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P L A N E T A R Y  S C I E N C E

How does salinity shape ocean circulation and ice 
geometry on Enceladus and other icy satellites?
Wanying Kang*, Tushar Mittal, Suyash Bire, Jean-Michel Campin, John Marshall

Of profound astrobiological interest, Enceladus appears to have a global saline subsurface ocean, indicating 
water-rock reaction at present or in the past, an important mechanism in the moon’s potential habitability. Here, we 
investigate how salinity and the partition of heat production between the silicate core and the ice shell affect 
ocean dynamics and the associated heat transport—a key factor determining equilibrium ice shell geometry. 
Assuming steady-state conditions, we show that the meridional overturning circulation of the ocean, driven by heat 
and salt exchange with the poleward-thinning ice shell, has opposing signs at very low and very high salinities. 
Regardless of these differing circulations, heat and fresh water converge toward the equator, where the ice is 
thick, acting to homogenize thickness variations. Among scenarios explored here, the pronounced ice thickness 
variations observed on Enceladus are most consistent with heating that is predominantly in the ice shell and a 
salinity of intermediate range.

INTRODUCTION
Since the Cassini and Galileo missions, Enceladus (a satellite of Saturn) 
and Europa (a satellite of Jupiter) have been revealed to have high 
astrobiological potential, satisfying all three necessary conditions 
for life: (i) the presence of liquid water (1, 2), (ii) a source of energy 
(3, 4), and (iii) a suitable mix of chemical elements (1, 5–10). In par-
ticular, the geyser-like sprays ejected from the fissures over Enceladus’ 
south pole (11–13) provide a unique opportunity to understand the 
chemistry and dynamics of Enceladus’ interior without landing on 
and drilling through a typically 20-km-thick ice shell (14–18). Within 
the geyser samples collected by Cassini, CO2 and methane (5), sodium 
salt (1), hydrogen (7), and macromolecular organic compounds (8) 
have been found. These data a chemically active environment 
that could sustain life (9, 10). However, to infer the chemical envi-
ronment of the subsurface ocean from plume samples, one needs to 
better understand ocean circulation. This governs the transport of 
chemical tracers and sets the pathways and time scales over which 
particles or potential biosignatures react with the ocean before be-
ing detected. Understanding this ocean circulation, and how it de-
pends on salinity, is the main goal of the present study.

Ocean circulation on Enceladus is driven by heat and salinity fluxes 
from the core (3) and the ice shell (4, 19, 20), as well as mechanical 
forcing, such as tides and libration (21, 22). The partition of heat pro-
duction between the ice and the core has a direct control over ocean 
dynamics. Moreover, ocean salinity plays a key role because it deter-
mines whether density decreases or increases with temperature (see 
Fig. 1C) (23). For example, if the ocean is very fresh, then heat re-
leased by hydrothermal vents will not trigger penetrative convection 
from below (24). Furthermore, the global scale circulation of a salty 
ocean could be completely different from that of a fresh ocean, as has 
been explored in Earth’s ocean and terrestrial exoplanets (25, 26).

Despite its importance, the heat partition is poorly constrained 
because of our limited understanding of the rheology of both the ice 
shell and the silicate core. Hydrogen and nanometer-sized silica par-
ticles have been detected on Enceladus, providing clear geochemical 

evidence for active seafloor venting (6, 7). However, whether this 
submarine hydrothermalism, powered by tidal dissipation (3), is the 
dominant heat source preventing the ocean from freezing remains 
inconclusive because of our limited understanding of the core’s 
rheology (3, 27). Another potential heat source is tidal dissipation 
within the ice shell itself. While poleward-thinning ice geometry on 
top of the ocean is qualitatively consistent with heating primarily 
occurring in the ice shell (18), present dynamical models of ice are 
unable to reproduce enough heat to maintain such a thin ice shell 
(4, 28). Attempts to account for higher heat generation through use 
of more advanced models of ice rheology have thus far not been 
successful (4, 19, 28–32).

An additional complication is that the salinity of Enceladus’ ocean 
remains uncertain. Calculations of thermochemical equilibria over 
a range of hydrothermal and freezing conditions for chondritic com-
positions suggest a salinity ranging between 2 and 20 psu (g/kg), 
with a high likelihood of it being below 10 psu (33–35). However, at 
least 17 psu is required to keep the liquid-gas interface of the south 
polar geysers convectively active enough to ensure that they do not 
freeze up (36). Sodium-enriched samples taken from south pole sprays 
by Cassini have a salinity of 5 to 20 psu. This can be considered a 
lower bound because the interaction of cold water vapor sprays 
with their environment is likely to lower the salinity of droplets 
through condensation (1). This is also uncertain, however, because 
fractional crystallization and disequilibrium chemistry may parti-
tion components in such a way that geyser particles are not directly 
representative of the underlying ocean (37). Furthermore, if parti-
cles originate from a hydrothermal vent, then composition can also 
deviate far from that of the overall ocean (3, 35). In a separate line of 
argument, the size of silica nanoparticles carried along in the sprays 
suggests a salinity <40 psu, but this inference is sensitive to assump-
tions about ocean pH and the dynamics of hydrothermal vents (6).

Given the uncertainties associated with the ocean salinity and 
heat partition, it is crucial to consider different possible scenarios. 
Once we understand how ocean circulation and heat transport vary 
with these variables, we may be able to put further constraints on 
them, because ocean heat transport can shape the ice shell on a geo-
logical time scale and the observed ice geometry should not be far 
from equilibrium.
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Drivers of ocean circulation on Enceladus
Data provided by Cassini have enabled reconstructions to be made 
of Enceladus’ ice thickness variations (14–18). The solid curve in 
Fig. 1B shows the zonal-mean ice thickness deduced by Hemingway 
and Mittal (18), where a notable poleward thinning trend can be 
seen. The ice shell over the south pole is only 6 km thick, one-fifth 
that of the equatorial ice shell. These ice thickness variations 
have two effects. First, thick equatorial ice creates high pressure, 
depressing the local freezing point and leading to a roughly 0.1-K 
depression of the temperature just beneath the ice compared to 
the poles, assuming that the interface is at the melting temperature 
(solid curve in Fig. 1B).

Second, thickness variations will drive ice to flow from thick-ice 
regions to thin-ice regions on million-year time scales (38–41). To 
compensate the smoothing effect of the ice flow, ice must form in 
low latitudes and melt in high latitudes. Assuming an ice rheology, 
we can calculate ice flow speeds using an upside-down shallow ice 
model (details are given in the “Boundary conditions” section). 
In this way, we can infer the freezing/melting rate needed to main-
tain the observed ice geometry, as shown by the dashed curve in 
Fig. 1B. Over time, this freezing and melting will lead to a meridio-
nal salinity gradient through brine rejection and freshwater input 
that, in steady state (assumed), must be balanced by salinity trans-
port in the ocean.

The combined effect of these temperature and salinity forcings 
associated with the ice topography is to make equatorial waters salt-
ier and colder than polar waters. This equator-to-pole temperature 
and salinity contrast, denoted as  and S, jointly affects the equa-
tor-to-pole (defined here as equator minus pole) density contrast 
 through

	​   = ​ ​ 0​​(− ​​ T​​  + ​​ S​​ S)​	 (1)

where 0 is the reference density of water and T and S are the 
thermal expansion and haline contraction coefficient, respectively. 
In a salty ocean, where water volume contracts when it is cold (T > 0), 
we expect the ocean to sink at the cold low latitudes, because the 
water is dense there (see Fig. 2B). In contrast, in a fresh ocean (T < 0), 
the opposite is possible because of seawater’s anomalous expansion 
upon cooling (see Fig. 2A). In addition, the salinity anomalies in-
duced by freezing/melting increasingly diminish as the assumed 
ocean salinity approaches zero. Thus, the global overturning circu-
lation in very salty and very fresh oceans can be expected to be of 
opposite sign. However, irrespective of which direction the ocean 
circulates, heat will be converged toward the equator, because of the 
mixing between cold equatorial water and warm polar water in-
duced by the circulation. Limited by the efficiency of conductive 
heat loss through the thick equatorial ice, the equatorward heat 
convergence cannot be arbitrarily strong. As a result, scenarios with 
various salinities and core-shell heat partitions can potentially be 
discriminated for they would manifest different heat transport effi-
ciencies and affect the heat budget of the ice.

To study the possible ocean circulations and heat transports on 
Enceladus in this way, we set up a zonally averaged ocean circula-
tion model to sweep across a range of mean salinities (S0 = 4, 7, 10, 
15, 20, 25, 30, 35, and 40 psu) and core-shell heat partitions (0 to 
100%, 100 to 0%, and 20 to 80%). Our model has its ocean covered 
by an ice shell that resembles that of the present-day Enceladus (solid 
curve in Fig. 1B) (18), which is assumed to be sustained against the 
ice flow by a prescribed freezing/melting q (gray dashed curve in 
Fig. 1B), regardless of the ice shell’s heat budget. By prescribing q, 

Fig. 1. Considered heat sources/sinks and salinity/temperature forcings in our Enceladus experiments. (A) Primary heat sources and heat fluxes, including heating 
due to tidal dissipation in the ice ℋice and the silicate core ℋcore, the heat flux from the ocean to the ice ℋocn, and the conductive heat loss to space ℋcond. Ocean heat 
transport is shown by the horizontal arrow. (B) Observed ice shell thickness of Enceladus (18) (black solid curve, left y axis). The suppression of the freezing point of water 
by these thickness variations, relative to that at zero pressure, is indicated by the outer left y axis. The gray dashed curve shows the freezing (positive) and melting (neg-
ative) rate required to maintain a steady state based on an upside-down shallow ice flow model (y axis on the right). (C) Density of water varies with temperature near the 
freezing point (marked by circles) for different assumed salinities. Moving from cold to warm colors denotes increasing salinity. The solid (dashed) curves are computed 
assuming the pressure under the 26.5 km (5.6 km) of ice at the equator (south pole). (D) Typical magnitudes and profiles of ℋice, ℋcore, ℋcond, and ℋlatent. More details can 
be found in the “Boundary conditions” section.
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we guarantee the ice shell to be in mass balance and, furthermore, 
cut off the positive feedback loop between the ocean heat transport 
and the ice freezing/melting rates, thus preventing the simulated 
circulation from seeking a completely new state. When heat pro-
duction by the silicate core is assumed to be nonzero, an upward 
heat flux at the bottom is prescribed. Guided by models of tidal 
heating described in the “Boundary conditions” section, this is as-
sumed to be slightly polar-amplified (see purple curve in Fig. 1D). 
By design, the globally integrated heat budget is guaranteed to be 
in balance.

At the water-ice interface, a downward salinity flux S0q is im-
posed to represent the brine rejection and freshwater production 
associated with freezing/melting. Meanwhile, the ocean tempera-
ture there is restored toward the local freezing point. Thus, the 
ocean will deposit heat to the ice when its temperature is slightly 

higher than the freezing point and vice versa. In order for the heat 
budget of the ice to close, this ocean-ice heat exchange ℋocn, together 
with the tidal heat produced in the ice ℋice (red curve in Fig. 1D) 
and the latent heat released ℋlatent (ℋlatent = Lfq, where  and Lf are 
the density and fusion energy of ice, see the gray curve in Fig. 1D), 
should balance the conductive heat loss through the ice shell ℋcond 
(green curve in Fig. 1D). Because the freezing/melting rate is not 
allowed to respond to the simulated ocean-ice heat exchange, the 
aforementioned heat budget is not necessarily in balance, and the 
extent to which it is not informs us of the plausibility of the assumed 
salinity and heat partition.

Before going on to describe our results, we emphasize that we 
have adopted a zonally averaged modeling framework so that we 
can readily explore parameter space while integrating out to an 
equilibrium state, which takes about 10,000 modeled years. This 

Fig. 2. Different ocean circulations in salty and fresh ocean. At the top, we show schematics of ocean circulation and associated transports of heat (red wiggly arrows) 
and fresh water (blue wiggly arrows) for (A) a fresh ocean (T < 0) and (B) a salty ocean (T > 0). Dark brown (yellow) arrows denote sinking (rising) of dense (buoyant) 
water. (C) Regime diagram demonstrating the influence of temperature and salinity anomalies on the equator-to-pole density difference assuming different salinities 
(marked on the shoulder of each circle), and how the ocean’s overturning circulation responds in general circulation model (GCM) simulations (filled circles) and our 
conceptual model (empty circles; see the “Exploring mechanisms with a conceptual model” section). Horizontal and vertical axes are the density difference associated 
with temperature and salinity anomalies, −T and SS. Both S and − are positive in our setup; they are computed by taking the difference between the maximum 
and minimum within the northern hemisphere. The sign of the coordinates reflects the sign of T and S. In the high/low S0 experiments, the signs of −T and SS are 
the same/opposite. The size of each circle represents the amplitude of the overturning circulation (the peak  occurs in the northern hemisphere). The 45° tilted black 
lines are isolines of the equator-to-pole density difference . Solid (dotted) lines denote dense water near the equator (poles).
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necessarily implies that our ocean model is highly parameterized—
as are the models of tidal heating and ice flows that are used to 
provide the forcing at the boundaries that drive it—and so have 
many unavoidable uncertainties. In particular, as described in detail 
in the “Parameterization of subgridscale processes” section and just as 
in terrestrial ocean models, processes such as convection, diapycnal 
mixing, and baroclinic instability are parameterized guided by our 
knowledge of the mechanisms that underlie them.

RESULTS
Patterns of ocean circulation, temperature, and salinity
Because of the relatively low freezing point (Fig. 1C) and elevated 
freezing rate (Fig. 1B) of low latitudes, water just under the ice is 
colder and saltier than near the poles, regardless of the mean salinity. 
This pole-to-equator temperature and salinity contrast leads to 
variations in density, which, in turn, drive ocean circulation. In 
Fig. 3 (C and E), we present the density anomaly, 0( − T′ + SS′), 
and the meridional overturning streamfunction ​(, z ) = ​∫−D​ 

z
  ​​ (, z′) 

V(, z′) × (2(a − z′) cos ) dz′​. Here, ′ and S′ (plotted in Fig. 3, 
A  and  B) are the deviation in potential temperature and salinity 
from the reference, V is the meridional current, 0 is the water den-
sity, a is the radius of the moon, D is the ocean depth,  denotes 
latitude, and z points upward.

Because, depending on the mean salinity, the density gradient 
induced by temperature variations can either enhance or diminish 
that induced by salinity, the overturning circulation can sink either 
over the poles or over the equator. When S0 is greater than 22 psu, 
water expands with increasing temperature (T > 0, see reddish 
curves in Fig. 1C, 2 MPa pressure assumed). As a result, the cold 
and salty water under the thick equatorial ice shell is denser than 
polar waters, as shown in Fig. 3C3 and sketched in Fig. 2B using the 
dark brown color. Equatorial waters therefore sink, as shown in 
Fig. 3E3 (indicated in Fig. 2B using the dark brown arrow), con-
strained by the direction of the rotation vector (marked by the thin 
dashed curves).

However, when S0 is below 22 psu, the thermal expansion coeffi-
cient changes sign (T < 0, as shown by the bluish curves in Fig. 1C). 
This so-called anomalous expansion of water results in the temperature-
induced density difference and the salinity-induced density differ-
ence partially canceling one another, giving rise to two possibilities. 
If the salinity factor dominates, then the overturning circulation be-
comes one of sinking at the equator, as show in Fig. 3D2 and sketched 
in Fig. 2B using a dark brown arrow. However, if the temperature 
factor dominates, then the overturning circulation flips direction 
with sinking over the poles (Fig. 3D1, and Fig. 2A) because water is 
denser there (Fig. 3C1). The switch in overturning circulation with 
salinity can also occur in models of Earth’s ocean (25, 26), although 
Earth’s ocean is forced mostly by wind stress.

The transition from polar to equatorial sinking is governed by 
the density difference between the poles and the equator. Taking the 
north pole as a reference, the temperature-related density anomaly 
at the equator can be written as −T, and the salinity-related density 
anomaly as SS, where  and S are the potential temperature and 
salinity anomaly at the equator relative to the north pole. Figure 2C 
presents the strength of the overturning circulation from all nine 
experiments in (−T, SS) space: The size of the circles are pro-
portional to . The 45° tilted line denotes perfect cancelation be-
tween the saline and temperature-driven overturning circulations: It 

passes near 10 psu, explaining why the 10-psu experiment has the 
weakest circulation compared to all others. On moving away from 
this line in either direction, the strength of the overturning circula-
tion increases but is of opposite sign, as represented schematically in 
Fig. 2 (A and B).

The overturning circulation shapes the tracer distributions and 
the zonal currents. Downwelling regions (low latitudes for a salty 
ocean and high latitudes for a fresh ocean) advect density, tempera-
ture, and salinity anomalies, set at the ocean-ice interface, into the 
interior ocean. Note the bending of the temperature and salinity 
contours equatorward (poleward) when downwelling occurs at the 
poles (equator), as shown in Fig. 3. This results in meridional den-
sity gradients that are in a generalized thermal wind balance with 
zonal currents in which all components of the Coriolis force are 
included (Fig. 3D).

Thus far, we have assumed zero heat flux from the bottom. With 
all the required heating generated in the silicate core (core-heating), 
a salty ocean will become more convectively unstable, whereas a 
fresh ocean will become more stably stratified because of the nega-
tive thermal expansion coefficient (see fig. S1C), which pertains be-
fore the maximum density point (typically several degrees above 
freezing) is reached. As a result, the overturning circulation strengthens 
(weakens) in a salty (fresh) ocean. The temperature/salinity profiles 
and even the circulation patterns remain qualitatively similar to the 
shell-heating scenarios, especially for the salty scenarios, because 
the heating-induced bottom-to-top temperature difference is typi-
cally only a few tens of milliKelvin when convection is active, much 
smaller than the equator-to-pole temperature difference induced by 
the freezing point variations due to ice topography (Fig. 3) that is 
order 0.1 K—see Fig. 1 (B and C). The vertical temperature gradient 
induced by the bottom heating is much larger in a fresh ocean because of 
the suppression of convection by anomalous expansion. The strength-
ening of vertical temperature gradient largely enhances the ocean 
heat transport (OHT), although the circulation is weakened slightly.

It is important to note that the ocean circulation that we have 
obtained here penetrates throughout the entire depth of the ocean, 
much deeper than suggested by Lobo et al. (42) based on a more 
idealized ocean model. This is despite the fact that the forcing am-
plitude assumed in (42) is a full three orders of magnitude larger. 
Our circulation is deep because, in the absence of strong viscosity, 
the circulation in the ocean interior aligns with the direction of the 
rotation axis (see Fig. 3E), a consequence of the Taylor-Proudman 
theorem. Only adjacent to the ice shell and the seafloor can currents 
flow normal to the sides of tangent cylinder [see (41) for a discus-
sion of the importance of the tangent cylinder]. Moreover, in all the 
shell-heating scenarios, the downwelling regions are convectively 
unstable, allowing dense water formed near the surface to sink all 
the way to the bottom.

This is rather different from the physical picture presented by 
Lobo et al. (42), who describe an ocean that is strongly stratified and 
whose circulation is confined near the ice shell. These differences 
likely stem from the values adopted for the eddy diffusivity repre-
senting baroclinic instability, GM, and diapycnal diffusivity associ-
ated with convective mixing, conv: Lobo et al. (42) assume a very 
large value of GM = 1000 m2/s based on observations of Earth’s 
ocean, and a rather small conv = 0.01 m2/s for the convective re-
gions over the poles. This dominance of lateral baroclinic instability 
over vertical convection gives rise to very strong stratification that, 
in turn, confines the vertical extent of the circulation. Instead, here, 
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we estimate an eddy diffusivity appropriate to Enceladus to be of 
order 0.3 m2/s based on energetic arguments (43) (see the “Param-
eterization of subgridscale processes” section for a derivation) and 
a convective mixing rate to be order 1 m2/s based on the scaling 

laws governing convection in a rapidly rotating system (44). In this 
parameter setting, the stratification is weak and almost half of the 
ocean is convecting because of loss of buoyancy through interaction 
with the ice.

Fig. 3. Ocean circulation and thermodynamic state from GCM simulations assuming various ocean salinities. Moving from top to bottom, we present temperature 
T (A), salinity S (B), density anomaly  (C), zonal flow speed U (D), and meridional overturning streamfunction  (E) with arrows indicating the sense of flow. The left 
column presents results for a low-salinity ocean (S0 = 4 psu), the right column for high-salinity ocean (S0 = 40 psu), and the middle column for an ocean with intermediate 
salinity (S0 = 10 psu). The reference temperature and salinity (marked at the top of each plot) are subtracted from T and S to better reveal spatial patterns. Positive U indi-
cates flow to the east, and positive  indicates a clockwise overturning circulation. Black dashed lines mark the position of the tangent cylinder, an imaginary cylinder 
that is parallel to the rotation vector and touches the core.
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Ocean heat transport and the heat budget of the ice shell
We have seen that the freezing point depression of water due to 
pressure results in the polar oceans being warmer than the tropical 
ocean just beneath the ice, because the ice is thin at the poles relative 
to the equator. One might expect, then, that OHT would be directed 
equatorward—from warm to cold—irrespective of the sense of the 
ocean’s overturning circulation. The amplitude of OHT, which is 
proportional to the overturning strength multiplied by a tempera-
ture contrast, (45), will depend on the strength of the circulation, 
which, in turn, depends on ocean salinity and the heat partition be-
tween the core and the ice shell. As can be clearly seen in Fig.  4 
(A and B), heat is indeed converged toward the equator in all sce-
narios. However, because of the cancelation between temperature- 
and salinity-driven circulation, the heat convergence in an ocean 
with an intermediate salinity is a small fraction of that in the 
end-member cases. If there is no tidal heating produced in the ice 
shell, then such an equatorward OHT will inevitably melt the ice 
shell over the equator because the conductive heat loss is smaller 
there because of the relatively thick ice shell. In addition, ice will be 
transported poleward, from thick to thin, accelerating the flattening 
of the ice shell. Therefore, to sustain the observed ice geometry (18), 
a polar-amplified tidal heating in the ice that has a meridional gra-
dient strong enough to compensate equatorward OHT is necessary.

To quantify the impact of OHT on ice geometry, we compute the 
heat flux transmitted from the ocean to the ice ℋocn and diagnose 
how much tidal heating is required in the ice shell to close the ice’s 
heat budget

	​​​   ℋ​​ ice​​  = ​ ℋ​ cond​​ − ​ℋ​ ocn​​ − ​​ i​​ ​L​ f​​ q​	 (2)

The ​​​  ℋ​​ ice​​​ inferred from our various ocean circulations is shown 
by the solid curves in Fig.  4  (C  and  D) for the shell-heating and 
core-heating scenarios, respectively. If all is consistent, then this in-
ferred ice dissipation rate should be close to the estimate given by a 
tidal dissipation model ℋice (details of the model can be found in 
the “Model of tidal dissipation in the ice shell” section), which is 
shown in the same figure using black dashed curves. The tidal dissi-
pation model, of course, is also subject to substantial uncertainties 
because of our limited understanding of the ice rheology, but it 
should be positive definite. However, for many assumed salinities 
(very fresh and very salty), the implied tidal heating is actually large 
and negative, indicating that these scenarios are incompatible with 
the observed ice geometry and therefore less likely.

We measure the mismatch between ​​​  ℋ​​ ice​​​ and ℋice by the follow-
ing index

	​​ I​ mis​​  = ​ √ 

_______________________

   ​
‾

   ​​(​​ ​  ​​  ℋ​​ ice​​ − ​ℋ​ ice​​  ──────────────  
max {​ℋ​ ice​​, 20 mW / ​m​​ 2​}

 ​​)​​​​ 
2

​​ ​​	 (3)

where the over-bar represents a global area-weighted average and the 
max function in the denominator helps avoid the singularity when 
ℋice → 0. We show the shell-heating and core-heating mismatch in-
dices Imis as a function of the ocean salinity in Fig. 4 (E and F) using 
filled dots.

The dependence of Imis on ocean salinity in the  
shell-heating scenarios
Although OHT is always equatorward, those ocean solutions with 
a strong overturning circulation (e.g., S0 = 4,40 psu) focus large 

amounts of heat into low latitudes, resulting in a heat budget dis-
crepancy of almost 80 mW/m2 (see Fig. 4C), twice the global-mean 
heat production rate; if used to melt ice, then a rate of 7.5 km/Ma 
would result. Near the equator, ​​​  ℋ​​ ice​​​ even becomes significantly 
negative, conflicting with the need for tidal dissipation to be posi-
tive definite. This is reflected in the relatively large values of Imis 
evident in Fig. 4E. The heat budget improves significantly at inter-
mediate salinities, and the best match is achieved in the S0 = 10 psu 
scenario. This corresponds to the near-cancelation of the temperature- 
and salinity-induced density anomalies (see Fig. 2C).

Note that the increase in the mismatch is steeper on the fresh 
side of 10 psu than the salty side (Fig. 4E). This is related to the dif-
ferent energetics of ocean circulation in a very fresh ocean close to 
the freezing point (where T < 0) and a salty ocean (where T > 0). 
As pointed out by Zeng and Jansen (24), if the buoyancy gain at the 
equator is deeper in the water column than the buoyancy loss at the 
poles, then ocean circulation can always be energized because dense 
polar water higher up the water column is transported to depth. 
However, in a salty ocean, the opposite is true and equatorial dense 
water cannot be drawn upward to the polar ice shell without invok-
ing diffusive processes (46). This difference can be seen in Fig. 3E. The 
overturning circulation in the fresh ocean (Fig.  3E1) can directly 
connect the water-ice interface at the pole to equatorial regions; in 
contrast, in a salty ocean (Fig. 3E3), the circulation weakens moving 
poleward and almost completely vanishes in the freshwater lens 
formed under the polar ice shell. Strong stratification develops in 
the diffusive layer (Fig. 3C3) that sustains an upward buoyancy flux 
without strong circulation, as indicated in the schematic diagram 
Fig. 2B.

Dependence on the core-shell heat partition
Because, in realistic scenarios, the bottom-to-top temperature dif-
ference induced by core heating is far smaller than the equator-to-
pole temperature difference induced by the freezing point variations, 
the circulation patterns and temperature/salinity profiles of the 
core-heating solutions remain broadly the same as those in which 
shell-heating dominates (see Fig. 3 and fig. S1). As a result, the OHT 
and ​​  ​ℋ​ ice​​​​ are qualitatively similar too, as can be seen in Fig. 4 (B 
and D). What is different, however, is that the core-heating cases 
have, by construction, zero heat production in the ice shell and so 
equatorward OHT and polar-amplified conductive heat loss can no 
longer be effectively compensated by polar-amplified dissipation in 
the ice shell. Over the thin polar ice, heat lost to the space is much 
more efficient than elsewhere and, furthermore, OHT is equator-
ward. Thus, polar ice will accumulate over time in the absence of 
local heating within it (black dashed curve in Fig.  4D). The mis-
match indices for the core-heating scenarios are higher overall as 
shown by Fig. 4F. More detailed discussions of the bottom heating 
solutions can be found in section S1.1.

Sensitivity tests
To explore sensitivity to parameter choices, we carried out many 
sets of experiments changing the assumed ice rheology, mixing 
rates in the ocean and model resolution. By default, the melting 
point ice viscosity m is set to 1014 Pa·s, an intermediate value be-
tween an estimated lower bound of 1013 Pa·s and an upper bound of 
1015 Pa·s (38). In the ice rheology sensitivity test, we examined m = 
2 × 1013 Pa·s and m = 5 × 1014 Pa·s. A lower (higher) ice viscosity 
induces stronger (weaker) ice flows, which require a greater (smaller) 
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balancing freezing/melting rate; this, in turn, enhances (suppresses) 
the salinity flux imposed upon the ocean, giving rise to larger (weaker) 
salinity gradients. Compensating the density anomaly implied by 
this salinity gradient thus requires a more (less) negative T and 
lower S0. As shown by the plus signs in Fig. 4E, the best matching S0 
is indeed reduced from 10 to 4 psu (the full solution is summarized 
in fig. S2) with m = 2 × 1013 Pa·s and increased from 10 psu to 15 to 
30 psu (the full solution is summarized in fig. S3) with m = 5 × 1014 Pa·s. 
Because of the stronger latent heating, the overall matching signifi-
cantly deteriorates in experiments with lower ice viscosity. Note 
that in the m = 2 × 1013 Pa·s sensitivity test, a factor of 0.3 premul-
tiplies Imis so that the same scale can be used in all plots.

The dissipation rate within the ocean driven by libration/tidal 
motions is also under debate (21, 47, 48) leading to a wide range of 
possible diapycnal diffusivities. Assuming a dissipation rate given 

by Rekier et al. (21), we estimate a vertical diffusivity for Enceladus 
to be around 5 × 10−3 m2/s (see the “Parameterization of subgrid-
scale processes” section), which is orders of magnitude greater than 
the molecular diffusivity. To place this in context, Zeng and Jansen 
(24) suggest that the vertical diffusivity can reach 3 × 10−3 m2/s. 
This is the diffusivity assumed in our default experiment for both 
the vertical and horizontal directions. To explore solution sensitivity, 
we carried out experiments with different horizontal/vertical explicit 
diffusivity h, v, and horizontal/vertical viscosity h, v. We also 
explored sensitivity to the parameterization of baroclinic instability 
by varying the eddy diffusivity used in the Gent and McWilliams 
(GM) scheme (49). The resulting Imis in these sensitivity experiments 
are plotted on Fig. 4E using triangular markers. Just as in the con-
trol (solid line with filled dots), Imis first decreases and then increases 
as the ocean salinity is changed, and a minimum is achieved near 10 psu. 

Fig. 4. Meridional heat transport and heat budget. Left column shows the shell-heating scenario and the right column shows the core-heating scenario. The top panels 
(A and B) show the vertically integrated meridional OHT for various assumed S0. Positive values denote northward heat transport. The middle panels (C and D) show the 
inferred tidal heating ​​​̂  ℋ​​ ice​​​ (solid curves), in comparison with the heating predicted by a tide model ℋice (dashed curves). As a measure of uncertainties in the tide model, 
two p values, −2 and −1, are used to compute ℋice. The black dashed curves in (D) coincide with the zero line, because ℋice = 0 when all heating is in the core. The bottom 
panels (E and F) show the mismatch index Imis, defined in Eq. 3. Filled colored dots connected by a thick solid line correspond to the default setup (horizontal/vertical 
diffusivity h= v = 0.005 m2/s, horizontal/vertical viscosity h = v = 10 m2/s, 100% heat produced in the ice, and melting-point ice viscosity m = 1014 Pa·s). Other symbols 
represent sensitivity tests to ice viscosity, mixing coefficients, and model resolution. The Imix of the low and high m experiments are multiplied by a factor of 0.3 and 2, 
respectively, so that all plots make use of the same scale.
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Among all the sensitivity tests, those with lower diffusivities/viscosities 
result in a weaker OHT (see panel E of figs. S4, S5, S8, and S9) and 
better matching of the heat budget. However, in the least diffusive 
experiments (h = 10−3, v = 10−5 m2/s), the heat budget matching 
over the polar regions deteriorates because of the strong tempera-
ture gradient developed under the ice shell, as indicated by the 
downward black triangles in Fig. 4E. More detailed discussions of 
these sensitivity tests can be found in the Supplementary Materials 
(section S1.3).

Sensitivity to model resolution and three-dimensional (3D) rep-
resentation of dynamics has also been explored. In Fig. 4E, the black 
leftward triangles show results for the low viscosity sensitivity test 
repeated using 4× resolution. The general trend of Imis against salin-
ity remain unchanged but the matching deteriorates for the fresh 
ocean scenario because of strong heat transport (see fig. S10). Also 
shown are results from 3D simulations (black diamonds). These ex-
periments are continued on from an equilibrated 2D solution and 
have a horizontal resolution of 0.18° by 0.25°, and a vertical resolu-
tion of 500 m. A Smagorinsky viscosity parameterization (smag = 4) 
is used in place of high explicit viscosity to allow improved treatment 
of the dynamics. The Imis again achieves a minimum at intermediate 
salinities. Vertical and horizontal sections through the solution are 
presented in figs. S10 and S11. We note that even at this resolution, 
we are barely able to resolve eddy dynamics. More detailed analysis 
and exploration of 3D dynamics requires much higher resolution 
than we can afford here.

Last, we note that there is heat transported across the equator 
into the southern hemisphere in all our experiments. Depending on 
the model setup, the amplitude ranges from a few to tens of 
gigawatts (GW), which is a significant fraction of the 35GW of 
heating being generated by the tide. If this southward heat transport 
pattern were to also exist when the ocean is fully coupled to the ice, 
then it will provide a mechanism to induce hemispheric symmetry 
breaking of the ice thickness, in addition to the ice-rheology feed-
back proposed by Kang and Flierl (50).

Exploring mechanisms with a conceptual model
The numerical solutions presented above suggest that if Enceladus’ 
ocean is of intermediate salinity with canceling salinity- and 
temperature-driven overturning circulations, then equatorial con-
vergence of heat is minimized, allowing a thick equatorial ice shell 
to be maintained. This is much less likely in very fresh or very salty 
oceans. Here, we use a conceptual model that is similar to that of 
Stommel (51) to highlight the physical processes that control the 
circulation strength and explore a wider range of parameter space 
that can be applied to other icy moons.

We represent the overall density contrast using the equator mi-
nus north pole density difference . The temperature-related den-
sity anomaly is −T, and salinity-related one is SS, where  
and S are the potential temperature and salinity anomaly at the 
equator relative to the north pole. We expect the circulation-induced 
mass exchange between the equatorial and polar regions, denoted 
by , to vary proportionally with  (Eq. 1). For simplicity, we as-
sume a linear form

	​   =  A(− ​​ T​​  + ​​ S​​ S)​	 (4)

where the constant A (units: kg/s) maps the density contrast on to 
the vigor of the overturning circulation, S ≈ 8 × 10−4/psu for all S0, 

but T depends sensitively on S0, as given by the Gibbs Seawater 
Toolbox (23). A positive  corresponds to a circulation that sinks at 
the equator and vice versa.

The temperature contrast  is determined by the pressure-
induced freezing point shift from the north pole to the equator

	​   = ​ b​ 0​​ P  = ​ b​ 0​​ ​​ i​​ gH​	 (5)

where b0 = −7.61 × 10−4 K/dbar, i = 917 kg/m3 is the ice density, g = 
0.113 m/s2 is the surface gravity of Enceladus, and H = 11 km is the 
difference in ice thickness between the equator and the north pole.

The lateral salinity flux is given by the product of  and a salinity 
contrast S and balances the salinity flux due to freezing and melt-
ing yielding [see a detailed derivation by Marshall and Radko (52)]

	​​ (∣∣+ ​​ base​​ ) S  = ​ ​ 0​​ ​S​ 0​​ q × ​(​​(a − ​H​ 0​​ ) ​​​​ 2​)​​	 (6)

Here, q, the difference in the freezing rate between low and 
high latitudes, is chosen to be 2 km/Ma based on Fig. 1B, base is the 
circulation due to the imperfect cancelation between temperature- 
and salinity-induced buoyancy forcing, a = 250 km is the radius of 
Enceladus, H0 = 20.8 km is the mean thickness of the ice shell, and 
S0 is the mean salinity. The fact that  and S appear as a product 
indicates that the salinity gradient will weaken as the overturning 
circulation strengthens for fixed salinity forcing.

Combining Eqs. 4, 5, and 6, we can solve for S and . The only 
tunable parameter here is A, which controls the strength of the 
overturning circulation and can be adjusted to fit that obtained in 
our ocean model. With A = 1013 kg/s and base = 2 × 107 kg/s (based 
on Fig. 3E2), we obtain the solutions shown by the open circles in 
Fig. 2C (the size of the circle reflect the amplitude of ∣∣ + base). 
The conceptual model solution broadly captures the behavior of the 
numerical simulations (filled circles), including the strengthening 
of the overturning circulation and the weakening of salinity gra-
dient away from the transition zone separating the fresh and 
salty oceans.

When S0 < 22 psu, −T and SS take on opposite signs, and 
depending on which one has a greater absolute value, the circula-
tion  can be in either direction. Each possibility corresponds to 
one solution. The solution in the fresh ocean regime matches the 
numerical model results. The solution in the salty ocean regime (marked 
by a cross mark in Fig. 2) requires an extraordinarily strong salinity gra-
dient to dominate the T term. This is only possible when the mixing 
is extremely weak because the freezing/melting rate is fixed, and that is 
somewhat implausible in real world.

What is the all-important heat flux implied by our conceptual 
model? Analogously to Eq. 6, the meridional heat transport can 
be written

	​​ ℋ​ ocn​​  = ​ 
​C​ p​​∣∣

 ─ 
 ​(a − ​H​ 0​​)​​ 2​

 ​​	 (7)

This is shown as a function of salinity and equator-to-pole thick-
ness variations in Fig. 5A. Recall that the water-ice heat exchange 
must be smaller than the heat conduction rate of 50 mW/m2 to 
maintain observed thickness variations of the Enceladus ice shell. 
The likely parameter regime is shaded yellow (14–18). We see that a 
salinity between roughly 7 and 22 psu (marked by two vertical blue 
dashed lines) is required to maintain ice thickness variations as large 
as are seen on Enceladus.
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DISCUSSION
In conclusion, from knowledge of the geometry of the ice shell on 
Enceladus, we have deduced likely patterns of (i) salinity gradients 
associated with freezing and melting and (ii) under-ice temperature 
gradients due to the depression of the freezing point of water due to 
pressure. We have considered the resulting ocean circulation driven 
by these boundary conditions, along with the effect of putative heat 
fluxes emanating from the seafloor if tidal dissipation in the core is 
significant. We find that the ocean circulation strongly depends on 
its assumed salinity. If the ocean is fresh, then sinking occurs at the 
poles driven by the meridional temperature gradient (Fig. 3, first 
column); if the ocean is salty, then sinking occurs at the equator 
driven by the salinity gradient (Fig. 3, third column). In both cases, 
heat is converged toward the equator as the warm polar water is 
mixed with the cold equatorial water.

In the absence of polar-amplified ice dissipation to counterbal-
ance equatorward heat transport, the polar (equatorial) ice shell will 
inevitably freeze (melt), because the conductive heat loss through 
the ice shell also tends to cool polar regions. This, together with the 
tendency of ice to flow from regions where it is thick to thin, will 
flatten ice geometry in the core-heating scenarios. Ocean salinity 
and the heat partition between the core and the ice shell affect ocean 
circulation and thereby the heat budget, which should be close to 
balanced—this provides us an opportunity to infer these properties 
using the relatively well-constrained ice shell geometry. It is found 
that scenarios without plenty of heat production in the shell cannot 
prevent the equatorial ice shell from being thinned by the equator-
ward heat convergence and the ice flow. Even when all heat is as-
sumed to be produced in the ice shell, equatorward heat convergence 
in a very salty or very fresh ocean is implausibly strong to maintain 
a balanced heat budget. Instead, if heat production is assumed to 
occur primarily in the ice shell and salinity assumed to have an inter-
mediate value (our calculations suggest between 7 and 30 psu), then 
temperature- and salinity-driven overturning circulations largely 

cancel one another and equatorward heat transport diminishes. If 
these conditions are met, then polar-amplified dissipation in the ice 
shell can sustain a broadly balanced heat budget.

As discussed in the introduction, such salinity ranges are consist
ent with those inferred from chemical equilibrium models of the 
interaction between the rocky core and the ocean (33–35).

Our study has focused on Enceladus, but it may also have impli-
cations for other icy moons. For example, Europa perhaps has a 
salinity in excess of 50 psu, as suggested by the strong magnetic in-
duction field measured by the Galileo mission (53)—see the studies 
by Zolotov and Shock (54), Khurana et al. (55), and Vance et al. (56) 
for discussions of possible ocean compositions together with uncer-
tainties. With a higher ocean salinity, 10 times stronger gravity and 
a slower rotation rate, we expect the circulation coefficient A for 
Europa to be considerably higher than the value that we have found 
here for Enceladus. That said, even if we adopt the lower Enceladus 
value of A, the implied OHT convergence beneath the ice shell of 
Europa near the equator still exceeds the conductive heat loss rate 
there, if the ice thickness variation exceeds 20% of the mean thickness 
(assuming that ocean salinity is greater than 50 psu; see Fig. 5B). 
Thus, our simple model leads us to believe that Europa may have a 
rather flat ice sheet, in line with the observation (57, 58). Moreover, 
no fissures that mimic the “tiger stripes” of Enceladus have been 
found on Europa. For icy moons with thicker ice shells, such as 
Dione, Titan, Ganymede, and Callisto, the high pressure under the 
ice shell would remove any anomalous expansion unless the ocean 
is very fresh, for high pressure suppresses hydrogen bond forma-
tion, which is the key for anomalous expansion. This would make it 
unlikely for temperature- and salinity-driven overturning circula-
tions to cancel one another. Furthermore, ice flow becomes more 
efficient because, if all else is the same, it is proportional to the ice 
thickness cubed (see Eq. 24). Our conceptual model indeed indi-
cates that icy ocean worlds with thick ice shells are likely to have 
small spatial shell thickness variations. This is consistent with shell 
thickness reconstructions based on gravity and shape measurements 
(56, 59–61). With improved measurements of gravity, topography, 
and induced magnetic fields for icy moons made possible by future 
space missions (e.g., Europa Clipper), our conceptual model could 
provide a useful framework to interpret them.

Last, it should be noted that, given the simplifications made in 
our study, our quantitative results are far from conclusive. Instead 
of trying to put a solid constraint on the salinity of Enceladus’ 
ocean, our purpose is to provide a broad physical picture of ocean 
circulation and heat transport on icy satellites forced by ice thick-
ness variations and how these patterns depend on salinity. Further 
studies are needed to better understand and represent eddies, con-
vection, and boundary layer turbulence on icy moons and their im-
pact on heat/tracer transport.

MATERIALS AND METHODS
An overview of the general circulation model
Our simulations are carried out using the Massachusetts Institute of 
Technology Ocean General Circulation Model [MITgcm (62, 63)] 
configured for application to icy moons. Our purpose is to (i) simulate 
the large-scale circulation and tracer transport driven by under-ice 
salinity gradients induced by patterns of freezing and melting, 
under-ice temperature gradients due to the pressure dependence of 
the freezing point of water, and bottom heat fluxes associated with 

Fig. 5. The water-ice heat exchange in equatorial regions. (A) Enceladus and (B) for 
Europa. Equation 7 is used to estimate the heat exchange rates for various salinities 
and equator-to-pole percentage ice thickness variations (equatorial minus polar 
ice thickness divided by the mean). Two-degree poleward-thinning structure is as-
sumed and physical parameters are defined in Table 1. Parameter regimes that are 
consistent with observations are shaded in yellow: The ice shell of Enceladus is 
thought to have large thickness variations (14–18). The 50 mW/m2 contour is high-
lighted by a thicker curve; heat exchange rates that exceed this are considered 
unphysical as the equatorial ice sheet of both Enceladus and Europa only allow 
∼40 mW/m2 or so of heat flux to conduct through. Our simplified model suggests 
that salinities on Enceladus and ice thickness variations for Europa lie in the region 
enclosed by the blue dashed lines. The most plausible ice-thickness variations and 
salinity on Enceladus thus lie in the yellow areas between the blue dashed lines.
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tidal dissipation in the core; (ii) diagnose the water-ice heat exchange 
rate; and (iii) examine whether this heat exchange is consistent with 
the heat budget of the ice sheet, comprising heat loss due to conduc-
tion, tidal heating in the ice sheet, and heating due to latent heat 
release on freezing, as presented graphically in Fig. 1.

In our calculations, the ice shell freezing/melting rate is derived 
from a model of ice flow (described below), based on observational 
inferences of ice shell thickness, prescribed, and held constant: It is 
not allowed to respond to the heat/salinity exchange with the ocean 
underneath. To enable us to integrate our ocean model out to equi-
librium on a 10,000-year time scales and to explore a wide range of 
parameters, we use a zonally symmetric configuration at relatively 
coarse resolution and parameterize the diapycnal mixing, convec-
tion, and baroclinic instability of small-scale turbulent processes 
that cannot be resolved. Each experiment is initialized from rest and 
a constant salinity distribution. The initial potential temperature at 
each latitude is set to be equal to the freezing point at the water-ice 
interface. The simulations are then launched for 10,000 years. By 
the end of 10,000 years of integration, thermal equilibrium has been 
reached.

The model integrates the nonhydrostatic primitive equations for 
an incompressible fluid in height coordinates, including a full treat-
ment of the Coriolis force in a deep fluid, as described in (62, 63). 
These terms are typically neglected when simulating Earth’s ocean 
because the ratio between the fluid depth and horizontal scale 
is small. Instead, Enceladus’ aspect ratio is order 40 km/252 km 
∼ 0.16 and so not negligibly small. The size of each grid cell shrinks 
with depth because of spherical geometry and is accounted for by 
switching on the “deepAtmosphere” option of MITgcm. Because 
the depth of Enceladus’ ocean is comparable to its radius, the 
variation of gravity with depth is significant. The vertical profile 
of gravity in the ocean and ice shell is given by, assuming a bulk 
density of out = 1000 kg/m3

	​ g(z ) = ​ G [ M − (4 / 3 ) ​​ out​​(​a​​ 3​ − ​(a − z)​​ 3​ ) ]   ────────────────────  
​(a − z)​​ 2​

 ​​	  (8)

In the above equation, G = 6.67 × 10−11 N/m2/kg2 is the gravita-
tional constant and M = 1.08 × 1020 kg and a = 252 km are the mass 
and radius of Enceladus.

Because it takes several tens of thousands of years for our solu-
tions to reach equilibrium, we use a moderate resolution of 2° (8.7 km) 
and run the model in a 2D, zonal-average configuration while 
retaining full treatment of Coriolis terms. By doing so, the zonal 
variations are omitted (the effects of 3D dynamics are to be explored 
in future studies). In the vertical direction, the 60-km ocean-ice lay-
er is separated into 30 layers, each of which is 2 km deep. The ocean 
is encased by an ice shell with meridionally varying thickness using 
MITgcm’s “shelf-ice” and ice “boundary layer” module (64). We set 
the ice thickness H using the zonal average of the thickness map 
given by Hemingway and Mittal (18), as shown by a solid curve in 
Fig. 1B, and assume hydrostacy (i.e., ice is floating freely on the wa-
ter). We use partial cells to better represent the ice topography: Wa-
ter is allowed to occupy a fraction of the height of a whole cell with 
an increment of 10%.

Parameterization of subgrid-scale processes
Key processes that are not explicitly resolved in our model are dia-
pycnal mixing, convection, and baroclinic instability. Here, we 

review the parameterizations and mixing schemes used in our mod-
el to represent them. Sensitivity tests of our solutions when mixing 
parameters are varied about reference values are presented in the 
Supplementary Materials.
Vertical mixing of tracers and momentum
To account for the mixing of momentum, heat, and salinity by un-
resolved turbulence, in our reference calculation, we set the explicit 
horizontal/vertical diffusivity to 0.005 m2/s. This is roughly three 
orders of magnitude greater than molecular diffusivity but broadly 
consistent with dissipation rates suggested by Rekier et al. (21) for 
Enceladus, where both libration and tidal forcing are taken into ac-
count. According to (21), the tidal dissipation in the ocean is mostly 
induced by libration implying a global dissipation rate E of order 1 
MW, but with considerable uncertainty. As reviewed by Wunsch 
and Ferrari (65), this suggests a vertical diffusivity given by

	​​ ​ v​​  = ​    ─ 
​​ 0​​ ​N​​ 2​

 ​​	 (9)

where  ∼ 0.2 is the efficiency at which dissipation of kinetic energy 
is available for production of potential energy. Here,  = E/V is the 
dissipation rate per volume, V ≈ 4(a − H0 − D/2)2D is the total 
volume of the ocean (H0 and D are the mean thickness of the ice 
layer and ocean layer, and a is the moon’s radius), and 0 ∼ 1000 kg/m3 
is the density of water. N2 = g(∂ ln /∂z) ∼ g(/0)/D is the 
Brunt-Vaisala frequency, where g is the gravity constant. /0 can 
be estimated from TTf, where T is the thermal expansion coeffi-
cient near the freezing point and Tf is the freezing point difference 
between the underside of the equatorial and the north polar ice 
shell. Here, we take ∣T∣ ∼ 1 × 10−5/K (corresponding to S0 = 27 
and S0 = 17 psu) and ∣Tf ∼ 0.07∣K (a measure of the overall verti-
cal temperature gradients in our default set of experiments). Substi-
tuting into Eq. 9 yields v ∼ 0.005 m2/s, which we choose as our 
default horizontal and vertical diffusivity. The diffusivity for tem-
perature and salinity are set to be the same, so that double diffusive 
effects are excluded. Uncertainties stem from both E and N2 and 
show considerable spatial variability in our experients—see the dis-
cussion in (21). One might expect N2 to be smaller ( larger) in 
cases where temperature- and salinity-induced density gradients 
cancel one another and vice versa; the former scenario seems to be 
more plausible, a main conclusion of our study. It is for this reason 
that we set our default diffusivities to the above high values in all 
our reference experiments and explore the impact of lower diffusiv-
ities as sensitivity tests.

The horizontal and vertical viscosity h, v are set to 10 m2/s. 
This value is the minimum needed to control grid-scale noise. In 
addition, to damp numerical noise induced by our use of stair-like 
ice topography, we use a biharmonic hyperviscosity of 109 m4/s and 
a biharmonic hyperdiffusivity of 5 × 107 m4/s.

Despite use of these viscous and smoothing terms, the dominant 
balance in the momentum equation is between the Coriolis force 
and the pressure gradient force, and so zonal currents on the large 
scale remain in thermal wind balance, especially in the interior of 
the ocean. As shown by Fig. 6, the two-term balance in the ther-
mal wind equation, 2 · ∇ U = ∂b/a∂ (see legend), are almost 
identical. Because thermal wind balance is a consequence of geo-
strophic and hydrostatic balance and the latter is always a good 
approximation on the large scale, geostrophic balance is indeed 
well satisfied.
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Convection
Because of the coarse resolution of our model, convection cannot be 
resolved and must be parameterized. In regions that are convectively 
unstable, we set the diffusivity to a much larger value, 1 m2/s, to 
represent the vertical mixing associated with convective overturns. 
Similar approaches are widely used to parameterize convection in 
coarse resolution ocean models [see, e.g., Klinger and Marshall 
(66)] and belong to a family of convective adjustment schemes. This 
value is obtained on the basis of the equilibrium top-to-bottom 
temperature gradient in a high-resolution Enceladus simulation 
carried out by the listed authors at MIT, where we assume a salty 
ocean (40 psu) and enforce ∼50 mW/m2 of heat from the bottom. 
Scaling arguments lead to similar results. According to Jones and 
Marshall (44), the velocity in a rotation-dominated regime scales 
with ​​√ 

_
 B / f ​​, where B is the buoyancy flux and f is the Coriolis coeffi-

cient. Using the fact that convective plumes/rolls should occupy the 
whole ocean depth D, a diffusivity can be estimated by multiplying 
the length scale and velocity scale together

	​​ ​ conv​​  ∼ ​ √ 
_

 B / f ​ D  ∼  1 ​m​​ 2​ / s​	 (10)

Here, we have chosen B to be 10−13 m3/s2, which corresponds to 
the buoyancy flux produced by a 50 mW/m2 bottom heat flux, or 
the buoyancy flux induced by a 1-km/Ma freezing rate, in an ocean 
with 40-psu salinity. This is two orders of magnitude lower than 
assumed by Lobo et al. (42).

Our results are not found to be sensitive to the choice of conv 
provided the associated diffusive time scale D2/conv ≈ 0.5 years is 
much shorter than the advective time scale Mhalf/ ≈ 2000 years 
(Mhalf is half of the total mass of the ocean and  is the maximum 
meridional streamfunction in kg/s). It should be emphasized that, 
as noted above, away from boundary layers our solutions are close 
to geostrophic, hydrostatic, and thermal wind balance and are not 
convectively unstable. However, convective heating from the bot-
tom and/or salinization of water at the top can and do lead to con-
vective instability that are mixed away diffusively.
Baroclinic instability
The large-scale currents set up in our model are in thermal wind 
balance with horizontal density gradients induced by under-ice 
temperature and salinity gradients. There is thus a store of available 
potential energy that will be tapped by baroclinic instability, a pro-
cess that is not resolved in our model because of its zonally symmet-
ric configuration. In the default setup, we ignore the extra mixing 
induced by baroclinic eddies, which may lead to an underestimate 
of the ocean heat transport. In one of our sensitivity test, we try to 
test the baroclinic eddies’ potential impact by turning on the GM 

scheme (49, 68), which is a widely used approach to parameterize 
the associated eddy-induced circulation and mixing of tracers along 
isopycnal surfaces in modeling Earth’s ocean. The key parameter 
that characterize the efficiency of the along-isopycnal mixing is the 
GM diffusivity GM. To allow the along-isopycnal mixing rate to 
vary with the local stratification and isentrope slope, we adopt the 
GM formula by Visbeck et al. (43). The relevant parameters are listed 
in Table 1.

A rough estimate of the magnitude of GM can be obtained by 
applying the Visbeck formula

	​​ ​ GM​​  =   ​l​GM​ 2 ​ ​ 
f
 ─ 

​√ 
_

 Ri ​
 ​​	 (11)

where ​​  f _ 
​√ 
_

 Ri ​
​​ is proportional to the Eady growth rate, lGM is the width of 

the baroclinic zone,  = 0.015 is a universal constant, f is the Corio-
lis parameter, and Ri = N2/Uz is the Richardson number. We esti-
mate lGM to be around 3 km using the Rhine’s scale ​​√ 

_
 U /  ​​, where U 

is the zonal flow speed and  is the meridional gradient of the Cori-
olis parameter.

To obtain an estimate for the diffusivity induced by baroclinic 
eddies, we substitute N2 ∼ 10−11 s−2, f ∼ 10−4 s−1, U ∼ 10−3 m, and 
 ∼ 10−10 s−1m−1 in Eq. 11 and find GM ∼0.3 m2/s. It is notable that 
this is two to three orders of magnitude smaller than the value used 
for Earth’s ocean and those adopted by Lobo et al. (42).

Equation of state and the freezing point of water
To make the dynamics as transparent as possible, we adopt a linear 
equation of state to determine how density depends on tempera-
ture, salinity, and pressure. The dependence of potential density  
on potential temperature  and salinity S is determined as follows

	​ (, S ) = ​​ 0​​(1 − ​​ T​​( − ​​ 0​​ ) + ​​ S​​(S − ​S​ 0​​ ) )​	 (12)

	​​ ​ 0​​  =  (​​ 0​​, ​S​ 0​​)​	 (13)

Here, 0, 0, and S0 are the reference potential density, potential 
temperature, and salinity. T and S, the thermal expansion coeffi-
cient and the haline contraction coefficient, are set to the first deriv-
ative of density with respect to potential temperature and salinity at 
the reference point using the Gibbs Seawater Toolbox (23). We car-
ried out two test experiments (one with S0 = 10 psu and the other 
with S0 = 20 psu) using the full “MDJWF” equation of state (68) and 
obtained almost identical results. To explore a wide range of back-
ground salinity, S0 is prescribed to values between 4 and 40 psu. 0 
is set to be the freezing temperature at S0 and P0 = 2.2 × 106 Pa (this 
is the pressure under a 20.8-km-thick ice sheet on Enceladus).

The freezing point of water Tf is assumed to depend on local 
pressure P and salinity S as follows

	​​ T​ f​​(S, P ) = ​c​ 0​​ + ​b​ 0​​ P + ​a​ 0​​ S​	 (14)

where a0 = −0.0575 K/psu, b0 = −7.61 × 10−4 K/dbar, and c0 = 
0.0901°C. The pressure P can be calculated using hydrostatic bal-
ance P = igH (i = 917 kg/m3 is the density of the ice and H is the 
ice thickness).

Boundary conditions
Our ocean model is forced by heat and salinity fluxes from the ice 
shell at the top and heat fluxes coming from below.

Fig. 6. Thermal wind balance in the control simulation. Panels shows the two 
terms in the thermal wind balance, 2 · ∇ U and ∂b/a∂, respectively. Here  is the 
rotation rate of the moon, tU is the zonal flow speed, b = − g( − 0)/0 is buoyancy, 
a is the moon’s radius, and  is latitude.
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Table 1. Model parameters used in our study.  

Symbol Name Definition/value

Enceladus parameters

a Radius 252 km

 Obliquity 27°

H Global mean ice thickness 20.8 km: (18)

D Global mean ocean depth 39.2 km: (18)

 Rotation rate 5.307 × 10−5 s−1

g0 Surface gravity 0.113 m/s2

​​​T​ s​​ ̄ ​​ Mean surface temperature 59 K

Europa parameters

a Radius 1561 km

 Obliquity 3.1°

H Global mean ice thickness 15 km: (53)

D Global mean ocean depth 85 km: (53)

 Rotation rate 2.05 × 10−5 s−1

g0 Surface gravity 1.315 m/s2

​​​T​ s​​ ̄ ​​ Mean surface temperature 110 K

Physical constants

Lf Fusion energy of ice 334,000 J/kg

Cp Heat capacity of water 4000 J/kg per Kelvin

Tf(S, P) Freezing point Eq. 14

i Density of ice 917 kg/m3

w Density of the ocean Eq. 12

,  Thermal expansion and saline contraction coeff. Using Gibbs Seawater Toolbox: (23)

0 Conductivity coeff. of ice 651 W/m: (74)

p Ice dissipation amplification factor −2 to −1

m Ice viscosity at freezing point 1014 Ps·s

Default parameters in the ocean model

h, v Horizontal/vertical viscosity 10 m2/s

​​​ ~ ​​ h​​, ​​ ~ ​​ v​​​ Biharmonic hyperviscosity 109 m4/s

h, v Horizontal/vertical diffusivity 0.005 m2/s

(T, S, M) Water-ice exchange coeff. for T, S, and momentum (10−5, 10−5, 10−3) m/s

g Gravity in the ocean Eq. 8

P0 Reference pressure ig0H = 2.16 × 106 Pa

0 Reference potential temperature Tf(S0, P0)

w0 Reference density of ocean Eq. 13

ℋcond Conductive heat loss through ice Eq. 15, Fig. 7

ℋice Tidal heating produced in the ice Eq. 26, Fig. 7

ℋcore Bottom heat flux powered by the core Eq. 16, Fig. 7

A Surface albedo 0.81

Ts Surface temperature profile Fig. 7
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Diffusion of heat through the ice
Heat loss to space by conduction through the ice ℋcond is represented 
using a 1D vertical heat conduction model

	​​​ ℋ​ cond​​  = ​  ​​ 0​​ ─ H ​ ln ​(​​ ​ ​T​ f​​ ─ ​T​ s​​
 ​​)​​​​	 (15)

where H is the thickness of ice (solid curve in Fig. 1B), the surface 
temperature is Ts, and the ice temperature at the water-ice interface 
is the local freezing point Tf (Eq. 14). We approximate the surface 
temperature Ts using radiative equilibrium based on the incoming 
solar radiation and obliquity ( = 27°) assuming an albedo of 0.81. 
The Ts profile is shown by the black solid curve in Fig. 7. Typical 
heat losses averaged over the globe are ℋcond = 50 mW/m2, broadly 
consistent with observations (16).
Tidal heating in the core
Conductive heat loss is primarily balanced by tidal dissipation in the 
ice shell ℋice and the core ℋcore (dissipation in the ocean plays a neg-
ligible role) (21, 48, 69, 70). For each assumed heat partition between 
the shell and the core, we use the same meridional heating profiles for 
ℋcore and ℋice (see below). According to Beuthe (4) and Choblet et al. 
(3), the core dissipation ℋcore peaks at the two poles. We obtain the 
meridional heat profile using equation 60 in the study by Beuthe (4)

​​​ℋ​ core​​( ) = ​​
_

 ℋ​​ core​​ · (1.08449 + 0.252257 cos (2 ) + 0.00599489 cos (4 ) ​)​​​​

(16)

where  denotes latitude and ​​​ℋ ̄ ​​ core​​​ is the global mean heat flux from 
the bottom. Because the global surface area shrinks going downward 
because of the spherical geometry, a factor of (a − H)2(a − H − D)2 
(H is ice thickness, D is ocean depth) needs to be considered when 
computing ​​​ℋ ̄ ​​ core​​​. The expression within the bracket is normalized 
for the globe, adjusted to take account of the fact that our model 
only covers 84°S-84°N. Using the above formula, the bottom heat flux 
is twice as strong over the poles than equator, as can be seen in 
Fig. 1D. We note that the heating profile here is highly idealized 
and does not have the localized heating stripes seen in the study by 

Choblet et al. (3) that arise from the interaction between the porous 
core and the fluid in the gaps.
Ice-ocean fluxes
The interaction between ocean and ice is simulated using MITgcm’s 
shelf-ice package (64, 71). We turn on the boundary layer option to 
avoid possible numerical instabilities induced by an ocean layer that 
is too thin. The code is modified to account for a gravitational accel-
eration that is very different from that on Earth, the temperature 
dependence of heat conductivity, and the meridional variation of 
tidal heating generated inside the ice shell and the ice surface tem-
perature. In the description that follows, we begin by introducing 
the shelf-ice parameterization in a fully coupled ocean-ice system 
and then make simplifications that fit our goal here.

The heat budget involves three terms: the heat transmitted up-
ward by ocean ℋocn, the heat loss through the ice shell due to heat 
conduction ℋcond (Eq. 15), and the tidal heating generated inside 
the ice shell ℋice (Eq. 26). As elucidated by Holland and Jenkins (71) 
and Losch (64), the continuity of heat flux and salt flux through the 
boundary layer gives

	​  ​ℋ​ ocn​​ − ​ℋ​ cond​​ + ​ℋ​ ice​​  =  − ​L​ f​​ q − ​C​ p​​(​T​ ocn−top​​ − ​T​ b​​ ) q​	 (17)

	​  ​ℱ​ ocn​​  =  − ​S​ b​​ q − (​S​ ocn−top​​ − ​S​ b​​ ) q​	 (18)

where Tocn−top and Socn−top denote the temperature and salinity in 
the top grid of the ocean, Sb denotes the salinity in the boundary 
layer, and q denotes the freezing rate in kg/m2/s. Cp = 4000 J/kg per 
Kelvin is the heat capacity of the ocean, and Lf = 334,000 J/kg is the 
latent heat of fusion of ice.
ℋocn and ℱocn in Eq.17 can be written as

	​​ ℋ​ ocn​​  = ​ C​ p​​(​​ 0​​ ​​ T​​ − q ) (​T​ ocn−top​​ − ​T​ b​​)​	 (19)

	​​ ℱ​ ocn​​  =  (​​ 0​​ ​​ S​​ − q ) (​S​ ocn−top​​ − ​S​ b​​)​	 (20)

where T = S = 10−5 m/s are the exchange coefficients for tempera-
ture and salinity and Tb denotes the temperature in the boundary 
layer. The terms associated with q are the heat/salinity change in-
duced by the deviation of Tocn − top, Socn−top from that in the boundary 
layer, where melting and freezing occur. Tb = Tf(Sb, P), the freezing 
temperature at pressure P and salinity Sb (see Eq. 14).

In a fully coupled system, we would solve Sb and q from Eqs. 17 to 
20. When freezing occurs (q > 0), the salinity flux w0S(Socn−top − Sb) is 
negative (downward). This leads to a positive tendency of salinity at 
the top of the model ocean, together with changes of temperature, thus

	​​
​ 
​dS​ ocn−top​​

 ─ dt  ​  = ​  − ​ℱ​ ocn​​ ─ ​ρ​ w0​​ δz ​  = ​   1 ─ ​ρ​ w0​​ δz ​(​ρ​ w0​​ ​γ​ S​​ − q)
​   

        (​S​ b​​ − ​S​ ocn−top​​ ) = ​ 
​qS​ ocn−top​​

 ─ ​ρ​ w0​​ δz  ​
 ​​	  (21)

	​​
​ 
​dT​ ocn−top​​

 ─ dt  ​
​ 

= ​  − ​ℋ​ ocn​​ ─ ​C​ p​​ ​ρ​ w0​​ δz ​  =  ​  1 ─ ​ρ​ w0​​ δz ​(​ρ​ w0​​ ​γ​ T​​ − q ) (​T​ b​​ − ​T​ ocn−top​​)
​    

​
​ 

= ​  1 ─ ​C​ p​​ ​ρ​ w0​​ δz ​ [ ​ℋ​ ice​​ − ​ℋ​ cond​​ + ​L​ f​​ q + ​C​ p​​(​T​ ocn−top​​ − ​T​ b​​ ) q]
​​	 (22)

where z = 2 km is the thickness of the boundary layer at the ocean-
ice interface.

It should be noted that the top ocean grid is close to, but not ex-
actly at, the freezing point. Our imaginary boundary layer, however, 

Fig. 7. Meridional profiles of heat fluxes and surface temperature. Heat fluxes 
are plotted using colored curves, with a scale on the left. Conductive heat loss 
ℋcond (Eq. 15) is shown by a thick green dash-dotted line that, in the global aver-
age, is balanced by heat generation in the silicate core ℋcore (purple dashed line, 
Eq. 16) and ℋice (red solid line, Eq. 26). All heat fluxes are normalized to have the 
same global mean value of ℋcond. The surface temperature Ts (black solid line, axis 
on the right) is set to be in radiative equilibrium with the solar radiation and is 
warmer at the equator.
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is at the freezing point. When the ice is melting, the boundary layer 
will be fresher than the top ocean grid to support a freshwater flux 
into the ocean. Having a relatively low salinity in the boundary lay-
er means that the temperature there will be slightly higher given the 
dependence of freezing point on salinity (Eq. 14). This, in turn, al-
lows heat to be transmitted into the ocean, without requiring the 
ocean temperature to be below freezing.

If we allow the freezing/melting of ice and the ocean circulation 
to feedback onto one another, the positive feedback between them 
renders it difficult to find consistent solutions. We therefore cut off 
this feedback loop by setting the freezing rate, q, to that which is 
required to sustain the prescribed ice sheet geometry (details can be 
found in the next subsection where the ice flow model is described), 
while allowing a heating term to balance the heat budget (Eq. 17). 
The amplitude of this heat imbalance can then be used to discrimi-
nate between different steady-state solutions (Eq. 2). This also sim-
plifies the calculation of the T/S tendencies of the uppermost ocean 
grid. The S tendency can be directly calculated from Eq. 21, and the 
T tendency is approximated by

	​​ 
​dT​ ocn−top​​

 ─ dt ​   = ​  1 ─ δz ​(​γ​ T​​ − q ) (​T​ f,ocn−top​​ − ​T​ ocn−top​​)​	 (23)

replacing the boundary layer freezing temperature Tb = Tf(Sb, P) in 
Eq. 22 with Tf,ocn−top = Tf(Socn−top, P), the freezing temperature de-
termined by the uppermost ocean grid salinity and pressure. The 
difference between Sb and Socn−top can be estimated from ℱocn/(0S) = 
qSocn−top/(0S), guided by Eqs. 20 and 21, given that ∣q∣ ≲ 10−7 kg/m2 
per second is orders of magnitude smaller than 0S = 0.01 kg/m2/s. 
Even in the saltiest scenario, we consider here, ∣Sb − Socn−top∣ does 
not exceed 0.0004 psu, and the associated freezing point change is 
lower than 10−5 K. Readers interested in the formulation of a freely 
evolving ice-water system are referred to the method section of 
Losch (64). In addition to the above conditions on temperature and 
salinity, the tangential velocity is relaxed back to zero at a rate of M = 
10−3m/s at the upper and lower boundaries.
Ice flow model
We prescribe q using the divergence of the ice flow, assuming that 
the ice sheet geometry is in equilibrium. We use an upside-down 
land ice sheet model following Ashkenazy et al. (40). The ice flows 
down its thickness gradient, driven by the pressure gradient in-
duced by the spatial variation of the ice top surface, somewhat like a 
second-order diffusive process. At the top, the speed of the ice flow 
is negligible because the upper part of the shell is so cold and hence 
rigid; at the bottom, the vertical shear of the ice flow speed vanishes, 
as required by the assumption of zero tangential stress there. This is 
the opposite to that assumed in the land ice sheet model. In rough 
outline, we calculate the ice flow using the expression below ob-
tained through repeated vertical integration of the force balance 
equation (the primary balance is between the vertical flow shear and 
the pressure gradient force), using the aforementioned boundary 
conditions to arrive at the following formula for ice transport Q

	​​

​Q​(​​ϕ​)​​  = ​ Q​ 0​​ ​H​​ 3​​(​​ ​∂​ ϕ​​ H / a​)​​​

​  
​ 
​Q​ 0​​  = ​ 

2​(​​ ​ρ​ 0​​ − ​ρ​ i​​​)​​g
  ──────────────  

​η​ melt​​​(​​ ​ρ​ 0​​ / ​ρ​ i​​​)​​ ​log​​ 3​​(​​ ​T​ f​​ / ​T​ s​​​)​​
 ​ ​∫​T​ s​​​ 

​T​ f​​
 ​​ ​∫​T​ s​​​ 

T​(​​z​)​​
 ​​
​   

            

​exp​[​​ − ​  ​E​ a​​ ─ ​R​ g​​ ​T​ f​​
 ​​(​​ ​ ​T​ f​​ ─ T′ ​ − 1​)​​​]​​log​(​​T′​)​​​ dT′ ─ T′ ​​ 

dT ─ T ​​
​
​​	 (24)

Here,  denotes latitude, a = 252 km, and g = 0.113 m/s2 are the 
radius and surface gravity of Enceladus, Ts and Tf are the tempera-
ture at the ice surface and the water-ice interface (equal to local 
freezing point; Eq. 14), and i = 917 kg/m3 and 0 are the ice density 
and the reference water density (Eq. 12). Ea = 59.4 kJ/mol is the ac-
tivation energy for diffusion creep, Rg = 8.31 J/K/mol is the gas con-
stant, and melt is the ice viscosity at the freezing point. The latter 
has considerable uncertainty (1013 to 1015 Pa·s) (38), but we choose 
to set melt = 1014 Pa·s.

In steady state, the freezing rate q must equal the divergence of 
the ice transport thus

	​ q  =  − ​  1 ─ a cos  ​ ​ 
∂ ─ ∂  ​(Qcos )​	 (25)

As shown by the dashed curve in Fig. 1B, ice melts in high lati-
tudes and forms in low latitudes at a rate of a few kilometers every 
million years. A more detailed description of the ice flow model can 
be found in the studies by Kang and Flierl (50) and Ashkenazy et al. 
(40). Freezing and melting lead to changes in  local salinity and 
thereby a buoyancy flux. At S0 = 30 psu, the salinity-associated 
buoyancy flux is approximately gqSS0 ≈ 10−13 m2/s3, which is three 
to six orders of magnitude smaller than the buoyancy flux used by 
Lobo et al. (42).

Model of tidal dissipation in the ice shell
Enceladus’ ice shell is periodically deformed by tidal forcing and the 
resulting strains in the ice sheet produce heat. We follow Beuthe (4) 
to calculate the implied dissipation rate. Instead of repeating the 
whole derivation here, we only briefly summarize the procedure 
and present the final result. Unless otherwise stated, parameters are 
the same as assumed by Kang and Flierl (50).

Tidal dissipation consists of three components (4): a membrane 
mode ​​ℋ​ice​ 

mem​​ due to the extension/compression and tangential shear-
ing of the ice membrane, a mixed mode ​​ℋ​ice​ 

mix​​ due to vertical shifting, 
and a bending mode ​​ℋ​ice​ 

bend​​ induced by the vertical variation of com-
pression/stretching. Following Beuthe (4), we first assume the ice 
sheet to be completely flat. By solving the force balance equation, we 
obtain the auxiliary stress function F, which represents the horizon-
tal displacements, and the vertical displacement w. The dissipation 
rate ​​ℋ​ice​ 

flat,x​​ (where x ={mem, mix, bend}) can then be written as a 
quadratic form of F and w. In the calculation, the ice properties are 
derived assuming a globally uniform surface temperature of 60 K 
and a melting viscosity of 5 × 1013 Pa·s.

Ice thickness variations are accounted for by multiplying the 
membrane mode dissipation ​​ℋ​ice​ 

flat,mem​​, by a factor that depends on 
ice thickness. This makes sense because this is the only mode that is 
amplified in thin ice regions [see the study by Beuthe (4)]. This re-
sults in the expression

	​​ ℋ​ ice​​  = ​ (H / ​H​ 0​​)​​ ​p​ ​​​ ​ℋ​ice​ 
flat,mem​ + ​ℋ​ice​ 

flat,mix​ + ​ℋ​ice​ 
flat,bend​​	 (26)

where H is the prescribed thickness of the ice shell as a function of 
latitude and H0 is the global mean of H. Because thin ice regions 
deform more easily and produce more heat, p is negative. Because 
more heat is produced in the ice shell, the overall ice temperature 
rises, which, in turn, further increases the mobility of the ice and 
leads to more heat production (the rheology feedback).

Using reasonable parameters for Enceladus, ℋice turns out to be 
at least an order of magnitude smaller than the heat loss rate ℋcond. 
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This is a universal flaw of present tidal dissipation models and could 
be due to use of an oversimplified Maxwell rheology (19, 74). We 
therefore scale up ℋice by a constant factor to obtain the desired 
magnitude. The tidal heating profile corresponding to p = −1.5 is 
the red solid curve plotted in Fig. 7. In Fig. 4 (C and D), we show the 
tidal heating profile for p = −1 and p = −2.The distribution of ℋice 
is insensitive to the assumed ice viscosity, but the amplitude (before 
rescaling) could vary by a lot as indicated by previous studies (73).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
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