Skip to main content
. 2021 Dec 12;41(8):1334–1360. doi: 10.1002/sim.9281

TABLE 3.

Apparent performance based on a large dataset of n = 200 000 for the main simulation scenarios

Calibration intercepts/Calibration slopes
Per outcome category Per outcome dichotomy Model‐specific Single number metrics
Model
Y=1
Y=2
Y=3
Y>1
Y>2
LP1 LP2 ECI rMSPE ORC
MLR truth scenario 1: balanced outcome, equidistant means
MLR 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.741
CL‐PO 0.00/1.02 −0.01/0.75 0.00/1.02 0.00/1.02 0.00/1.02 0.00/1.00 0.00/1.00 0.006 0.012 0.741
AC‐PO 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.001 0.741
SLM 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.001 0.741
MLR truth scenario 2: imbalanced outcome, equidistant means
MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.740
CL‐PO 0.01/0.96 −0.01/0.79 −0.01/1.14 −0.01/0.96 −0.01/1.14 0.00/1.00 0.00/1.00 0.010 0.016 0.740
AC‐PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.002 0.740
SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.740
MLR truth scenario 3: balanced outcome, nonequidistant means
MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.741
CL‐PO −0.03/1.21 −0.01/0.75 0.03/0.86 0.03/1.21 0.03/0.86 0.00/1.00 0.00/1.00 0.049 0.075 0.738
AC‐PO 0.00/1.19 0.00/0.95 0.00/0.84 0.00/1.19 0.00/0.84 0.00/1.00 0.00/1.00 0.046 0.074 0.738
SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.063 0.738
MLR truth scenario 4: imbalanced outcome, nonequidistant means
MLR 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.737
CL‐PO −0.02/1.11 0.01/1.13 0.03/0.85 0.02/1.11 0.03/0.85 0.00/1.00 0.00/1.00 0.032 0.058 0.735
AC‐PO 0.00/1.17 0.00/1.47 0.00/0.76 0.00/1.17 0.00/0.76 0.00/1.00 0.00/1.00 0.059 0.064 0.736
SLM 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.047 0.733
CL‐PO truth scenario 1: balanced outcome
MLR 0.00/0.99 0.00/1.38 0.00/0.99 0.00/0.99 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740
CL‐PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.003 0.740
AC‐PO 0.00/1.00 0.00/1.38 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740
SLM 0.00/0.99 0.00/1.38 0.00/0.99 0.00/0.99 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.014 0.740
CL‐PO truth scenario 2: imbalanced outcome
MLR 0.00/1.00 0.00/1.09 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.005 0.013 0.740
CL‐PO 0.00/1.00 0.00/1.01 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.000 0.003 0.740
AC‐PO 0.00/1.07 0.00/1.34 0.00/0.88 0.00/1.07 0.00/0.88 0.00/1.00 0.00/1.00 0.012 0.018 0.740
SLM 0.00/1.00 0.00/1.09 0.00/0.99 0.00/1.00 0.00/0.99 0.00/1.00 0.00/1.00 0.006 0.013 0.740
CL‐PO truth scenario 3: highly imbalanced outcome
MLR 0.00/1.00 0.00/1.02 0.00/0.98 0.00/1.00 0.00/0.98 0.00/1.00 0.00/1.00 0.004 0.009 0.742
CL‐PO 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.00/1.00 0.000 0.002 0.742
AC‐PO 0.00/1.08 0.00/1.22 0.00/0.77 0.00/1.08 0.00/0.77 0.00/1.00 0.00/1.00 0.015 0.017 0.742
SLM 0.00/1.00 0.00/1.02 0.00/0.98 0.00/1.00 0.00/0.98 0.00/1.00 0.00/1.00 0.004 0.009 0.742

Abbreviations: AC‐PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL‐PO, cumulative logit model with proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared prediction error; SLM, stereotype logit model.