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Abstract
Calibration is a vital aspect of the performance of risk prediction models, but
research in the context of ordinal outcomes is scarce. This study compared cal-
ibration measures for risk models predicting a discrete ordinal outcome, and
investigated the impact of the proportional odds assumption on calibration and
overfitting. We studied the multinomial, cumulative, adjacent category, contin-
uation ratio, and stereotype logit/logistic models. To assess calibration, we inves-
tigated calibration intercepts and slopes, calibration plots, and the estimated
calibration index. Using large sample simulations, we studied the performance
of models for risk estimation under various conditions, assuming that the true
model has either a multinomial logistic form or a cumulative logit proportional
odds form. Small sample simulations were used to compare the tendency for
overfitting between models. As a case study, we developed models to diagnose
the degree of coronary artery disease (five categories) in symptomatic patients.
When the true model was multinomial logistic, proportional odds models often
yielded poor risk estimates, with calibration slopes deviating considerably from
unity even on large model development datasets. The stereotype logistic model
improved the calibration slope, but still provided biased risk estimates for indi-
vidual patients. When the true model had a cumulative logit proportional odds
form, multinomial logistic regression provided biased risk estimates, although
these biases were modest. Nonproportional odds models require more param-
eters to be estimated from the data, and hence suffered more from overfitting.
Despite larger sample size requirements, we generally recommend multinomial
logistic regression for risk prediction modeling of discrete ordinal outcomes.
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1 INTRODUCTION

Risk prediction modeling is ubiquitous in the medical literature. Most of these prediction models are developed for
dichotomous outcomes, estimating the risk that a condition is present (diagnostic) or will develop within a certain time
horizon (prognostic). However, several clinically important outcomes are ordinal in nature, with a finite and often lim-
ited number of ordered categories. One example is the extent of coronary artery disease in symptomatic patients, for
which Edlinger et al recently developed a risk prediction model.1 The diagnosis can be any of five increasingly severe
conditions: no coronary artery disease, nonobstructive stenosis, one-vessel disease, two-vessel disease, or three-vessel dis-
ease. Another example is the modified Rankin scale to assess function recovery after stroke, as in a model by Risselada
et al.2 This scale has seven ordered categories: death, severe disability, moderately severe disability, moderate disability,
slight disability, no significant disability despite symptoms, or no symptoms at all. Such outcomes are often dichotomized,
although we would generally not recommend that for the following reasons: (1) it leads to a loss of information, (2) the
merged categories may require different clinical management, and (3) merging categories may result in an extremely
heterogeneous “supercategory”.

The default statistical model for ordinal outcomes is the cumulative logit model with proportional odds (CL-PO),
which is commonly referred to as “ordinal logistic regression”. Several alternative logistic models for ordered categories
exist, such as the adjacent category, continuation ratio, and stereotype models, which make different assumptions about
the structure of ordinality.3-10 Alternatively, the multinomial logistic regression (MLR) can be used for modeling ordinal
and other multicategory outcomes, ignoring the ordinality of the outcome.

For dichotomous outcomes, there is a large body of methodological literature and guidance on how prediction mod-
els should be constructed and how their performance should be evaluated in terms of discrimination and calibration.11-17

Methods to assess discrimination and calibration have been extended to models for nominal outcomes.18-20 For ordi-
nal outcomes, discrimination measures have been proposed but calibration has been barely addressed.21-24 Harrell and
colleagues discussed the development of a risk prediction model for an ordinal outcome using CL-PO.21 Calibration
was assessed for a dichotomized version of the outcome, such that the standard methods for binary outcomes could
be applied. More research on calibration is required, in particular because calibration is the Achilles heel of prediction
modeling.25

In this article, we study the performance of a variety of regression algorithms to develop prediction models for discrete
ordinal outcomes. We (1) evaluate different approaches to investigate calibration, (2) study the impact of the proportional
odds assumption on risk estimates and calibration statistics, and (3) explore the impact on overfitting when using simpler
models that assume proportional odds vs more complex models without assuming proportional odds.

This article is structured as follows. Regression models for discrete ordinal outcomes are described in Section 2, and
measures for predictive performance in Section 3. Section 4 presents a simulation study to assess the impact of model
choice on estimated risks, model calibration, and overfitting, and to compare approaches to quantify model calibration.
Section 5 presents a case study, and in Section 6 we discuss our findings.

2 REGRESSION MODELS FOR DISCRETE ORDINAL OUTCOMES

2.1 Regression models

We predict an outcome Y with K categories (k = 1, … ,K) using Q predictors Xq (q = 1, … ,Q), X =
[
X1, … ,XQ

]T . For
simplicity, we will assume in notation that the models are modeling the predictors as linear and additive effects, but our
work can easily be generalized to allow for alternative functional forms and interaction terms.
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2.1.1 Multinomial logistic regression

A generic model for categorical outcomes is multinomial logistic regression (MLR), which ignores the ordinality of the
outcome. MLR models the outcome as follows10:

log
(

P(Y = k)
P(Y = 1)

)
= 𝛼MLR,k + 𝛃T

MLR,kX = LMLR,k (1)

for k = 2, … ,K and where 𝛃T
MLR,k =

[
𝛽MLR,k,1, … , 𝛽MLR,k,Q

]
and where L is called a linear predictor. One outcome category

is used as the reference, and all other categories are contrasted with this reference category. We use Y = 1 as the reference,
but the choice does not affect the estimated risks.

2.1.2 Cumulative logit models

The likely most commonly used regression model for ordinal outcomes is the cumulative logit with proportional odds
(CL-PO)10:

log
(

P(Y ≥ k)
P(Y < k)

)
= 𝛼CLPO,k + 𝛃T

CLPOX = LCLPO,k, (2)

for k = 2, … ,K and where𝛃T
CLPO =

[
𝛽CLPO,1, … , 𝛽CLPO,Q

]
. Due to the proportional odds assumption, every predictor effect

is modeled using only one parameter, irrespective of k. This means that predictor effects are assumed constant over k on
the log-odds scale. The model has K − 1 intercepts.

The cumulative logit model can also be formulated without the proportional odds assumption, leading to the CL-NP
model10:

log
(

P(Y ≥ k)
P(Y < k)

)
= 𝛼CLNP,k + 𝛃T

CLNP,kX = LCLNP,k, (3)

for k = 2, … ,K and where 𝛃T
CLNP,k =

[
𝛽CLNP,k,1, … , 𝛽CLNP,k,Q

]
. Here, the predictor effects depend on k, such that K − 1

parameters are estimated for each predictor. Note that CL-NP may lead to invalid models where the estimated risk that
Y ≥ k is higher than the estimated risk that Y ≥ k − 1.8,10

2.1.3 Adjacent category models

An alternative method to model ordinality is to target pairwise probabilities of adjacent categories, rather than
cumulative probabilities. Assuming proportional odds, the adjacent category with proportional odds model (AC-PO)
model is10

log
(

P(Y = k + 1)
P(Y = k)

)
= 𝛼ACPO,k + 𝛃T

ACPOX = LACPO,k, (4)

for k = 1, … ,K − 1 and where 𝛃T
ACPO =

[
𝛽ACPO,1, … , 𝛽ACPO,Q

]
. Proportional odds in this setup refers to identical effects

for moving up one category, instead of identical effects for every dichotomization of Y .
The adjacent model setup can also be applied without the proportional odds assumption, leading to the adjacent

category without proportional odds model (AC-NP):

log
(

P(Y = k + 1)
P(Y = k)

)
= 𝛼ACNP,k + 𝛃T

ACNP,kX = LACNP,k, (5)

for k = 1, … ,K − 1 and where 𝛃T
ACNP,k =

[
𝛽ACNP,k,1, … , 𝛽ACNP,k,Q

]
. This model is equivalent to MLR.



EDLINGER et al. 1337

2.1.4 Continuation ratio models

Instead of cumulative or pairwise probabilities, conditional probabilities can be targeted. Continuation ratio models esti-
mate the probability of a given outcome category conditional on the outcome being at least that category. The continuation
ratio model with proportional odds assumptions (CR-PO) is10

log
(

P(Y > k)
P(Y ≥ k)

)
= 𝛼CRPO,k + 𝛃T

CRPOX = LCRPO,k, (6)

for k = 1, … ,K − 1 and where 𝛃T
CRPO =

[
𝛽CRPO,1, … , 𝛽CRPO,Q

]
. Without proportional odds, the continuation ratio model

is (CR-NP):

log
(

P(Y > k)
P(Y ≥ k)

)
= 𝛼CRNP,k + 𝛃T

CRNP,kX = LCRNP,k, (7)

for k = 1, … ,K − 1 and where 𝛃T
CRNP,k =

[
𝛽CRNP,k,1, … , 𝛽CRNP,k,Q

]
.

2.1.5 Stereotype logistic model

Anderson introduced a model that finds a compromise between MLR and AC-PO, by relaxing the proportional odds
assumption on the level of the K − 1 equations rather than on the level of each predictor separately.7 The stereotype
logistic model (SLM) is written as:

log
(

P(Y = k)
P(Y = 1)

)
= 𝛼SLM,k + 𝜙k𝛃T

SLMX = LSLM,k, (8)

for k = 2, … ,K and where 𝛃T
SLM =

[
𝛽SLM,1, … , 𝛽SLM,Q

]
and Y = 1 is used as the reference. The model estimates one

coefficient per predictor, but estimates K − 1 scaling factors 𝜙. Every predictor coefficient is multiplied by 𝜙k. To avoid
identifiability problems, a constraint has to be imposed on the scaling factors, which typically is that 𝜙2 = 1. In princi-
ple, the model is an ordered model if the scaling factors are monotonically increasing or decreasing. While this could be
imposed as an additional constraint during model fitting, it is not necessary and may cause computational problems.3,7

2.2 A comparison of the number of parameters

For any particular application, the number of parameters (regression model coefficients including intercepts) of the above
defined models varies. The models without a proportional odds assumption (MLR, CL-NP, AC-NP, CR-NP) require (Q +
1)(K − 1) parameters, models with proportional odds (CL-PO, AC-PO, CR-PO) require Q + K − 1 parameters. SLM falls
in between with Q + 2K − 3 parameters. Table 1 presents the number of parameters for illustrative values of Q and K.

3 PREDICTIVE PERFORMANCE MEASURES FOR DISCRETE ORDINAL
OUTCOMES MODELS

The estimated risk of category k is denoted by P̂k, with the estimated risk for individual i in a data set of size N
(i = 1, … ,N) denoted as p̂i,k. These risks are model-specific, conditional on X and the estimated model parameters.
Hence P̂k = P

(
Y = k|X, 𝛉̂⋅

)
, where 𝛉̂⋅ includes all parameters estimated from the model of choice (Equations (1)-(8)).

For example, 𝛉̂SLM includes all Q + 2K − 3 estimated intercepts, model coefficients and scaling factors. The Appendix
provides more details on how to calculate the risks for the different types of models. Analogously, the estimated risk
that the outcome category has at least value k is denoted as V̂k =

∑K
j=kP̂j, with the estimated risk for individual i

denoted as v̂i,k.
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T A B L E 1 Number of parameters to be estimated for some values of K and Q

Number of parameters

K Q Proportional odds models Stereotype logistic model Nonproportional odds models

3 3 5 6 8

3 5 7 8 12

3 10 12 13 22

5 3 7 10 16

5 5 9 12 24

5 10 14 17 44

10 3 12 20 36

10 5 14 22 54

10 10 19 27 99

Abbreviations: K, number of outcome categories; Q, number of predictors.

3.1 Calibration of risk models for ordinal outcomes

3.1.1 Calibration intercepts and slopes per outcome category or dichotomy

A simple approach that capitalizes on the well-known calibration tools for binary outcomes, is to evaluate risk model
calibration for every outcome category separately by defining a binary outcome Yk that equals 1 if Y = k and 0 otherwise.26

The calibration intercept and calibration slope can be computed by the following binary logistic calibration model:

log
(

P (Yk = 1)
P (Yk = 0)

)
= ac + bc × logit

(
P̂k

)
. (9)

The calibration slope equals bc, the calibration intercept equals ac when bc is fixed to 1.
Alternatively, the outcome can be dichotomized as Y≥k (1 if Y ≥ k and 0 otherwise), and a calibration model for the

dichotomized outcome can be defined as:

log
(

P (Y≥k = 1)
P (Y≥k = 0)

)
= ad + bd × logit

(
V̂k

)
. (10)

Calibration intercepts and slopes can be obtained as for Yk.
Due to the ordinal nature of the outcome, Y≥k may appear more sensible than Yk, although this may depend on the

actual clinical decisions that the model is intended to support.

3.1.2 Model-specific calibration intercepts and calibration slopes

When making a prediction model for a binary outcome using standard maximum likelihood logistic regression, the cal-
ibration intercept and calibration slope are by definition 0 and 1 when evaluated on the development dataset (ie, the
exact same dataset that was used to develop the prediction model).26 A model with intercept of 0 and slope of 1 has
been defined as “weak calibration”.26 Thus, maximum likelihood binary logistic regression for a binary outcome is by
definition weakly calibrated on the development dataset. When making a prediction model for an ordinal outcome, and
assessing calibration per outcome category (Yk) or per outcome dichotomy (Y≥k) (Equations (9)-(10)), calibration inter-
cepts and slopes are no longer 0 and 1 on the development dataset. Procedures with intercept 0 and slope 1 on the
development dataset are possible, but depend on the regression model used to develop the prediction model for the
ordinal outcome. Such procedures are therefore not generic, and we describe them for each ordinal regression model
separately.
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For MLR, the model-specific calibration model is of the following form18:

log
(

P(Y = k)
P(Y = 1)

)
= aMLR,k +

K∑
j=2

bMLR,k,jL̂MLR,j, (11)

for k = 2, … ,K and L̂MLR,j are the linear predictors from the fitted MLR prediction model (Equation (1)). The calibration
intercepts equal aMLR,k, when fixing the corresponding calibration slope bMLR,k,j=k to 1 and the remaining slopes bMLR,k,j≠k
to 0. The calibration slopes equal bMLR,k,j=k, when fixing the remaining slopes bMLR,k,j≠k to 0. When this model is used
to evaluate calibration of the MLR model on the development dataset, weak calibration holds: the calibration slopes are
bMLR,k,j=k equal 1 and the calibration intercepts aMLR,k equal 0. See Van Hoorde and colleagues for further elaboration in
the context of prediction models for nominal outcomes.18

For CL-PO, the K − 1 linear predictors are identical except for the intercepts (Equation (2)). Hence for each linear
predictor L̂CLPO,j, j = 2, … ,K, separate CL-PO calibration models are fit as follows:

log
(

P(Y ≥ k)
P(Y < k)

)
= aCLPO,k + bCLPO,jL̂CLPO,j,with k = 2, … ,K. (12)

The calibration slopes equal bCLPO,j, and the calibration intercepts equal aCLPO,k=j when bCLPO,j is fixed to 1. Similarly,
for fitted AC-PO and CR-PO prediction models (Equations (4) and (6)), K − 1 separate AC-PO or CR-PO calibration models
are fit for each linear predictor L̂⋅,j, j = 1, … ,K − 1:

AC − PO ∶ log
(

P(Y = k + 1)
P(Y = k)

)
= aACPO,k + bACPO,jL̂ACPO,j,with k = 1, … ,K − 1, (13)

CR − PO ∶ log
(

P(Y > k)
P(Y ≥ k)

)
= aCRPO,k + bCRPO,jL̂CRPO,j,with k = 1, … ,K − 1. (14)

Calibration intercepts and slopes are calculated as for the CL-PO model (Equation (12)). For fitted prediction models
based on AC-NP, CR-NP, and SLM (Equations (5), (7), and (8)), the setup is analogous to that for prediction models based
on MLR. Calibration models are as follows:

AC − NP ∶ log
(

P(Y = k + 1)
P(Y = k)

)
= aACNP,k +

K−1∑
j=1

bACNP,k,jL̂ACNP,j,with k = 1, … ,K − 1, (15)

CR − NP ∶ log
(

P(Y > k)
P(Y ≥ k)

)
= aCRNP,k +

K−1∑
j=1

bCRNP,k,jL̂CRNP,j,with k = 1, … ,K − 1, (16)

SLM ∶ log
(

P(Y = k)
P(Y = 1)

)
= aSLM,k +

K∑
j=2

bSLM,k,jL̂SLM,j,with k = 2, … ,K. (17)

Calibration intercepts and slopes are calculated as for the MLR calibration model (Equation (11)). For every
model, weak calibration holds on the development dataset: calibration intercepts are 0 and calibration slopes
are 1.

3.1.3 Flexible multinomial calibration plots

To generate flexible calibration curves for risk models with multicategory outcomes based on any model, Van Hoorde and
colleagues suggested a flexible recalibration model that is extended from the MLR recalibration model.18 The model is as
follows:
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log
(

P(Y = k)
P(Y = 1)

)
= aflex,k +

K∑
j=2

sk,j

(
Ẑj

)
, (18)

where k = 2, … ,K, Ẑj = log
(

P̂j∕P̂1

)
obtained from the fitted model, and sj =

[
s1,j

(
Ẑj

)
… sK−1,j

(
Ẑj

)]T
a vector

spline smoother.27,28 The probabilities resulting from this flexible recalibration model are labeled the observed propor-
tions Ôk = P (Y = k| P̂1, … , P̂K , âflex, ŝ), with k = 1, … ,K, and where âflex are the estimated values for aflex,k and ŝ are
the fitted spline smoothers sj. For individual i, the observed proportions are denoted as ôi,k. See Section 6 and Data S1 for
information about alternative flexible recalibration models.

For each outcome category k, a calibration plot can be constructed that relates the estimated model-based risks P̂k
(horizonal axis) to the observed proportion Ôk (vertical axis). Contrary to binary outcomes, there is no one-to-one rela-
tionship between P̂k and Ôk for ordered or unordered multicategory outcomes.18 Either the result can be plotted as a
calibration scatter plot, or the scatter plot can be smoothed to present the results as calibration plots. Using Ôk and P̂k, it
is also possible to make calibration plots per outcome dichotomy, should that be of interest.

Flexible calibration curves for an outcome category may be obtained more simply by replacing bc in Equation (9)
with a splines or loess fit, as described elsewhere for binary outcomes.26 Because this approach ignores the multicategory
nature of the outcome, it cannot be used to generate calibration scatter plots but may approximate smoothed calibration
scatter plots based on Equation (18).

3.1.4 Estimated calibration index

Single-number summaries of calibration plots exist for binary outcomes, such as Harrell’s E statistics.11 The esti-
mated calibration index (ECI) was introduced as a single-number summary of calibration for nominal outcomes,
but can also be used for ordinal or binary outcomes.29 The ECI is the average squared difference between p̂i,k and
ôi,k, where the latter are based on a flexible recalibration model (Equation (18)). Originally, ECI was defined as
follows:

ECI =
∑N

i=1
∑K

k=1
(

p̂i,k − ôi,k
)2

NK
∗ 100K

2
. (19)

The second part of the formula ensures that ECI is scaled between 0 and 100. Here, 0 indicates that p̂i,k = ôi,k for all
i and k and 100 the theoretical worst-case scenario where for each case the estimated risk of one outcome category is 1
and the observed proportion of another outcome category is 1. This is an extreme scaling; in the current work we use a
different one, where the maximal value of ECI refers to a model that has no predictive ability. In that case, all ôi,k equal
the event rate of outcome category k (Y k). If we set the maximal value to 1 instead of 100, this rescaled ECI is defined as
follows:

∑N
i=1

∑K
k=1

(
p̂i,k − ôi,k

)2

∑N
i=1

∑K
k=1

(
p̂i,k − Y k

)2 . (20)

3.2 Discrimination

To evaluate model discrimination, we used the ordinal C statistic (ORC).24 Despite being designed for ordinal outcomes,
the ORC equals the average C statistic for all pairs of outcome categories, and is interpreted as the probability to sepa-
rate two cases from two randomly chosen outcome categories. As with the binary C statistic, ORC = 0.5 implies no and
ORC = 1 perfect discriminative performance. To calculate pairwise C statistics, we have to express the prediction of the
outcome through a single number. For proportional odds models, this can be based on 𝛃̂

T
. X. For any model, we can also

use the expected value of the outcome prediction,
∑K

k=1kP̂k. For all pairs of outcome categories, a pairwise C statistic is
calculated as the standard binary C statistic for cases belonging to one of the two outcome categories using the single
number prediction.
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4 MONTE CARLO SIMULATION STUDY

4.1 Methods

We use the aims-data-estimands-methods-performance (ADEMP) structure to provide a structured overview of the
simulation study.30

Aims: The aims are to (1) study the impact of the choice of model on estimated risks and model calibration, (2) study
the impact of the model choice on model overfitting, and (3) evaluate different approaches to calculate calibration slopes
for regression models predicting an ordinal outcome.

Data generating mechanism: We simulate data assuming a true model that has either MLR or CL-PO form. Under
CL-PO proportional odds holds for cumulative logits only. For data under MLR form, we specified four main scenarios
involving a model with Q = 4 continuous predictors Xq and an outcome Y with K = 3 categories. For simplicity, every pre-
dictor is independently normally distributed conditional on the outcome category, that is, . Xq,k ∼ 

(
𝜇q,k, 1

)
. The four

scenarios vary by outcome prevalence (balanced or imbalanced) and whether the means of each predictor are equidistant
between outcome categories or not, in a full factorial approach (Tables 2 and S1). Equidistant means imply that propor-
tional odds hold for adjacent category logits, but not for cumulative logits. The true ORC for these scenarios is 0.74. For
data under CL-PO form, we specified three main scenarios with 4 continuous predictors, 3 outcome categories (Q = 4,
K = 3), and an ORC of 0.74 under the data generating model (Tables 2 and S2). The scenarios vary by outcome preva-
lence (balanced, imbalanced, highly imbalanced). We identified additional scenarios by varying factors nonfactorially
in an effort to maximize the effect on miscalibration and on differences between models. We investigated the effect of
having K = 4 (and Q = 3), highly nonequidistant means (only for data under MLR form), highly imbalanced outcome
distribution, and low discrimination (ORC = 0.66). Finally, we added scenarios with only binary predictors and scenarios
in which noise predictors are included.

Estimands/targets of analysis: The focus in this simulation is on large sample and out-of-sample calibration perfor-
mance, but we also assess discrimination and prediction error.

Methods: We focus on the MLR, CL-PO, AC-PO, and SLM models to limit the amount of results (Equations (1),
(2), (4), and (8)). To approach true model coefficients and performance, a large dataset with 200 000 observations was
simulated for each scenario. Models were fitted (developed) and performance evaluated (validated) on this single large
dataset. Next, to assess the impact of overfitting, we simulated 200 new datasets of size 100 and 500 for all main
scenarios, developed the models on each dataset, and evaluated performance on the large dataset with size 200 000. We
report the mean value for each performance measure. The chosen sample sizes are partly arbitrary, but see Data S1 for
further explanation.

Performance measures: We report the calibration intercepts and slopes by outcome category, by outcome dichotomy,
and by linear predictor (ie, algorithm-specific). Further, we report the root mean squared prediction error (rMSPE)
and ORC. For rMSPE we use the true risks pi,k in each scenario (which are known under the data generating
model):

1
NK

N∑
i=1

K∑
k=1

(
p̂i,k − pi,k

)2
. (21)

The ECI was only reported for the large sample evaluation, not for evaluating overfitting. The statistical analyses were
performed using the R statistical software, version 4.0.1. The package for fitting the logistic regression models was
VGAM, using functions vglm and rrvglm for SLM.31 The complete R code is available on GitHub (https://github.com/
benvancalster/OrdinalCalibration).

4.2 Results

4.2.1 MLR truth—main scenarios

In the large sample simulations, when true predictor means were equidistant (scenarios 1-2), risk estimates corresponded
almost perfectly with true risk for the MLR, AC-PO, and SLM models (Figures 1-2). When the true predictor means were

https://github.com/benvancalster/OrdinalCalibration
https://github.com/benvancalster/OrdinalCalibration
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T A B L E 2 Overview of simulation scenarios

Scenario Q K ORC Outcome distribution Means of Xp,k
a

True model has MLR form

Basic

1 4 continuous 3 0.74 Balanced Equidistant

2 4 continuous 3 0.74 Imbalanced Equidistant

3 4 continuous 3 0.74 Balanced Nonequidistant

4 4 continuous 3 0.74 Imbalanced Nonequidistant

Additional

5 4 continuous 3 0.74 Imbalanced Highly nonequidistant

6 3 continuous 4 0.74 Imbalanced Highly nonequidistant

7 3 continuous 4 0.66 Imbalanced Highly nonequidistant

8 3 continuous 4 0.66 Highly imbalanced Highly nonequidistant

9 4 binary 3 0.74 Imbalanced Nonequidistant

10 3 binary 4 0.74 Imbalanced Highly nonequidistant

11 8 continuous (4 true + 4 noise) 3 0.74 Imbalanced Nonequidistant

True model has CL-PO form

Basic

1 4 continuous 3 0.74 Balanced NA

2 4 continuous 3 0.74 Imbalanced NA

3 4 continuous 3 0.74 Highly imbalanced NA

Additional

4 3 continuous 4 0.74 Imbalanced NA

5 3 continuous 4 0.66 Imbalanced NA

6 3 continuous 4 0.66 Highly imbalanced NA

7 4 binary 3 0.74 Imbalanced NA

8 3 binary 4 0.74 Imbalanced NA

9 8 continuous (4 true+ 4 noise) 3 0.74 Balanced NA

Abbreviations: CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; ORC, ordinal C statistic.
aFor binary predictors, equidistance does not refer to means per outcome category, but to logit(prevalence) per outcome category.

nonequidistant (scenarios 3-4), only MLR obtained risk estimates that corresponded closely to the true risks (Figures 3-4).
Regarding calibration intercepts and slopes (Table 3), we observed that these were near perfect for MLR. For the SLM
model, the scaling factors also resulted in near perfect calibration intercepts and slopes even though estimated risks devi-
ated from the true risks for scenarios 3 and 4. For AC-PO, calibration slopes per outcome category and per outcome
dichotomy were off for scenarios 3-4. Scenarios 1-2 did not pose problems for AC-PO, because the equidistant means
imply that proportional odds hold in terms of adjacent categories. For CL-PO, calibration intercepts were fine but calibra-
tion slopes per outcome category or per outcome dichotomy were off for all scenarios. Interestingly, the model-specific
calibration intercepts and slopes were 0 and 1, respectively, for all models and scenarios. Hence, the miscalibration prob-
lems for CL-PO and AC-PO were not reflected in these measures. The reason is that these calculations are model-specific,
and thus that they quantify calibration under the assumption that proportional odds hold (for cumulative logits in case
of CL-PO, or for adjacent category logits in case of AC-PO). Flexible calibration curves are presented in Figures S1-S4.

The ECI and rMSPE results were lowest (ie, best) for the MLR model throughout, and substantially higher for CL-PO
and AC-PO under nonequidistant means, and slightly increased for CL-PO even under equidistant means (Table 3). For
SLM, ECI was low throughout, but rMSPE was increased under nonequidistant means. The discrimination differed only
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F I G U R E 1 Scatter plots of true risks vs estimated risks for simulation scenario 1 when the true model has the form of a multinomial
logistic regression. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category logit model with
proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model

slightly, with ORC providing slightly higher values for MLR in scenarios 3 and 4. For completeness, the large-sample
estimated model coefficients are given in Table S3.

The results of the small sample simulations were in line with expectations (Tables 4-5). When comparing the large
sample performance to the average validation performance of models developed on small samples (N = 100), the
MLR models had the strongest decrease in performance, CL-PO and AC-PO the least. MLR models, which have the
highest number of parameters, even had worse validation performance than the three other types of models. The effects
of overfitting were smaller when development datasets had a sample size of 500.
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F I G U R E 2 Scatter plots of true risks vs estimated risks for simulation scenario 2 when the true model has the form of a multinomial
logistic regression. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category logit model with
proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model

4.2.2 MLR truth—additional scenarios

In the additional scenarios, the above findings show a similar pattern (Table S4 and Figures S5-S18). MLR continued to
provide near perfect risk estimates, but risk estimates for other models were clearly distorted. For CL-PO and AC-PO,
it was not difficult to find scenarios where calibration slopes for intermediate outcome categories (Y = 2 if K = 3, or
Y ∈ {2, 3} if K = 4) are highly problematic. In scenario 8, the calibration slope for Y = 2 was even negative for CL-PO and
AC-PO. In scenarios 6-8, with Q = 3 and Y = 4, one can clearly see how SLM’s scaling factors helped to ascertain good
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F I G U R E 3 Scatter plots of true risks vs estimated risks for simulation scenario 3 when the true model has the form of a multinomial
logistic regression. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category logit model with
proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model

calibration intercepts, slopes, and plots, despite distorted individual risk estimates. Having binary predictors or a number
of noise predictors did not change the findings.

4.2.3 CL-PO truth—main and additional scenarios

We present results for the main scenarios in the main text (Figures 5-7), and for all other scenarios in Data S1
(Figures S19-S33). In the large sample situations, risk estimates corresponded almost perfectly with true risks for CL-PO
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F I G U R E 4 Scatter plots of true risks vs estimated risks for simulation scenario 4 when the true model has the form of a multinomial
logistic regression. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category logit model with
proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model

(Figures 5-7 and S19-S24). Other models had distorted risk estimates, but the distortion was generally modest. Calibration
intercepts and slopes were near perfect for CL-PO, but not for the other models (Tables 3 and S5). For MLR, calibration
slopes of around 1.3-1.4 were observed for category 2 in several simulation settings (scenarios 1, 4, 5, 8, 9), but the scat-
ter plots of estimated vs true risk as well as the calibration plots (Figures S25-S33) show that estimated risks were less
strongly biased than when fitting CL-PO models under MLR truth. ECI and rMSPE were best for CL-PO and worst for
AC-PO (Tables 3 and S6). ECI and rMSPE results for MLR, AC-PO and SLM were better than what was obtained when
CL-PO models were fitted under MLR truth. Results for small sample simulations were similar to those under MLR truth:
again, MLR had the strongest decrease in performance and CL-PO and AC-PO the least (Tables 4-5). Model coefficients
for all large sample models are given in Table S6.
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T A B L E 3 Apparent performance based on a large dataset of n = 200 000 for the main simulation scenarios

Calibration intercepts/Calibration slopes

Per outcome category Per outcome dichotomy Model-specific Single number metrics

Model Y = 1 Y = 2 Y = 3 Y > 1 Y > 2 LP1 LP2 ECI rMSPE ORC

MLR truth scenario 1: balanced outcome, equidistant means

MLR 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.741

CL-PO 0.00/1.02 −0.01/0.75 0.00/1.02 0.00/1.02 0.00/1.02 0.00/1.00 0.00/1.00 0.006 0.012 0.741

AC-PO 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.001 0.741

SLM 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.001 0.741

MLR truth scenario 2: imbalanced outcome, equidistant means

MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.740

CL-PO 0.01/0.96 −0.01/0.79 −0.01/1.14 −0.01/0.96 −0.01/1.14 0.00/1.00 0.00/1.00 0.010 0.016 0.740

AC-PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.002 0.740

SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.740

MLR truth scenario 3: balanced outcome, nonequidistant means

MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.741

CL-PO −0.03/1.21 −0.01/0.75 0.03/0.86 0.03/1.21 0.03/0.86 0.00/1.00 0.00/1.00 0.049 0.075 0.738

AC-PO 0.00/1.19 0.00/0.95 0.00/0.84 0.00/1.19 0.00/0.84 0.00/1.00 0.00/1.00 0.046 0.074 0.738

SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.063 0.738

MLR truth scenario 4: imbalanced outcome, nonequidistant means

MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.737

CL-PO −0.02/1.11 0.01/1.13 0.03/0.85 0.02/1.11 0.03/0.85 0.00/1.00 0.00/1.00 0.032 0.058 0.735

AC-PO 0.00/1.17 0.00/1.47 0.00/0.76 0.00/1.17 0.00/0.76 0.00/1.00 0.00/1.00 0.059 0.064 0.736

SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.047 0.733

CL-PO truth scenario 1: balanced outcome

MLR 0.00/0.99 0.00/1.38 0.00/0.99 0.00/0.99 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740

CL-PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.003 0.740

AC-PO 0.00/1.00 0.00/1.38 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740

SLM 0.00/0.99 0.00/1.38 0.00/0.99 0.00/0.99 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740

CL-PO truth scenario 2: imbalanced outcome

MLR 0.00/1.00 0.00/1.09 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.005 0.013 0.740

CL-PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.003 0.740

AC-PO 0.00/1.07 0.00/1.34 0.00/0.88 0.00/1.07 0.00/0.88 0.00/1.00 0.00/1.00 0.012 0.018 0.740

SLM 0.00/1.00 0.00/1.09 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.013 0.740

CL-PO truth scenario 3: highly imbalanced outcome

MLR 0.00/1.00 0.00/1.02 0.00/0.98 0.00/1.00 0.00/0.98 0.00/1.00 0.00/1.00 0.004 0.009 0.742

CL-PO 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.742

AC-PO 0.00/1.08 0.00/1.22 0.00/0.77 0.00/1.08 0.00/0.77 0.00/1.00 0.00/1.00 0.015 0.017 0.742

SLM 0.00/1.00 0.00/1.02 0.00/0.98 0.00/1.00 0.00/0.98 0.00/1.00 0.00/1.00 0.004 0.009 0.742

Abbreviations: AC-PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL-PO, cumulative logit model with proportional
odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared
prediction error; SLM, stereotype logit model.
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T A B L E 4 Validation performance based on small development datasets of n = 100 for the main simulation scenarios (reported as the
average performance on a large validation dataset for 200 simulated development datasets)

Calibration intercepts/Calibration slopes

Per outcome category Per outcome dichotomy Model-specific Single number metrics

Model Y = 1 Y = 2 Y = 3 Y > 1 Y > 2 LP1 LP2 rMSPE ORC

MLR truth scenario 1: balanced outcome, equidistant means

MLR 0.00/0.78 0.03/0.31 −0.02/0.80 0.00/0.78 −0.02/0.80 0.02/0.73 −0.03/0.76 0.104 0.727

CL-PO 0.00/0.86 0.03/0.55 −0.02/0.86 0.00/0.86 −0.02/0.86 0.02/0.84 0.00/0.84 0.080 0.728

AC-PO 0.00/0.84 0.03/0.73 −0.02/0.85 0.00/0.84 −0.02/0.85 0.02/0.83 −0.04/0.83 0.077 0.728

SLM 0.00/0.85 0.03/0.56 −0.02/0.85 0.00/0.85 −0.02/0.85 0.02/1.04 −0.02/0.82 0.085 0.728

MLR truth scenario 2: imbalanced outcome, equidistant means

MLR −0.01/0.80 0.03/0.45 0.01/0.73 0.01/0.80 0.01/0.73 0.02/0.82 −0.01/0.58 0.104 0.724

CL-PO 0.00/0.80 0.02/0.64 0.00/0.96 0.00/0.80 0.00/0.96 0.00/0.84 −0.04/0.84 0.079 0.726

AC-PO −0.01/0.84 0.03/0.82 0.01/0.83 0.01/0.84 0.01/0.83 0.02/0.83 −0.01/0.83 0.077 0.725

SLM −0.01/0.84 0.02/0.70 0.01/0.88 0.01/0.84 0.01/0.88 0.02/0.92 0.02/0.82 0.085 0.725

MLR truth scenario 3: balanced outcome, nonequidistant means

MLR 0.03/0.85 −0.03/0.56 0.02/0.79 −0.03/0.85 0.02/0.79 −0.04/0.83 0.03/0.67 0.105 0.725

CL-PO −0.01/1.07 −0.03/0.60 0.06/0.76 0.01/1.07 0.06/0.76 0.04/0.89 −0.04/0.89 0.110 0.725

AC-PO 0.02/1.05 −0.02/0.76 0.03/0.75 −0.02/1.05 0.03/0.75 −0.03/0.87 0.03/0.87 0.108 0.725

SLM 0.03/0.86 −0.03/0.65 0.02/0.90 −0.03/0.86 0.02/0.90 −0.03/0.89 0.00/0.86 0.109 0.722

MLR truth scenario 4: imbalanced outcome, nonequidistant means

MLR 0.02/0.83 0.01/0.69 0.00/0.70 −0.02/0.83 0.00/0.70 0.00/0.84 0.00/0.54 0.101 0.724

CL-PO −0.02/0.95 0.03/0.94 0.02/0.73 0.02/0.95 0.02/0.73 0.02/0.86 −0.02/0.86 0.095 0.724

AC-PO 0.00/0.99 0.02/1.20 −0.01/0.65 0.00/0.99 −0.01/0.65 0.01/0.84 −0.02/0.84 0.097 0.724

SLM 0.01/0.85 0.02/0.83 −0.01/0.86 −0.01/0.85 −0.01/0.86 0.01/0.89 −0.01/0.90 0.096 0.721

CL-PO truth scenario 1: balanced outcome

MLR 0.01/0.79 0.00/0.38 0.02/0.80 −0.01/0.79 0.02/0.80 0.00/0.75 0.01/0.73 0.108 0.726

CL-PO 0.00/0.87 0.01/0.75 0.01/0.86 0.00/0.87 0.01/0.86 0.03/0.86 −0.03/0.86 0.080 0.728

AC-PO 0.01/0.85 0.01/1.01 0.01/0.85 −0.01/0.85 0.01/0.85 0.00/0.84 0.00/0.84 0.079 0.728

SLM 0.01/0.85 0.01/0.75 0.01/0.88 −0.01/0.85 0.01/0.88 0.00/0.68 0.00/0.83 0.089 0.727

CL-PO truth scenario 2: imbalanced outcome

MLR 0.02/0.84 −0.01/0.63 0.03/0.73 −0.02/0.84 0.03/0.73 −0.02/0.86 0.03/0.54 0.103 0.724

CL-PO 0.02/0.87 0.00/0.85 0.00/0.87 −0.02/0.87 0.00/0.87 0.03/0.87 −0.03/0.87 0.080 0.726

AC-PO 0.02/0.92 0.00/1.12 0.01/0.76 −0.02/0.92 0.01/0.76 −0.01/0.85 0.01/0.85 0.081 0.725

SLM 0.02/0.87 −0.01/0.92 0.03/0.88 −0.02/0.87 0.03/0.88 −0.02/0.91 0.01/0.84 0.087 0.725

CL-PO truth scenario 3: highly imbalanced outcome

MLR −0.02/0.77 0.07/0.69 −0.04/0.46 0.02/0.77 −0.04/0.46 0.05/0.80 0.01/0.23 0.100 0.723

CL-PO −0.03/0.82 0.06/0.83 −0.04/0.83 0.03/0.82 −0.04/0.83 −0.02/0.82 −0.01/0.82 0.075 0.726

AC-PO −0.03/0.87 0.06/1.00 −0.05/0.64 0.03/0.87 −0.05/0.64 0.05/0.81 −0.08/0.81 0.077 0.726

SLM −0.03/0.81 0.06/0.83 −0.01/0.72 0.03/0.81 −0.01/0.72 0.05/0.82 0.01/0.75 0.085 0.725

Abbreviations: AC-PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL-PO, cumulative logit model with
proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean
squared prediction error; SLM, stereotype logit model.
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T A B L E 5 Validation performance based on small development datasets of n = 500 for the main simulation scenarios (reported as the
average performance on a large validation dataset for 200 simulated development datasets)

Calibration intercepts/Calibration slopes

Per outcome category Per outcome dichotomy Model-specific Single number metrics

Model Y = 1 Y = 2 Y = 3 Y > 1 Y > 2 LP1 LP2 rMSPE ORC

MLR truth scenario 1: balanced outcome, equidistant means

MLR 0.01/0.97 −0.01/0.67 0.00/0.97 −0.01/0.97 0.00/0.97 −0.01/0.95 0.01/0.97 0.047 0.738

CL-PO 0.01/1.00 −0.01/0.72 0.01/1.00 −0.01/1.00 0.01/1.00 0.01/0.98 −0.01/0.98 0.038 0.738

AC-PO 0.01/0.98 −0.01/0.95 0.00/0.98 −0.01/0.98 0.00/0.98 −0.01/0.98 0.01/0.98 0.034 0.738

SLM 0.01/0.98 −0.01/0.87 0.00/0.99 −0.01/0.98 0.00/0.99 −0.01/0.99 0.00/0.98 0.037 0.738

MLR truth scenario 2: imbalanced outcome, equidistant means

MLR 0.00/0.95 0.00/0.83 0.00/0.95 0.00/0.95 0.00/0.95 0.00/0.95 0.00/0.93 0.044 0.736

CL-PO 0.02/0.92 −0.01/0.75 −0.01/1.10 −0.02/0.92 −0.01/1.10 0.01/0.96 −0.01/0.96 0.038 0.737

AC-PO 0.00/0.96 0.00/0.97 0.00/0.96 0.00/0.96 0.00/0.96 0.00/0.96 0.00/0.96 0.033 0.737

SLM 0.00/0.96 0.00/0.95 0.00/0.97 0.00/0.96 0.00/0.97 0.00/0.96 0.00/0.96 0.036 0.737

MLR truth scenario 3: balanced outcome, nonequidistant means

MLR 0.00/0.97 −0.01/0.88 0.01/0.97 0.00/0.97 0.01/0.97 −0.01/0.97 0.01/0.94 0.045 0.738

CL-PO −0.03/1.19 −0.01/0.72 0.05/0.84 0.03/1.19 0.05/0.84 0.01/0.98 −0.01/0.98 0.082 0.736

AC-PO 0.00/1.17 −0.01/0.92 0.01/0.83 0.00/1.17 0.01/0.83 −0.01/0.98 0.01/0.98 0.081 0.736

SLM 0.00/0.98 −0.01/0.92 0.01/1.00 0.00/0.98 0.01/1.00 −0.01/0.98 0.00/0.98 0.073 0.735

MLR truth scenario 4: imbalanced outcome, nonequidistant means

MLR 0.01/0.97 −0.01/0.94 0.00/0.94 −0.01/0.97 0.00/0.94 −0.01/0.98 0.00/0.87 0.043 0.735

CL-PO −0.01/1.08 0.00/1.10 0.02/0.83 0.01/1.08 0.02/0.83 0.01/0.98 0.00/0.98 0.067 0.733

AC-PO 0.01/1.14 0.00/1.42 0.00/0.75 −0.01/1.14 0.00/0.75 −0.01/0.97 0.00/0.97 0.072 0.733

SLM 0.01/0.98 0.00/0.99 0.00/0.99 −0.01/0.98 0.00/0.99 −0.01/0.98 −0.01/0.97 0.060 0.730

CL-PO truth scenario 1: balanced outcome

MLR 0.02/0.94 0.00/0.90 −0.02/0.96 −0.02/0.94 −0.02/0.96 −0.01/0.94 −0.02/0.96 0.048 0.738

CL-PO 0.02/0.97 0.00/0.96 −0.02/0.96 −0.02/0.97 −0.02/0.96 0.02/0.97 0.02/0.97 0.034 0.738

AC-PO 0.02/0.96 0.00/1.30 −0.02/0.96 −0.02/0.96 −0.02/0.96 −0.01/0.96 −0.02/0.96 0.036 0.738

SLM 0.02/0.95 0.01/1.19 −0.02/0.97 −0.02/0.95 −0.02/0.97 −0.01/0.97 −0.03/0.96 0.039 0.738

CL-PO truth scenario 2: imbalanced outcome

MLR 0.00/0.97 −0.01/0.97 0.03/0.91 0.00/0.97 0.03/0.91 0.00/0.98 0.03/0.84 0.046 0.737

CL-PO 0.00/0.97 −0.01/0.97 0.03/0.96 0.00/0.97 0.03/0.96 0.00/0.97 −0.03/0.97 0.034 0.738

AC-PO 0.00/1.03 −0.01/1.27 0.03/0.85 0.00/1.03 0.03/0.85 0.00/0.96 0.03/0.96 0.038 0.737

SLM 0.00/0.97 −0.01/1.07 0.03/0.94 0.00/0.97 0.03/0.94 0.00/0.98 0.03/0.95 0.038 0.738

CL-PO truth scenario 3: highly imbalanced outcome

MLR −0.02/0.96 0.02/0.96 0.01/0.87 0.02/0.96 0.01/0.87 0.02/0.98 0.00/0.64 0.041 0.739

CL-PO −0.02/0.96 0.02/0.97 0.01/0.97 0.02/0.96 0.01/0.97 −0.01/0.96 −0.02/0.96 0.033 0.739

AC-PO −0.02/1.04 0.02/1.17 0.01/0.74 0.02/1.04 0.01/0.74 0.02/0.96 −0.01/0.96 0.037 0.739

SLM −0.02/0.96 0.02/0.99 0.01/0.97 0.02/0.96 0.01/0.97 0.02/0.97 0.02/0.97 0.035 0.739

Abbreviations: AC-PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL-PO, cumulative logit model with proportional
odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared
prediction error; SLM, stereotype logit model.
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F I G U R E 5 Scatter plots of true risks vs estimated risks for simulation scenario 1 when the true model has the form of a cumulative
logit model with proportional odds. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category
logit model with proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM,
stereotype logit model

5 CASE STUDY: PREDICTION OF CORONARY ARTERY DISEASE

5.1 Methods

The coronary artery disease risk determination in innsbruck by diagnostic angiography (CARDIIGAN) cohort includes
patients with suspected coronary artery disease that were recruited between 2004 and 2008 at the University Clinic of
Cardiology in Innsbruck (Austria).32 A prediction model based on the CL-PO model was developed with the CARDI-
IGAN data, concerning the diagnosis of nonobstructive coronary artery and multivessel disease in five ordinal disease
categories: no coronary artery disease, nonobstructive stenosis, one-vessel disease, two-vessel disease, and three-vessel
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F I G U R E 6 Scatter plots of true risks vs estimated risks for simulation scenario 2 when the true model has the form of a cumulative
logit model with proportional odds. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category
logit model with proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM,
stereotype logit model

disease.1 This outcome has clinical relevance because different categories require different treatment decisions.32 The
patient group involved 4888 individuals, presenting with symptoms at the hospital, who had not had a known previous
coronary artery or other heart disease and without coronary revascularization in the past. For earlier studies, the miss-
ing values had already been multiply imputed33; in the current illustration we used one of the imputed data sets for
convenience.

We applied the following algorithms: MLR (identical to AC-NP), CL-PO, AC-PO, CR-PO, CR-NP, and SLM. The pro-
portional odds assumption in the CL-PO framework was tested per variable using a likelihood ratio test. We used the
enhanced bootstrap with 200 bootstrap samples to internally validate the models.11 We used eleven predictors covering
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F I G U R E 7 Scatter plots of true risks vs estimated risks for simulation scenario 3 when the true model has the form of a cumulative
logit model with proportional odds. The plots are based on a random subset of 1000 cases from all 200 000 cases. AC-PO, adjacent category
logit model with proportional odds; CL-PO, cumulative logit model with proportional odds; MLR, multinomial logistic regression; SLM,
stereotype logit model

demographic information, symptoms, comorbidities and biomarkers (Table S7). This means that 15 coefficients (includ-
ing intercepts) have to be estimated for the proportional odds models, 18 for SLM, and 48 for nonproportional odds models.
If we focus on the smallest outcome category (three-vessel disease, n = 429), this implies an EPP (events per parame-
ter excluding intercepts) of 39 for proportional odds models, 31 for SLM, and 10 for nonproportional odds models. See
Data S1 for example R code to fit models and evaluate performance. The complete R code is available on GitHub (https://
github.com/benvancalster/OrdinalCalibration).

https://github.com/benvancalster/OrdinalCalibration
https://github.com/benvancalster/OrdinalCalibration
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5.2 Results

The likelihood ratio tests suggested violations of the proportional odds assumption for the CL-PO model, mainly for age
and hypertension (Table S8). All models had an optimism-corrected ORC of 0.693-0.694 (Table 6, see Table S9 for model
coefficients). The risk estimates varied strongly between methods, and this was most obvious for the outcome category
“nonobstructive stenosis” (Figures 8 and S34-S37). For proportional odds models, risk estimates for intermediate outcome
categories were capped at some point (see also Table S10). Apparent calibration curves (per outcome category as well as
per outcome dichotomy) deviated most from the ideal diagonal line for AC-PO and CR-PO, to a lesser extent for CL-PO,
and least for MLR, CR-NP, and SLM (Figures 9-10 show calibration scatter plots per outcome category and outcome
dichotomy, Figures S38 to S43 also provide flexible calibration plots). The bootstrap-corrected slopes per outcome cate-
gory or per outcome dichotomy deviated from the target value of 1 most strongly for CR-PO and AC-PO, and least strongly
for MLR, CR-NP, and SLM (Table 6). The model-specific calibration slopes largely reflect overfitting, because for pro-
portional odds models this assessment assumes the model’s proportional odds assumption holds. Hence, model-specific
calibration slopes were closer to 1 for the proportional odds models and SLM, which required fewer parameters than MLR
and CR-NP.

6 DISCUSSION

In this study we focused on calibration of risk prediction models for discrete ordinal outcomes, and on the impact of
assuming proportional odds on risk estimation and calibration performance. The results show that assuming proportional
odds leads to (sometimes strongly) distorted risk estimates, calibration slopes, and calibration plots when the true model
had MLR form and hence the proportional odds assumption was violated. Naturally, MLR models yielded appropriate
risk estimates in these settings. In contrast, when the true model had the CL-PO form, the MLR model had distorted
risk estimates and calibration. The deviations for MLR under CL-PO truth were less dramatic than the deviations of the
CL-PO model when the true model had the MLR form.

Perhaps surprisingly, when the true model had the CL-PO form, other proportional odds models such as AC-PO
also had deviating risk estimates. This highlights the importance of the specific form of proportional odds that is
assumed, which varies between the cumulative, adjacent category and continuation ratio logit models. The SLM model,
which can be seen as a compromise between MLR and AC-PO models, also showed distorted risk estimates when the
true model had the MLR form. Due to its scaling factors, SLM did yield appropriate calibration intercepts and cal-
ibration slopes. When the true model had the CL-PO form, however, SLM did not improve upon MLR. Our small
sample size simulations showed that in smaller samples, the models that do not assume proportional odds suffer from
more overfitting, due to the higher number of parameters that need to be estimated when proportional odds are not
assumed.

For binary outcomes modeled with maximum likelihood logistic regression, the calibration intercept and slope are by
definition 0 and 1 on the data on which the model is developed. This is a well-known property of calibration intercepts
and slopes, which was previously extended to models for nominal outcomes based on multinomial logistic regression.18

In this article we further generalized in this work to models for ordinal outcomes under the label “model-specific”
calibration assessment. For proportional odds models, this approach assesses calibration under the assumption that
proportional odds hold. Violations of the assumption are therefore not considered, which makes this approach inappro-
priate for quantifying calibration of ordinal prediction models. For other models, this approach performs satisfactorily,
but a general drawback is that it is less intuitive than simple calibration assessment for each outcome category or
dichotomy.

Based on our findings, we generally recommend nonproportional odds models such as MLR for developing risk pre-
diction models for an ordinal outcome. We are inclined to believe that proportional odds assumptions will often not hold
in the practice of medical risk prediction. But even when it does, we argue that the loss in efficiency and increased risk
of overfitting associated with using MLR is less problematic than the opposite problem, that is, the risk of severe miscali-
bration when using proportional odds models (even under moderate deviation from the proportional odds assumption).
However, MLR has more parameters and hence needs a larger sample size in order to obtain a reliable risk prediction
model.34 Sample size determination methods for prediction models based on MLR are currently underway. This will help
to plan model development studies for ordinal outcomes by calculating the minimum sample size needed to use MLR. If
this minimum sample size is too high given the resources for a given project, it can be discussed whether a proportional
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T A B L E 6 Results for the case study on coronary artery disease (CAD)

Performance statistic MLR CL-PO AC-PO CR-PO CR-NP SLM

Apparent performance

Calibration intercepts and slopes per outcome category

1 (No CAD) 0.00/1.00 −0.02/1.13 0.00/1.38 0.00/1.48 0.00/1.00 0.00/1.00

2 (Nonobstructive stenosis) 0.00/1.06 0.00/0.82 0.00/0.63 −0.04/0.65 0.00/1.09 0.00/1.16

3 (One-vessel disease) 0.00/0.97 0.02/0.82 0.00/1.11 0.03/1.08 0.00/0.93 0.00/0.96

4 (Two-vessel disease) 0.00/1.02 0.01/1.06 0.00/1.04 0.06/1.20 0.00/1.04 0.00/1.03

5 (Three-vessel disease) 0.00/0.98 0.00/0.89 0.00/0.70 −0.02/0.61 0.00/0.98 0.00/0.98

Calibration intercepts and slopes per outcome dichotomy

2-5 vs 1 0.00/1.00 0.02/1.13 0.00/1.38 0.00/1.48 0.00/1.00 0.00/1.00

3-5 vs 1-2 0.00/0.99 0.02/0.91 0.00/0.94 0.04/0.99 0.00/1.00 0.00/1.00

4-5 vs 1-3 0.00/1.00 0.00/0.95 0.00/0.83 0.03/0.83 0.00/1.01 0.00/1.00

5 vs 1-4 0.00/0.98 0.00/0.89 0.00/0.70 −0.02/0.61 0.00/0.98 0.00/0.98

Calibration intercepts and slopes, model-specific

Linear predictor 1 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00

Linear predictor 2 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00

Linear predictor 3 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00

Linear predictor 4 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00

ECI 0.005 0.030 0.141 0.194 0.005 0.004

ORC 0.696 0.695 0.695 0.695 0.695 0.694

Bootstrap-corrected performance

Calibration intercepts and slopes per outcome category

1 (No CAD) 0.00/0.99 −0.02/1.12 0.00/1.37 0.00/1.47 0.00/0.98 0.00/0.99

2 (Nonobstructive stenosis) 0.00/0.99 −0.01/0.81 0.00/0.62 −0.04/0.64 0.00/1.02 0.00/1.13

3 (One-vessel disease) 0.00/0.89 0.02/0.80 0.00/1.09 0.03/1.06 0.00/0.86 0.00/0.95

4 (Two-vessel disease) 0.00/0.97 0.01/1.05 0.00/1.02 0.06/1.17 0.00/0.97 0.00/1.03

5 (Three-vessel disease) 0.00/0.94 0.01/0.87 0.01/0.68 0.00/0.60 0.01/0.93 0.00/0.98

Calibration intercepts and slopes per outcome dichotomy

2-5 vs 1 0.00/0.99 0.02/1.12 0.00/1.37 0.00/1.47 0.00/0.98 0.00/0.99

3-5 vs 1-2 0.00/0.98 0.02/0.90 0.00/0.93 0.04/0.98 0.00/0.98 0.00/0.99

4-5 vs 1-3 0.00/0.97 0.01/0.93 0.01/0.81 0.03/0.81 0.01/0.98 0.00/1.00

5 vs 1-4 0.00/0.94 0.01/0.87 0.01/0.68 0.00/0.60 0.01/0.93 0.00/0.98

Calibration intercepts and slopes, model-specific

Linear predictor 1 0.00/0.95 0.00/0.99 0.00/0.98 0.00/0.98 0.00/0.98 −0.01/0.99

Linear predictor 2 0.00/0.96 0.00/0.99 0.00/0.98 0.00/0.98 0.00/0.96 0.00/0.98

Linear predictor 3 0.01/0.96 −0.01/0.99 0.00/0.98 0.01/0.98 0.01/0.89 0.00/0.99

Linear predictor 4 0.00/0.96 −0.01/0.99 0.01/0.98 0.01/0.98 0.01/0.65 0.00/0.99

ORC 0.694 0.693 0.693 0.693 0.693 0.693

Abbreviations: AC-PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL-PO, cumulative logit model with
proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean
squared prediction error; SLM, stereotype logit model.
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F I G U R E 8 Scatter plot of estimated probabilities for having nonobstructive stenosis in the case study (n = 4888). AC-PO, adjacent
category logit model with proportional odds; CL-PO, cumulative logit model with proportional odds; CR-NP, continuation ratio logit model
without proportional odds; CR-PO, continuation ratio logit model with proportional odds; MLR, multinomial logistic regression; SLM,
stereotype logit model

odds model would be defendable or whether no model should be developed until more resources become available. A
compromise to assuming strict proportional odds may be the SLM model, which uses less parameters than MLR. This
model can help to improve calibration slopes and flexible calibration curves, although risks on the individual level may
still be distorted.

To assess calibration, we recommend to calculate the calibration intercepts and slopes per outcome category or per
outcome dichotomy. Whether to focus on outcome categories or dichotomies depends on the specific (clinical) context,
that is, on how risk estimates are used in clinical practice to decide upon patient management. If each outcome category
is associated with a different management option, calibration per outcome category is preferred. When the management
decision is binary, and depends on whether P(Y ≥ k) exceeds a given threshold, calibration per dichotomy may be pre-
ferred. For internal validation, these estimates can be based on bootstrapping.11 When externally validating a model,
flexible calibration plots (scatter plots as well as flexible calibration curves) are recommended because they provide a more
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F I G U R E 9 Calibration scatter plots per outcome category for the models in the case study (green for no coronary artery disease,
orange for nonobstructive stenosis, red for one-vessel disease, brown for two-vessel disease, black for three-vessel disease). These plots are
generated for the model development data (ie, apparent validation, n = 4888). AC-PO, adjacent category logit model with proportional odds;
CL-PO, cumulative logit model with proportional odds; CR-NP, continuation ratio logit model without proportional odds; CR-PO,
continuation ratio logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model
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F I G U R E 10 Calibration scatter plots per outcome dichotomy for the models in the case study (orange for nonobstructive stenosis or
worse, red for one-vessel disease or worse, brown for two-vessel disease or worse, black for three-vessel disease). These plots are generated for
the model development data (ie, apparent validation, n = 4888). AC-PO, adjacent category logit model with proportional odds; CL-PO,
cumulative logit model with proportional odds; CR-NP, continuation ratio logit model without proportional odds; CR-PO, continuation ratio
logit model with proportional odds; MLR, multinomial logistic regression; SLM, stereotype logit model
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general overview of calibration29: whereas calibration intercepts and slopes assess weak calibration, calibration curves
assess moderate calibration.26 Again, calibration plots can be constructed per outcome category or dichotomy. We based
the flexible calibration plots on a flexible recalibration model with an MLR-like setup (Equation (18)). In Data S1, we
compared this approach to other approaches to assess whether non-MLR prediction models are disadvantaged by this
setup. Differences between the approaches were small. One may prefer to replace the Ẑj in Equation (18) with logit

(
V̂j

)
to acknowledge the ordinal nature of the outcome (ie, the third approach in Data S1). Finally, when different models are
compared at external validation, the ECI is an attractive single summary measure. Of course, summarizing performance
into a single number always has limitations.

We did not address partial proportional odds models, in which the proportional odds assumption can be relaxed for
some but not all predictors.4,35 This usually requires the use of a test for proportional odds per variable, for example,
likelihood ratio tests or the Brant test.36 However, by evaluating the proportional odds assumption one considers the
same number of parameters as in nonproportional odds models. Future studies could look into the power of these tests
to detect deviations from proportional odds assumptions that would result in important miscalibration and distorted
predictions. Further, the use of CL-PO has been advocated in settings outside of prediction models. For instance, they
can be used to model continuous outcomes, in particular when these outcomes have skewed or semi-continuous dis-
tributions and in randomized controlled trials to improve statistical efficiency.37,38 While our focus is in risk prediction
modeling and hence our results do not directly generalize to these settings, our finding that the type of proportional
odds assumption matters (eg, on the level of cumulative logits vs adjacent category logits) seems to warrant further
investigation.

To conclude, when the proportional odds assumptions do not strictly hold, as we believe is often the case in practi-
cal application of risk prediction models, the use of proportional odds models to develop prediction models for discrete
ordinal outcomes can result in poor risk estimates and poor calibration. For the development of risk prediction mod-
els, we therefore warn readers against using proportional odds models without careful argumentation, and to consider
multinomial logistic regression to model ordered categorical outcomes.
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APPENDIX . CALCULATING ESTIMATED PROBABILITIES FOR EACH TYPE OF MODEL

MLR: P(Y = k) = exp(LMLR,k)
1+

∑K
j=2exp(LMLR,j)

, with LMLR,1 set to 0.

CL-PO: P(Y ≥ k) = exp(LCLPO,k)
1+exp(LCLPO,k) , and P(Y = k) = P(Y ≥ k) − P(Y ≥ k + 1). Note that P(Y ≥ K + 1) = 0.

CL-NP: analogous as for CL-PO.

AC-PO: P(Y = k) =
exp

(∑k
j=1LACPO,j

)
1+

∑K−1
r=1 exp(∑r

s=1LACPO,s)
, with LACPO,K set to 0.

AC-NP: analogous as for AC-PO.
CR-PO: for k = 1, … ,K − 1, P(Y = k) = exp(LCRPO,k)

1+exp(LCRPO,k) × (1 − P(Y < k)). Note that P(Y < 1) = 0. Finally, P(Y = K) = 1 −∑K−1
k=1 P(Y = k).

CR-NP: analogous as for CR-PO.
SLM: P(Y = k) = exp(LSLM,k)

1+
∑j=K

j=2 exp(LSLM,j)
, with LSLM,1 = 0.


