Skip to main content
. 2021 Dec 12;41(8):1334–1360. doi: 10.1002/sim.9281

TABLE 4.

Validation performance based on small development datasets of n = 100 for the main simulation scenarios (reported as the average performance on a large validation dataset for 200 simulated development datasets)

Calibration intercepts/Calibration slopes
Per outcome category Per outcome dichotomy Model‐specific Single number metrics
Model
Y=1
Y=2
Y=3
Y>1
Y>2
LP1 LP2 rMSPE ORC
MLR truth scenario 1: balanced outcome, equidistant means
MLR 0.00/0.78 0.03/0.31 −0.02/0.80 0.00/0.78 −0.02/0.80 0.02/0.73 −0.03/0.76 0.104 0.727
CL‐PO 0.00/0.86 0.03/0.55 −0.02/0.86 0.00/0.86 −0.02/0.86 0.02/0.84 0.00/0.84 0.080 0.728
AC‐PO 0.00/0.84 0.03/0.73 −0.02/0.85 0.00/0.84 −0.02/0.85 0.02/0.83 −0.04/0.83 0.077 0.728
SLM 0.00/0.85 0.03/0.56 −0.02/0.85 0.00/0.85 −0.02/0.85 0.02/1.04 −0.02/0.82 0.085 0.728
MLR truth scenario 2: imbalanced outcome, equidistant means
MLR −0.01/0.80 0.03/0.45 0.01/0.73 0.01/0.80 0.01/0.73 0.02/0.82 −0.01/0.58 0.104 0.724
CL‐PO 0.00/0.80 0.02/0.64 0.00/0.96 0.00/0.80 0.00/0.96 0.00/0.84 −0.04/0.84 0.079 0.726
AC‐PO −0.01/0.84 0.03/0.82 0.01/0.83 0.01/0.84 0.01/0.83 0.02/0.83 −0.01/0.83 0.077 0.725
SLM −0.01/0.84 0.02/0.70 0.01/0.88 0.01/0.84 0.01/0.88 0.02/0.92 0.02/0.82 0.085 0.725
MLR truth scenario 3: balanced outcome, nonequidistant means
MLR 0.03/0.85 −0.03/0.56 0.02/0.79 −0.03/0.85 0.02/0.79 −0.04/0.83 0.03/0.67 0.105 0.725
CL‐PO −0.01/1.07 −0.03/0.60 0.06/0.76 0.01/1.07 0.06/0.76 0.04/0.89 −0.04/0.89 0.110 0.725
AC‐PO 0.02/1.05 −0.02/0.76 0.03/0.75 −0.02/1.05 0.03/0.75 −0.03/0.87 0.03/0.87 0.108 0.725
SLM 0.03/0.86 −0.03/0.65 0.02/0.90 −0.03/0.86 0.02/0.90 −0.03/0.89 0.00/0.86 0.109 0.722
MLR truth scenario 4: imbalanced outcome, nonequidistant means
MLR 0.02/0.83 0.01/0.69 0.00/0.70 −0.02/0.83 0.00/0.70 0.00/0.84 0.00/0.54 0.101 0.724
CL‐PO −0.02/0.95 0.03/0.94 0.02/0.73 0.02/0.95 0.02/0.73 0.02/0.86 −0.02/0.86 0.095 0.724
AC‐PO 0.00/0.99 0.02/1.20 −0.01/0.65 0.00/0.99 −0.01/0.65 0.01/0.84 −0.02/0.84 0.097 0.724
SLM 0.01/0.85 0.02/0.83 −0.01/0.86 −0.01/0.85 −0.01/0.86 0.01/0.89 −0.01/0.90 0.096 0.721
CL‐PO truth scenario 1: balanced outcome
MLR 0.01/0.79 0.00/0.38 0.02/0.80 −0.01/0.79 0.02/0.80 0.00/0.75 0.01/0.73 0.108 0.726
CL‐PO 0.00/0.87 0.01/0.75 0.01/0.86 0.00/0.87 0.01/0.86 0.03/0.86 −0.03/0.86 0.080 0.728
AC‐PO 0.01/0.85 0.01/1.01 0.01/0.85 −0.01/0.85 0.01/0.85 0.00/0.84 0.00/0.84 0.079 0.728
SLM 0.01/0.85 0.01/0.75 0.01/0.88 −0.01/0.85 0.01/0.88 0.00/0.68 0.00/0.83 0.089 0.727
CL‐PO truth scenario 2: imbalanced outcome
MLR 0.02/0.84 −0.01/0.63 0.03/0.73 −0.02/0.84 0.03/0.73 −0.02/0.86 0.03/0.54 0.103 0.724
CL‐PO 0.02/0.87 0.00/0.85 0.00/0.87 −0.02/0.87 0.00/0.87 0.03/0.87 −0.03/0.87 0.080 0.726
AC‐PO 0.02/0.92 0.00/1.12 0.01/0.76 −0.02/0.92 0.01/0.76 −0.01/0.85 0.01/0.85 0.081 0.725
SLM 0.02/0.87 −0.01/0.92 0.03/0.88 −0.02/0.87 0.03/0.88 −0.02/0.91 0.01/0.84 0.087 0.725
CL‐PO truth scenario 3: highly imbalanced outcome
MLR −0.02/0.77 0.07/0.69 −0.04/0.46 0.02/0.77 −0.04/0.46 0.05/0.80 0.01/0.23 0.100 0.723
CL‐PO −0.03/0.82 0.06/0.83 −0.04/0.83 0.03/0.82 −0.04/0.83 −0.02/0.82 −0.01/0.82 0.075 0.726
AC‐PO −0.03/0.87 0.06/1.00 −0.05/0.64 0.03/0.87 −0.05/0.64 0.05/0.81 −0.08/0.81 0.077 0.726
SLM −0.03/0.81 0.06/0.83 −0.01/0.72 0.03/0.81 −0.01/0.72 0.05/0.82 0.01/0.75 0.085 0.725

Abbreviations: AC‐PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL‐PO, cumulative logit model with proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared prediction error; SLM, stereotype logit model.