tumor transcriptomes were computationally assembled 

by TRUST4 and comprehensively analyzed to improve the understanding of T cell and B 

cell antitumor activity and clonal dynamics in tumor infiltration and response to cancer 

immunotherapies.
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Figure 1. General results from TRUST4 on TCGA RNA-seq data
(a) Number of complete IGH CDR3s from TRUST3 and TRUST4 for each sample. (b) 

The combination frequency for TRAV and TRAJ genes, where the genes are sorted by 

the genome position. (c) SHM and isotype usage in different cancer types. Tumors with 

fewer than 200 samples are shown by smaller black dots(“other”). (d) Spearman correlation 

between age and IGH CPK corrected by tumor purity.
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Figure 2. Correlation between immune repertoire diversity and gene expression
(a) Median correlations of gene expression (TPM) and TCR CPK. (b) Median correlations 

of gene expression (TPM) and BCR CPK. (c) Pathways from the top fifty TPM-TCR_CPK 

genes. (d) Pathways from the top fifty TPM-BCR_CPK genes.
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Figure 3. Somatic hypermutations in IGH maturation
(a) Pairwise IGH CDR3 similarities within the same sample (intra-sample) and cross 

samples (inter-sample). (b) Amino acid usage in clonally expanded IGH CDR3, naive IGH 

CDR3 and proteins from the UniProt database. (c) BLOSUM matrix computed from IGH 

CDR3 clusters and the public BLOSUM100. (d) Co-evolution in SHM. SHM rates are 

shown by color (red high, blue low). Top three co-evolved residues are connected by blue 

dashed lines. Protein structure is based on IGHV1–69-2, which has the most full-length 

assemblies available.
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Figure 4. IgG1+IgG3 antibody isotype correlation with other immune modules
(a) Diagram of antibody and complement-dependent cytotoxicity. (b) Correlation between 

C1Q genes expression (sum of C1QA, C1QB and C1QC) and isotype fractions. (c) 

Diagram of antibody-dependent cellular cytotoxicity and FcRn. (d) C1Q genes and CD16a 

expression, NK cell and macrophage infiltration from MCPcounter stratified by FcRn 

(FCGRT) expression and IgG1+IgG3 isotype fraction. High and low groups correspond 

to the top 25% and lower 25% samples ranking by FcRn expression or IgG1+IgG3 fraction 

respectively. Statistical tests are based on two-sided Wilcoxon rank-sum test (***: p ≤ 0.001, 

****: p ≤ 0.0001).
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Figure 5. Immune repertoire dynamics in immunotherapy cohorts
(a) Change of TRB and IGH CPK during treatment between responders (R) and non-

responders (NR) in Riaz (naive, ipiProg) and Gide cohorts. Numbers under the x-axis labels 

are the p-values from the one-sided Wilcoxon signed-rank test. (b) Left: Fold change of 

gene expression and immune features between responders and non-responders in various 

immunotherapy cohorts, where FDR was based on the two-sided Wilcoxon rank-sum test. 

Right: Value and statistical significance of the gene expression and immune features from 

the logistic mixed-effect linear model, where the cohort was the random effect.
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Figure 6. Characterization of immune repertoire with VisualizIRR
(a) TRB diversity in TCGA samples. P-values for comparing diversity between tumor 

samples and adjacent normal samples were computed by the Wilcoxon rank-sum test (*: p 

≤ 0.05; **: p ≤ 0.005; ***: p ≤ 0.0005) (b) IgG1 fraction and patient survival in TCGA 

tumor samples. Color scale reflects the coefficient value from the Cox proportional hazards 

regression model and asterisks indicate raw p-value ≤0.05 (c) Comparisons of TRB clonality 

between pre-treatment and post-treatment samples in CD4+ and CD8+ sorted TCR-seq 

samples of a cHL immunotherapy study [6]. (d) Comparisons of the cancer-associated 

CDR3s between different response groups from both CD4+ and CD8+ sorted TCR-seq 

samples of a metastatic prostate cancer immunotherapy study. All the plots were generated 

by VisualizIRR.
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