TABLE 5.
Calibration intercepts/Calibration slopes | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Per outcome category | Per outcome dichotomy | Model‐specific | Single number metrics | ||||||||||||
Model |
|
|
|
|
|
LP1 | LP2 | rMSPE | ORC | ||||||
MLR truth scenario 1: balanced outcome, equidistant means | |||||||||||||||
MLR | 0.01/0.97 | −0.01/0.67 | 0.00/0.97 | −0.01/0.97 | 0.00/0.97 | −0.01/0.95 | 0.01/0.97 | 0.047 | 0.738 | ||||||
CL‐PO | 0.01/1.00 | −0.01/0.72 | 0.01/1.00 | −0.01/1.00 | 0.01/1.00 | 0.01/0.98 | −0.01/0.98 | 0.038 | 0.738 | ||||||
AC‐PO | 0.01/0.98 | −0.01/0.95 | 0.00/0.98 | −0.01/0.98 | 0.00/0.98 | −0.01/0.98 | 0.01/0.98 | 0.034 | 0.738 | ||||||
SLM | 0.01/0.98 | −0.01/0.87 | 0.00/0.99 | −0.01/0.98 | 0.00/0.99 | −0.01/0.99 | 0.00/0.98 | 0.037 | 0.738 | ||||||
MLR truth scenario 2: imbalanced outcome, equidistant means | |||||||||||||||
MLR | 0.00/0.95 | 0.00/0.83 | 0.00/0.95 | 0.00/0.95 | 0.00/0.95 | 0.00/0.95 | 0.00/0.93 | 0.044 | 0.736 | ||||||
CL‐PO | 0.02/0.92 | −0.01/0.75 | −0.01/1.10 | −0.02/0.92 | −0.01/1.10 | 0.01/0.96 | −0.01/0.96 | 0.038 | 0.737 | ||||||
AC‐PO | 0.00/0.96 | 0.00/0.97 | 0.00/0.96 | 0.00/0.96 | 0.00/0.96 | 0.00/0.96 | 0.00/0.96 | 0.033 | 0.737 | ||||||
SLM | 0.00/0.96 | 0.00/0.95 | 0.00/0.97 | 0.00/0.96 | 0.00/0.97 | 0.00/0.96 | 0.00/0.96 | 0.036 | 0.737 | ||||||
MLR truth scenario 3: balanced outcome, nonequidistant means | |||||||||||||||
MLR | 0.00/0.97 | −0.01/0.88 | 0.01/0.97 | 0.00/0.97 | 0.01/0.97 | −0.01/0.97 | 0.01/0.94 | 0.045 | 0.738 | ||||||
CL‐PO | −0.03/1.19 | −0.01/0.72 | 0.05/0.84 | 0.03/1.19 | 0.05/0.84 | 0.01/0.98 | −0.01/0.98 | 0.082 | 0.736 | ||||||
AC‐PO | 0.00/1.17 | −0.01/0.92 | 0.01/0.83 | 0.00/1.17 | 0.01/0.83 | −0.01/0.98 | 0.01/0.98 | 0.081 | 0.736 | ||||||
SLM | 0.00/0.98 | −0.01/0.92 | 0.01/1.00 | 0.00/0.98 | 0.01/1.00 | −0.01/0.98 | 0.00/0.98 | 0.073 | 0.735 | ||||||
MLR truth scenario 4: imbalanced outcome, nonequidistant means | |||||||||||||||
MLR | 0.01/0.97 | −0.01/0.94 | 0.00/0.94 | −0.01/0.97 | 0.00/0.94 | −0.01/0.98 | 0.00/0.87 | 0.043 | 0.735 | ||||||
CL‐PO | −0.01/1.08 | 0.00/1.10 | 0.02/0.83 | 0.01/1.08 | 0.02/0.83 | 0.01/0.98 | 0.00/0.98 | 0.067 | 0.733 | ||||||
AC‐PO | 0.01/1.14 | 0.00/1.42 | 0.00/0.75 | −0.01/1.14 | 0.00/0.75 | −0.01/0.97 | 0.00/0.97 | 0.072 | 0.733 | ||||||
SLM | 0.01/0.98 | 0.00/0.99 | 0.00/0.99 | −0.01/0.98 | 0.00/0.99 | −0.01/0.98 | −0.01/0.97 | 0.060 | 0.730 | ||||||
CL‐PO truth scenario 1: balanced outcome | |||||||||||||||
MLR | 0.02/0.94 | 0.00/0.90 | −0.02/0.96 | −0.02/0.94 | −0.02/0.96 | −0.01/0.94 | −0.02/0.96 | 0.048 | 0.738 | ||||||
CL‐PO | 0.02/0.97 | 0.00/0.96 | −0.02/0.96 | −0.02/0.97 | −0.02/0.96 | 0.02/0.97 | 0.02/0.97 | 0.034 | 0.738 | ||||||
AC‐PO | 0.02/0.96 | 0.00/1.30 | −0.02/0.96 | −0.02/0.96 | −0.02/0.96 | −0.01/0.96 | −0.02/0.96 | 0.036 | 0.738 | ||||||
SLM | 0.02/0.95 | 0.01/1.19 | −0.02/0.97 | −0.02/0.95 | −0.02/0.97 | −0.01/0.97 | −0.03/0.96 | 0.039 | 0.738 | ||||||
CL‐PO truth scenario 2: imbalanced outcome | |||||||||||||||
MLR | 0.00/0.97 | −0.01/0.97 | 0.03/0.91 | 0.00/0.97 | 0.03/0.91 | 0.00/0.98 | 0.03/0.84 | 0.046 | 0.737 | ||||||
CL‐PO | 0.00/0.97 | −0.01/0.97 | 0.03/0.96 | 0.00/0.97 | 0.03/0.96 | 0.00/0.97 | −0.03/0.97 | 0.034 | 0.738 | ||||||
AC‐PO | 0.00/1.03 | −0.01/1.27 | 0.03/0.85 | 0.00/1.03 | 0.03/0.85 | 0.00/0.96 | 0.03/0.96 | 0.038 | 0.737 | ||||||
SLM | 0.00/0.97 | −0.01/1.07 | 0.03/0.94 | 0.00/0.97 | 0.03/0.94 | 0.00/0.98 | 0.03/0.95 | 0.038 | 0.738 | ||||||
CL‐PO truth scenario 3: highly imbalanced outcome | |||||||||||||||
MLR | −0.02/0.96 | 0.02/0.96 | 0.01/0.87 | 0.02/0.96 | 0.01/0.87 | 0.02/0.98 | 0.00/0.64 | 0.041 | 0.739 | ||||||
CL‐PO | −0.02/0.96 | 0.02/0.97 | 0.01/0.97 | 0.02/0.96 | 0.01/0.97 | −0.01/0.96 | −0.02/0.96 | 0.033 | 0.739 | ||||||
AC‐PO | −0.02/1.04 | 0.02/1.17 | 0.01/0.74 | 0.02/1.04 | 0.01/0.74 | 0.02/0.96 | −0.01/0.96 | 0.037 | 0.739 | ||||||
SLM | −0.02/0.96 | 0.02/0.99 | 0.01/0.97 | 0.02/0.96 | 0.01/0.97 | 0.02/0.97 | 0.02/0.97 | 0.035 | 0.739 |
Abbreviations: AC‐PO, adjacent category logit model with proportional odds; CAD, coronary artery disease; CL‐PO, cumulative logit model with proportional odds; ECI, estimated calibration index; LP, linear predictor; MLR, multinomial logistic regression; ORC, ordinal C statistic; rMSPE, root mean squared prediction error; SLM, stereotype logit model.