TABLE 4.
Calibration intercepts/Calibration slopes | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Per outcome category | Per outcome dichotomy | Model‐specific | Single number metrics | ||||||||||||
Model |
|
|
|
|
|
LP1 | LP2 | rMSPE | ORC | ||||||
MLR truth scenario 1: balanced outcome, equidistant means | |||||||||||||||
MLR | 0.00/0.78 | 0.03/0.31 | −0.02/0.80 | 0.00/0.78 | −0.02/0.80 | 0.02/0.73 | −0.03/0.76 | 0.104 | 0.727 | ||||||
CL‐PO | 0.00/0.86 | 0.03/0.55 | −0.02/0.86 | 0.00/0.86 | −0.02/0.86 | 0.02/0.84 | 0.00/0.84 | 0.080 | 0.728 | ||||||
AC‐PO | 0.00/0.84 | 0.03/0.73 | −0.02/0.85 | 0.00/0.84 | −0.02/0.85 | 0.02/0.83 | −0.04/0.83 | 0.077 | 0.728 | ||||||
SLM | 0.00/0.85 | 0.03/0.56 | −0.02/0.85 | 0.00/0.85 | −0.02/0.85 | 0.02/1.04 | −0.02/0.82 | 0.085 | 0.728 | ||||||
MLR truth scenario 2: imbalanced outcome, equidistant means | |||||||||||||||
MLR | −0.01/0.80 | 0.03/0.45 | 0.01/0.73 | 0.01/0.80 | 0.01/0.73 | 0.02/0.82 | −0.01/0.58 | 0.104 | 0.724 | ||||||
CL‐PO | 0.00/0.80 | 0.02/0.64 | 0.00/0.96 | 0.00/0.80 | 0.00/0.96 | 0.00/0.84 | −0.04/0.84 | 0.079 | 0.726 | ||||||
AC‐PO | −0.01/0.84 | 0.03/0.82 | 0.01/0.83 | 0.01/0.84 | 0.01/0.83 | 0.02/0.83 | −0.01/0.83 | 0.077 | 0.725 | ||||||
SLM | −0.01/0.84 | 0.02/0.70 | 0.01/0.88 | 0.01/0.84 | 0.01/0.88 | 0.02/0.92 | 0.02/0.82 | 0.085 | 0.725 | ||||||
MLR truth scenario 3: balanced outcome, nonequidistant means | |||||||||||||||
MLR | 0.03/0.85 | −0.03/0.56 | 0.02/0.79 | −0.03/0.85 | 0.02/0.79 | −0.04/0.83 | 0.03/0.67 | 0.105 | 0.725 | ||||||
CL‐PO | −0.01/1.07 | −0.03/0.60 | 0.06/0.76 | 0.01/1.07 | 0.06/0.76 | 0.04/0.89 | −0.04/0.89 | 0.110 | 0.725 | ||||||
AC‐PO | 0.02/1.05 | −0.02/0.76 | 0.03/0.75 | −0.02/1.05 | 0.03/0.75 | −0.03/0.87 | 0.03/0.87 | 0.108 | 0.725 | ||||||
SLM | 0.03/0.86 | −0.03/0.65 | 0.02/0.90 | −0.03/0.86 | 0.02/0.90 | −0.03/0.89 | 0.00/0.86 | 0.109 | 0.722 | ||||||
MLR truth scenario 4: imbalanced outcome, nonequidistant means | |||||||||||||||
MLR | 0.02/0.83 | 0.01/0.69 | 0.00/0.70 | −0.02/0.83 | 0.00/0.70 | 0.00/0.84 | 0.00/0.54 | 0.101 | 0.724 | ||||||
CL‐PO | −0.02/0.95 | 0.03/0.94 | 0.02/0.73 | 0.02/0.95 | 0.02/0.73 | 0.02/0.86 | −0.02/0.86 | 0.095 | 0.724 | ||||||
AC‐PO | 0.00/0.99 | 0.02/1.20 | −0.01/0.65 | 0.00/0.99 | −0.01/0.65 | 0.01/0.84 | −0.02/0.84 | 0.097 | 0.724 | ||||||
SLM | 0.01/0.85 | 0.02/0.83 | −0.01/0.86 | −0.01/0.85 | −0.01/0.86 | 0.01/0.89 | −0.01/0.90 | 0.096 | 0.721 | ||||||
CL‐PO truth scenario 1: balanced outcome | |||||||||||||||
MLR | 0.01/0.79 | 0.00/0.38 | 0.02/0.80 | −0.01/0.79 | 0.02/0.80 | 0.00/0.75 | 0.01/0.73 | 0.108 | 0.726 | ||||||
CL‐PO | 0.00/0.87 | 0.01/0.75 | 0.01/0.86 | 0.00/0.87 | 0.01/0.86 | 0.03/0.86 | −0.03/0.86 | 0.080 | 0.728 | ||||||
AC‐PO | 0.01/0.85 | 0.01/1.01 | 0.01/0.85 | −0.01/0.85 | 0.01/0.85 | 0.00/0.84 | 0.00/0.84 | 0.079 | 0.728 | ||||||
SLM | 0.01/0.85 | 0.01/0.75 | 0.01/0.88 | −0.01/0.85 | 0.01/0.88 | 0.00/0.68 | 0.00/0.83 | 0.089 | 0.727 | ||||||
CL‐PO truth scenario 2: imbalanced outcome | |||||||||||||||
MLR | 0.02/0.84 | −0.01/0.63 | 0.03/0.73 | −0.02/0.84 | 0.03/0.73 | −0.02/0.86 | 0.03/0.54 | 0.103 | 0.724 | ||||||
CL‐PO | 0.02/0.87 | 0.00/0.85 | 0.00/0.87 | −0.02/0.87 | 0.00/0.87 | 0.03/0.87 | −0.03/0.87 | 0.080 | 0.726 | ||||||
AC‐PO | 0.02/0.92 | 0.00/1.12 | 0.01/0.76 | −0.02/0.92 | 0.01/0.76 | −0.01/0.85 | 0.01/0.85 | 0.081 | 0.725 | ||||||
SLM | 0.02/0.87 | −0.01/0.92 | 0.03/0.88 | −0.02/0.87 | 0.03/0.88 | −0.02/0.91 | 0.01/0.84 | 0.087 | 0.725 | ||||||
CL‐PO truth scenario 3: highly imbalanced outcome | |||||||||||||||
MLR | −0.02/0.77 | 0.07/0.69 | −0.04/0.46 | 0.02/0.77 | −0.04/0.46 | 0.05/0.80 | 0.01/0.23 | 0.100 | 0.723 | ||||||
CL‐PO | −0.03/0.82 | 0.06/0.83 | −0.04/0.83 | 0.03/0.82 | −0.04/0.83 | −0.02/0.82 | −0.01/0.82 | 0.075 | 0.726 | ||||||
AC‐PO | −0.03/0.87 | 0.06/1.00 | −0.05/0.64 | 0.03/0.87 | −0.05/0.64 | 0.05/0.81 | −0.08/0.81 | 0.077 | 0.726 | ||||||
SLM | −0.03/0.81 | 0.06/0.83 | −0.01/0.72 | 0.03/0.81 | −0.01/0.72 | 0.05/0.82 | 0.01/0.75 | 0.085 | 0.725 |
Abbreviations: AC‐PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL‐PO, cumulative logit model with proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared prediction error; SLM, stereotype logit model.