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Aims Whereas the combination of anaemia and chronic kidney disease (CKD) has been extensively studied in patients with
heart failure (HF), the contribution of iron deficiency (ID) to this dysfunctional interplay is unknown. We aimed to
assess clinical associates and pathophysiological pathways related to ID in this multimorbid syndrome.

Methods We studied 2151 patients with HF from the BIOSTAT-CHF cohort. Patients were stratified based on ID (transferrin

and results saturation <20%), anaemia (World Health Organization definition) and/or CKD (estimated glomerular filtration rate
<60 ml/min/1.73 m?). Patients were mainly men (73.3%), with a median age of 70.5 (interquartile range 61.4—78.1). ID
was more prevalent than CKD and anaemia (63.3%, 47.2% and 35.6% respectively), with highest prevalence in those
with concomitant CKD and anaemia (77.5% vs. 59.3%; p < 0.001). There was a considerable overlap in biomarkers and
pathways between patients with isolated ID, anaemia or CKD, or in combination, with processes related to immunity,
inflammation, cell survival and cancer amongst the common pathways. Key biomarkers shared between syndromes
with ID included transferrin receptor, interleukin-6, fibroblast growth factor-23, and bone morphogenetic protein
6. Having ID, either alone or on top of anaemia and/or CKD, was associated with a lower overall summary Kansas
City Cardiomyopathy Questionnaire score, an impaired 6-min walk test and increased incidence of hospitalizations
and/or mortality in multivariable analyses (all p < 0.05).

Conclusion Iron deficiency, CKD and/or anaemia in patients with HF have great overlap in biomarker profiles, suggesting common
pathways associated with these syndromes. ID either alone or on top of CKD and anaemia is associated with worse
quality of life, exercise capacity and prognosis of patients with worsening HF.

*Corresponding author. Department of Cardiology, University Medical Center Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB Groningen, The Netherlands.
Email: p.van.dermeer@umcg.nl

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and
reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.


https://orcid.org/0000-0001-7012-9422
https://orcid.org/0000-0003-4629-9960
https://orcid.org/0000-0002-0234-438X
https://orcid.org/0000-0001-8192-6670
https://orcid.org/0000-0002-7317-8980
https://orcid.org/0000-0002-1471-7016
https://orcid.org/0000-0002-6553-5749

Iron deficiency in heart failure 193

Graphical Abstract

¥

Bl@syaT o

e
&,

i =

2151 Heart inifure Patients T

There was a considerable overlap in the found
biomarkers and pathways between patients with isolated
ID, anaemia or CKD, or in combination, with pr
related to immunity, inflammation, cell survival and
cancer amongst the common pathways. Key biomarkers
shared between syndromes with ID include TFRC, IL-6,
FGF23, and BMP6

356 biomarkers

- CRAS (154) Isolated CKD (94)

In patients with HF, ID either -

alone or on top of CKD and/or
anaemia is associated with ...

CRIDS (131)
3 \'\

Isolated anaemia (32)

Isolated ID (33)

All-cause mortality HF rehospitalization

Differential protein expression

P, D -
@ L Pathway overrepresentation analysis

& Quality of life

Iron deficiency (ID) in patients with heart failure (HF) retains its adverse association with clinical outcomes regardless of concomitant anaemia
and/or chronic kidney disease (CKD). In a comprehensive biomarker and pathway analysis of HF patients with ID, CKD and/or anaemia, we found
an extensive overlap in biomarker profiles, suggesting similar underlying mechanisms of these syndromes despite different clinical definitions. BMP6,
bone morphogenetic protein 6; CRAIDS, cardio-renal anaemia iron deficiency syndrome; CRAS, cardio-renal anaemia syndrome; CRIDS, cardio-renal
iron deficiency syndrome; FGF23, fibroblast growth factor 23; IDA, iron deficiency anaemia; IL-6, interleukin-6; TFRC, transferrin receptor. Several
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Heart failure (HF) is a complex syndrome further complicated by
the coexistence of other comorbidities." Anaemia and chronic
kidney disease (CKD) are both common and associated with
worse quality of life and outcomes in patients with HE2? especially
when all three co-exist.* This triad constitutes a pathophysio-
logical entity commonly referred to as the cardio-renal anaemia
syndrome (CRAS).>

Although pathophysiological mechanisms causing anaemia are
multifactorial, iron deficiency (ID) is the most common underlying
cause of anaemia in HF® However, in contrast to the traditional
view where ID is equated with anaemia, the majority of patients
with ID do not have concomitant anaemia (IDA), indicating that the
two conditions do not necessarily coexist.”~° Iron is an essential
component in numerous biological processes including cellular
bioenergetics, oxygen transport and storage (i.e. haemoglobin and
myoglobin) as well as the synthesis of lipids, proteins, ribonucleic
acid and DNA.'® Multiple randomized controlled trials have shown

capacity and could reduce hospitalizations in patients with HE'1-14
Accordingly, targeting ID using intravenous iron administration has
emerged as a novel therapeutic target in HE">

Whereas ID, anaemia and CKD individually have been exten-
sively studied in HF, only few studies examined the interaction
between these comorbidities, particularly with regard to the addi-
tive impact of ID.3'¢ Although many studies have investigated
CRAS in HFE>'71® most of these studies failed to assess the
importance of ID. It has been suggested that expanding the con-
cept of CRAS by introducing cardio-renal iron deficiency syn-
drome (CRIDS) and/or cardio-renal anaemia iron deficiency syn-
drome (CRAIDS) might help to identify patients at high risk who
potentially have more to gain from treatment with intravenous
iron. 1920

We accordingly aimed to disentangle the additive burden of ID
on morbidity and mortality as well as to identify common and
unique pathophysiological pathways and biomarker profiles related
to isolated ID, anaemia or CKD, and their combinations.

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Methods

Study population

This was a post-hoc analysis of the BIOSTAT-CHF (BIOlogy Study to
TAilored Treatment in Chronic Heart Failure) index cohort, the details
of which have been described elsewhere.2?? Briefly, BIOSTAT-CHF
was a European multicentre, prospective, observational study that
was conducted from 2010-2014 across 69 centres in 11 European
countries. The included 2516 participants were patients with wors-
ening HF that were either enrolled in the outpatient setting or as
inpatients if hospitalized. Included patients had to be 18 years old or
older, with symptoms of either new-onset or decompensated HF, and
sub-optimally treated for HF at inclusion. Diagnosis of HF was made
either by left ventricular ejection fraction (LVEF) <40% or B-type natri-
uretic peptide >400 pg/ml and/or N-terminal pro-B-type natriuretic
peptide >2000 pg/ml. The primary endpoints of interest were the
time to all-cause mortality, first unscheduled HF hospitalization and
the combined endpoint of all-cause mortality and HF hospitalization.
Outcomes were independently adjudicated. The study complied with
the Declaration of Helsinki, was approved by the medical ethics
committees of the participating centres, and informed consent was
obtained from all patients.

Study definitions

Iron deficiency was defined according to the DEFINE-HF study
as transferrin saturation (TSAT) <20%.23 Anaemia was defined as
haemoglobin level <13 g/dl in men and <12 g/dl in women according to
the World Health Organization (WHO) criteria.?* Renal function was
evaluated using the estimated glomerular filtration rate (eGFR), which
was calculated using the Modification of Diet in Renal Disease (MDRD)
equation. CKD was defined as an eGFR of <60 ml/min/1.73 m?.2% Al
measurements were determined at study inclusion.

Results of baseline clinical characteristics, determinants as well as
biomarker expression profiles of ID compared to no ID in general
using only the Cardiovascular Il panel in this cohort have been
described previously.2® To study the additional burden of ID beyond the
cardiorenal anaemia syndrome, in the present analysis, eight different
groups of HF patients were formed and compared accordingly based
on the presence/absence of ID, CKD and/or anaemia. Definitions of
these syndromes are summarized in Table S7.

Of all 2516 patients in the BIOSTAT-CHF index cohort, variables
needed for defining iron status, anaemia and CKD were available in
2151 (85.4%) patients.

Biomarker measurements

Four biomarker panels (the Immune response, Immuno-oncology, Car-
diovascular Il and Ill panels) each containing 92 proteins related to dif-
ferent pathophysiological domains were measured. These biomarkers
were measured using the Olink Proseek® Multiplex kits, which make
use of proximity extension assay (PEA) to quantify plasma proteins.?’
Measurements are normalized and provided in log2 scale. Although
368 biomarkers in total were measured, only 356 biomarkers were
included in the analysis because (i) eight biomarkers were excluded for
being below the assay’s lowest limit of detection (10%); and (ii) means
of three duplicate biomarkers were used as they overlap between the
different panels. The complete list of all biomarkers measured is listed
in online supplementary Table S2.

Identification of differentially expressed
biomarkers

Heart failure patients with no comorbidities (ID, CKD and/or anaemia)
were used as the reference group in differential biomarker expression
analysis. Differential biomarker expression analysis between all of
the remaining seven syndromes (online supplementary Table ST) and
the reference group was conducted using the LIMMA package.?8%
Multiple testing correction across all groups instead of only between
each group was performed. Biomarkers with an absolute log fold
change of 0.25 or higher and a false discovery rate (FDR) <0.01 were
deemed statistically significant. The analysis was adjusted for potential
confounders including age, sex and diabetes.

Translating biomarker lists into
biological pathways

Pathway over-representation analysis is a widely used approach to
interpret gene/protein lists into biologically meaningful pathways.3° We
used the differentially expressed biomarkers to characterize the under-
lying pathophysiological processes for each syndrome. Pathway analy-
sis was conducted using the online tool WebGestalt with the default
parameters.>! The over-representation analysis was based on multiple
knowledgebases including Gene Ontology (which was confined to only
non-redundant biological processes), Reactome and Kyoto Encyclope-
dia of Genes and Genomes (KEGG). To address the inherent redun-
dancy across these different databases, the affinity propagation algo-
rithm was used in order to output the most representative (exemplar)
and informative pathways per syndrome. The Benjamini—Hochberg
method was used for multiple testing adjustment. Over-represented
pathways with FDR <0.01 were deemed significant.

Statistical analyses

Statistical analyses were performed using R version 4.0.3. Data are
presented as means (standard deviation, SD) when continuous vari-
ables are normally distributed, as median (interquartile range, IQR)
when continuous variables are non-normally distributed and as number
(percentage) for binary/categorical variables. Skewness of continuous
variables was determined using histograms and/or Q—-Q plots. Inter-
group differences of baseline variables were tested using the Student’s
t-test (two groups) or one-way analysis of variance test (three groups)
if normally distributed, Wilcoxon rank sum test (two groups) and
Kruskal—Wallis test (three groups) if non-normally distributed, while
qualitative variables were compared using Chi-square test. Results with
a two-tailed p-value of <0.05 were considered significant.

Linear regression analyses were performed to test the association
of ID in patients with HF, CKD and/or anaemia with quality of life and
functional capacity using results from the 6-min walk test (6MWT)
and the overall summary score on the Kansas City Cardiomyopathy
Questionnaire (KCCQ).

Kaplan—Meier curves stratified by increasing number of comorbidi-
ties (ID, CKD and/or anaemia) as well as each syndrome separately
(as summarized in online supplementary Table $7) are shown, with
differences between them tested using the log-rank test for survival.
To adjust for potential confounding variables and to quantify these
effects, univariable and multivariable Cox proportional hazards models
were constructed on all-cause mortality and the composite endpoint
of all-cause mortality and HF rehospitalization. HF patients with no
comorbidities (i.e. no ID, CKD and/or anaemia) were used as the

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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reference group to estimate the adjusted risk associated with having ID,
anaemia and/or CKD. Also, we report the additional impact of having
ID on prognosis by comparing ID-containing syndromes to syndromes
without ID (i.e. CRAIDS vs. CRAS, CRIDS vs. isolated CKD and IDA
vs. isolated anaemia). The proportional hazards assumption was eval-
uated using Schoenfeld residuals. Multivariable models were adjusted
to the previously published BIOSTAT-CHF risk models,2? except for
haemoglobin as anaemia was included as explanatory variable.

Results

Baseline characteristics

Baseline characteristics are stratified by renal dysfunction, anaemia
and iron deficiency (Table 7). Median age of the 2151 included
patients was 70.5 (IQR 61.4-78.1), median TSAT 16.7% (IQR
10.9-24.2), median ferritin 102 mg/L (IQR 50.0—192) and 26.7%
were women. In general, iron-deficient patients had higher inflam-
matory markers and worse quality of life compared to those with
or without anaemia and/or CKD (FDR <0.05). Additionally, com-
pared to patients with no comorbidities (i.e. without ID, CKD
and/or anaemia), patients with isolated ID were less likely to
be treated with f-blockers and angiotensin-converting enzyme
inhibitors/angiotensin receptor blockers at baseline (FDR <0.05).
Levels of renal markers were comparable between patients with
and without ID, except for fibroblast growth factor-23 (FGF23)
which was consistently higher in those with ID (FDR <0.05). The
characteristics of iron-deficient HF patients compared to those
without ID irrespective of CKD and/or anaemia are presented in
online supplementary Table $3.

Prevalence of iron deficiency in relation
to chronic kidney disease and anaemia

The prevalence of each condition in our study population is shown
in Figure 7TA. Generally, ID was more prevalent than CKD and
anaemia (63.3%, 47.2% and 35.6%, respectively). Using the ‘con-
ventional’ definition of CRAS (i.e. not considering ID when defin-
ing CRAS and, thus, with no distinction made between CRAS
and CRAIDS), ID was more prevalent in patients with CRAS ver-
sus those without (77.5% vs. 59.3%, p <0.001). The patients with
CRAS and additionally ID were considered as CRAIDS from here
onwards, which constituted 17% of the total population, while iso-
lated ID was present in 20% of patients. The global prevalence of
having at least one comorbidity (ID, CKD, and/or anaemia) was
81.4%. The co-occurrence of ID, anaemia and/or CKD increases
with New York Heart Association (NYHA) functional class as
depicted in Figure 7B. Only syndromes containing ID show a
positive correlation with NYHA class, whereas the rest of comor-
bidities showed a negative trend with increasing NYHA class, high-
lighting the additive burden of ID.

Association between iron deficiency
and exercise capacity and quality of life

Having ID was associated with an average of 37 m less walked [95%
confidence interval (Cl) 51.2-23.4] during the 6MWT. Especially

ID on top of anaemia or CKD was significantly associated with
worse performance [IDA: —41 (-78.2 to —4.8), p-value <0.05;
CRIDS: —34.1 (—62 to —6.3), p-value <0.05; Figure 2A]. Also,
patients with ID compared to patients without another comorbid-
ity, or with anaemia alone, were less likely to complete the 6MWT
(p <0.001, online supplementary Figure S7). Moreover, having ID
either alone or on top of CKD and/or anaemia was consistently
associated with a reduced quality of life as evaluated using the
KCCQ overall summary score (p-value <0.05, Figure 2B). On aver-
age, patients with ID score 10 points (95% CI 8.14-12.1) less
compared to those without ID.

Results of differential protein expression

Generally, the number of differentially expressed biomarkers
increased with co-occurrence of ID, anaemia and/or CKD, with
CRAIDS and CRAS having the highest number of differentially
expressed biomarkers compared to patients without these comor-
bidities (171 and 154, respectively, online supplementary Table $4).
There was a considerable overlap of differentially expressed
biomarkers across the studied syndromes as shown in Figure 3A,
with the highest number of overlapping biomarkers (61) being
between CKD containing syndromes (isolated CKD, CRIDS,
CRAIDS, CRAS). Key biomarkers of these include spondin 1, kid-
ney injury molecule-1, C-C motif chemokine ligand 16, matrix
extracellular phosphoglycoprotein, Interleukin-18-binding protein,
insulin-like growth factor-binding protein 7, indicating that these
markers may be associated with kidney disease in HF Like-
wise, biomarkers shared between iron containing syndromes (ID
alone, IDA, CRIDS and CRAIDS) include transferrin receptor,
interleukin-6, FGF23, mucin-16 (cancer antigen-125), carbonic
anhydrase 9 and bone morphogenetic protein 6, suggesting that
these biomarkers are likely to be related to pathways perturbed
in iron-deficient patients. On the other hand, hematopoietic
cell-specific lyn substrate 1, cyclin-dependent kinase inhibitor 1A,
methionine aminopeptidase 2, tyrosine-protein kinase Lyn, were
only differentially expressed in isolated anaemia.

Despite the huge overlapping biomarker profiles, there was no
single shared biomarker differentially expressed across all syn-
dromes. Furthermore, there was no significant biomarker with
divergent expression (i.e. upregulated in one syndrome but down-
regulated in another) (online supplementary Figure S2). Addition-
ally, hierarchal clustering based on the patterns of differentially
expressed biomarkers showed a biological clustering similar to
their clinical definitions as evidenced by the dendrogram. The pat-
tern of the found biomarkers of IDA is similar to ID and anaemia
alone, while CRAIDS, CRAS and CRIDS cluster together, with
the highest homogeneity between CRAS and CRAIDS. Results of
differential biomarker expression analysis are presented in online
supplementary Appendix S2.

Results of pathway overrepresentation
analysis

Subsequent pathway analysis per syndrome resulted in total
into 46 pathways, with processes related to cancer, cell

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 1 (A) Venn diagram showing the prevalence of individual or combined syndromes of the BIOSTAT-CHF index cohort. (B) Prevalence
of the studied syndromes stratified by New York Heart Association (NYHA) functional classification. CKD, chronic kidney disease; CRAIDS,
cardio-renal anaemia iron deficiency syndrome; CRAS, cardio-renal anaemia syndrome; CRIDS, cardio-renal iron deficiency syndrome; ID, iron

deficiency; IDA, iron deficiency anaemia.

proliferation and survival [mitogen-activated protein kinase
(MAPK) and phosphatidylinositol-3-kinase (PI3K)-Akt signalling]
were amongst the most overlapping pathways across the stud-
ied syndromes (Figure 3B). Immune and inflammatory related
processes (including cytokine—cytokine receptor interaction
and regulation of leucocyte activation) as well as angiogenesis
associated pathways were enriched in all syndromes except
for isolated anaemia. Pathway-based hierarchical clustering
formed two major clusters showing similar grouping as those
of the found biomarkers, with CRAIDS, CRAS and CRIDS
being most similar to each other and dissimilar to the other
syndromes.

Noteworthily, the hypoxia-inducible factor 1 (HIF-1) signalling
pathway, which is known as oxygen-sensing pathway, was enriched
even in isolated ID, suggesting that ID in HF is associated with
hypoxia-related pathways. The comprehensive list of enriched
pathways per syndrome are provided in online supplementary
Appendix S2.

Differential protein expression and subsequent pathway
enrichment analyses defining ID as per the FAIR-HF study
(serum ferritin <100 pg/L, or ferritin, 100 to 300 pg/L, with TSAT
of <20%) was performed as sensitivity analysis, which resulted in
essentially similar findings (see online supplementary Appendix S,
Figure S4). Furthermore, the overall difference in biomarker and
pathway analyses between iron-deficient HF patients compared to
those without ID can be seen in online supplementary Figure S5,
which shows similar observations with ID containing syndromes
as in the present analysis.

Association of the studied comorbidities
with outcomes

During a median follow-up of 21.2 (IQR 16-27) months, 899
(41.7%) patients died or were hospitalized for HF. Isolated 1D
remained an independent predictor of all-cause mortality [1.53
(1.03-2.28), p=0.03] as well as combined outcomes [1.30
(1.05-1.70), p=0.045], while isolated anaemia and CKD were
only associated with all-cause mortality after adjustments for the
BIOSTAT-CHF risk models (except for haemoglobin) (Table 2).
Compared to HF patients with no comorbidities, higher hazards
ratios (HR) were found for ID containing syndromes, but not
significantly different when compared to the syndrome without
ID for both all-cause mortality [IDA: 2.58 (95% CI 1.73-3.85),
p <0.001 vs. isolated anaemia: 1.90 (95% CI 1.06—3.41), p =0.0.02,
p for difference = 0.275; and CRIDS: 1.74 (95% Cl 1.18-2.58),
p=0.004 vs. isolated CKD: 1.66 (95% CI 1.08-2.55), p =0.020,
p for difference = 0.774] as well as combined endpoints [IDA:
1.71 (1.29-2.26), p <0.001 vs. isolated anaemia: 1.4 (95% CI
0.91-2.15), p=0.50, p for difference = 0.366; and CRIDS: 1.67
(95% ClI 1.29-2.17), p<0.001 vs. isolated CKD: 1.18 (95% ClI
0.87-1.61), p=0.270, p for difference = 0.014] (Table 2 and online
supplementary Figure S3).

Discussion

The present study confirms that isolated ID, or on top of anaemia
and/or CKD is associated with worse quality of life, exercise
capacity, hospitalization and mortality. Differentially expressed

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 2 Forest plots displaying the associated burden of having iron deficiency (ID) in a head-to-head comparison to syndromes without
ID on (A) 6-min walk test, and (B) Kansas City Cardiomyopathy Questionnaire (KCCQ) overall summary score. CKD, chronic kidney disease;
CRAIDS, cardio-renal anaemia iron deficiency syndrome; CRAS, cardio-renal anaemia syndrome; CRIDS, cardio-renal iron deficiency syndrome;

IDA, iron deficiency anaemia. *p < 0.05; *p < 0.01; ***p < 0.001.

biomarkers in the syndromes formed by the combination of ID,
CKD and/or anaemia show considerable overlap, suggesting a
pathophysiological continuum where common pathways associ-
ated with these comorbidities are involved (Graphical Abstract).
Key enriched pathways in the studied syndromes were related to
inflammatory and immune responses, cell survival and cancer. Our
results provide supportive evidence that ID, anaemia and CKD in
HF may have shared underlying pathways, and that ID is associated
with clinical and functional impairments in HF even in the absence
of CKD and anaemia.

Prevalence of individual or combined
syndromes

The coexistence of ID, CKD and/or anaemia increases with the
severity of HF, suggesting that these comorbidities tend to coexist
in severe HF and as such, their coexistence may play an important
role in exacerbating HF. Multiple studies have reported a global ID
prevalence reaching up to 60% in HF (63% in the current study),
we report that the prevalence of ID without other comorbidities
(20%) is substantial, especially in patients with lower NYHA classes,
potentially indicating that ID is a comorbidity which manifests itself
early in disease progression caused by mechanisms not yet result-
ing in CKD and/or anaemia. We already have shown that decreased
protein intake, fluid retention, inflammation and antiplatelet use

were associated with ID in HFE2é Additionally, the exceptionally high
prevalence of ID without anaemia even in HF patients with minimal
or few symptoms (NYHA class |, 1), may point towards the pro-
gressive nature of theses syndromes since hematopoiesis remains
unaffected until late stages of persisting ID.32 Hence, early recog-
nition and treatment of ID may aid in preventing HF progression.

Despite other studies reporting a prevalence of CRAS of around
20%—27% of HF patients,>'” prevalence of CRAS in the cur-
rent study was found to be 4.9%. This large difference is likely
attributable to the fact that ID was not considered in these stud-
ies and thus, no distinction was made between CRIDS, CRAIDS
and CRAS. Accordingly, the term CRAS disregards the interaction
between ID and anaemia/CKD as well as its impact beyond the
complex interplay of CRAS.

The additive burden of iron deficiency
on exercise capacity and quality of life

Whereas it is known that both anaemia and ID are associated

334 we herein

with reduced quality of life and exercise capacity,
specifically show that ID is additively and consistently associated
with reduced quality of life and exercise capacity. Despite that
reduced cardiac reserve is the main underlying cause of exercise
intolerance and reduced quality of life in patients with HF3® other

factors such as skeletal muscle perfusion and function contribute

© 2021 The Authors. European Journal of Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.
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Figure 3 (A) Euler diagram showing overlap of the found biomarkers across the different syndromes. The size of each circle is proportional to
the number of differentially expressed biomarkers found (numbers between brackets). (B) Heatmap showing enriched pathways and biological
processes. The rows correspond to the pathways resulted from the affinity propagation algorithm for redundancy reduction, and the columns
correspond to the studied syndromes. The colour gradient of each cell refers to the —log 10 (FDR) value, indicating the over-representation
significance of each pathway (see colour key). The full list of over-represented pathways per syndrome can be found in online supplementary
Appendix S2. CKD, chronic kidney disease; CRAIDS, cardio-renal anaemia iron deficiency syndrome; CRAS, cardio-renal anaemia syndrome;
CRIDS, cardio-renal iron deficiency syndrome; ECM, extracellular matrix; EGFR, epidermal growth factor receptor; FDR, false discovery
rate; HIF-1, hypoxia-inducible factor 1; ID, iron deficiency; IDA, iron deficiency anaemia; JAK-STAT, Janus kinase (JAK)-signal transducer and
activator of transcription; KEGG, Kyoto Encyclopedia of Genes and Genomes; MAPK, mitogen-activated protein kinase; NF, nuclear factor;
PI3K, phosphatidylinositol-3-kinase; SCF, stem cell factor.

Table 2 Results of the Cox proportional hazards models for the association between the studied syndromes with
all-cause mortality and the combined endpoint

All-cause mortality Combined endpoint

Conditions Model A Model B Model A Model B
(N0, Of patients) ~  « v w r rtiiriiiiiiiiii
HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
No comorbidities (398) 1 [Reference]
Isolated ID (430) 1.66 (1.12-2.46) 0.011 1.53 (1.03-2.28) 0.03 143 (1.10-1.86) 0.006 1.30 (1.05-1.70) 0.045
Isolated anaemia (76) 2.3 (1.28-4.12)  0.005 1.90 (1.06-3.41) 0.02 1.63 (1.06-2.51) 0.023 1.4 (0.91-2.15) 0.1
Isolated CKD (209) 2.53 (1.66-3.86) <0.001 1.66 (1.08-2.55) 0.02 1.60 (1.18-2.16) <0.002 1.18 (0.87-1.61) 0.27
IDA (231) 333 (224-494) <0.001 258(1.73-3.85) <0.001 236 (1.79-3.12) <0.001 1.71(1.29-2.26) <0.001
CRIDS (336) 3.08 (2.12-4.48) <0.001 1.74 (1.18-2.58) 0.004 2.6 (2.06-3.4) <0.001 1.67 (1.29-2.17) <0.001
CRAS (106) 5.25(3.39-8.12) <0.001 2.62(1.66—4.14) <0.001 3.3 (2.39-4.56) <0.001 1.87(1.34-2.61) <0.001
CRAIDS (365) 493 (3.46-7.03) <0.001 242 (1.66-3.53) <0.001 3.62(2.84-4.6) <0.001 1.94(1.50-2.51) <0.001

Model A = univariable analysis. Model B = adjusted for BIOSTAT-CHF models, but without haemoglobin.?}
Cl, confidence interval; CKD, chronic kidney disease; CRAIDS, cardio-renal anaemia iron deficiency syndrome; CRAS, cardio-renal anaemia syndrome; CRIDS, cardio-renal
iron deficiency syndrome; HR, hazard ratio; ID, iron deficiency; IDA, iron deficiency anaemia.
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to the severity of these cardinal signs. Given the crucial role of
iron in cellular energetics beside its role in oxygen transport and
storage, cells that are metabolically active such as skeletal and
heart muscles are particularly sensitive to ID.>3 Intriguingly, the
recent FERRIC-HF Il trial demonstrated that administering iron
isomaltoside resulted in better skeletal muscle energetics with no
significant changes in haemoglobin, linking ID mechanistically with
exercise intolerance in HF independently of anaemia.’’

Regarding the additive burden of ID on quality of life, we report
that compared to those without, patients with ID either alone or
on top of anaemia and/or CKD scored on average more than 5
points less on the KCCQ overall summary score. This suggests that
ID, on top of anaemia and/or CKD, has a substantial and clinically
relevant impact on the perceived health status of HF patients.>®

Pathways and biomarkers associated
with the studied syndromes

In our study, a considerable overlap in the found biomarkers
across the seven syndromes was observed, with immune and
inflammatory related pathways being amongst the most enriched
and common pathways between the studied syndromes. This may
indicate that these syndromes fit in a spectrum where inflammation
is a key denominator, which is extensively supported by existing
evidence.3**! Many of the top enriched pathways were also related
to MAPK and PI3K/AKT signalling pathways. These pathways are
known to regulate a plethora of biological functions, including
cell proliferation, differentiation, survival and cancer.*? Notably,
multiple cancer-related terms were also enriched such as ‘pathways
in cancer’, ‘melanoma’, and ‘glioma’. A study found that incidence
of cancer is significantly higher in patients with CRAS.*® Yet, the
contribution of ID associated with the incidence of cancer in HF
has not been recognized despite the known significant role of iron
in cancer.** Whether the studied syndromes are associated with
increased risk of cancer development through perturbations in
these pathways remains to be elucidated.

An interesting observation was the over-representation of
hypoxia-associated pathways (HIF-1 signaling pathway and angio-
genesis) even in those with isolated ID (Figure 3B). This pathway
may represent the convergence/intersection point between iron
metabolism, hypoxia, immunity, inflammation and cancer. Recently,
results of multiple phase 3 trials have shown that targeting this
pathway using oral HIF-prolyl hydroxylase inhibitors such as rox-
adustat or vadadustat, improved iron bioavailability and increased
haemoglobin levels with no major side effects compared to darbe-
poetin alfa in patients with CKD.*** These findings have poten-
tially fascinating prospects in treating HF patients with ID as these
agents have advantages above the intravenous administration of
iron such as being orally administered, reducing hepcidin levels,
inducing physiological levels of endogenous erythropoietin produc-
tion and having potentially positive effects on lipid metabolism.*’
Whether HIF stabilizers could be a safe therapeutic option for tar-
geting CKD anaemia and/or ID in HF is currently unknown.

Lastly, the patterns of clustering syndromes based on the
associated pathways (Figure 3B) and biomarkers (online supple-
mentary Figure S2) are quite similar to their clinical definitions,

exemplifying the commonalities and differences between these syn-
dromes. The greatest resemblance in the associated pathways and
biomarkers was observed between CRAIDS, CRAS and CRIDS,
potentially indicating that these three syndromes, although having
different clinical definitions, may actually be different manifestations
of the same entity in the same spectrum with varying degrees
of impact on outcomes. FGF23 and 21, interleukin-6, mucin 16,
growth differentiation factor 15, natriuretic peptide A and B, are
amongst the topmost upregulated proteins in these syndromes,
which are known biomarkers with clinical significance in patients
with HE3%%4 Fyrther whole proteome and/or transcriptome anal-
ysis is warranted to gain mechanistic insights on the underlying
biological similarities and differences between these syndromes.

Prognostic impact

Numerous studies have shown that ID is associated with worse
mortality independently of haemoglobin and eGFR.? Using a large
cohort of HF patients, the current evaluation extends on these
observations by showing that ID itself without comorbid anaemia
or CKD was significantly associated with increased incidence of not
only mortality but also HF rehospitalization. Additionally, comor-
bidity specific analysis revealed that both IDA and CRIDS were
consistently associated with lower survival rates and increased
hospitalization compared to having only anaemia or CKD alone,
underscoring the additive contribution of ID on outcomes as well
as indicating that simultaneous existence of these comorbidities
may worsen each other. Sub-analyses of the FAIR-HF trial have
highlighted the benefits of correcting ID on clinical and functional
metrics even in non-anaemic patients®' as well as those with pre-
served kidney function,®? suggesting ID as a therapeutic target
in all symptomatic HF patients irrespective of anaemia or CKD.
Whether its correction is also associated with improved outcomes
with or without the presence of CKD and/or anaemia remains to
be established by the ongoing trials.>

Limitations

There are several limitations to be acknowledged. Firstly, the
analysis included measurements obtained from blood samples only
at study inclusion, making it difficult to look into longitudinal
changes. Additionally, although our sample size was large, dividing
our patients into comorbidity groups has diminished this advantage.
The resulting imbalance in syndromes could have influenced the
power of our analysis and therefore, our results should be validated
with larger sample size. Secondly, although we used quite a large
number of biomarkers, it remains a small part of the whole
proteome. The measured panels are pre-selected and most of them
are related to inflammation and cardiovascular disease, making our
analysis potentially biased towards finding overlap between the
studied syndromes in these domains. Therefore, comprehensive
analysis of the whole proteome is warranted to extend and validate
our findings. Lastly, our cohort is mainly comprised of patients with
HF with a reduced ejection fraction. As such, extrapolation of these
observations to HF with preserved ejection fraction may not be
applicable.
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Conclusion

Our results show that ID, CKD and/or anaemia in patients with
HF have great overlap in biomarker profiles, suggesting common
pathways associated with these syndromes. Also, we provide
supportive evidence that ID either alone or on top of CKD and
anaemia is associated with adverse effects on quality of life, exercise
capacity and prognosis of patients with worsening HF.

Supplementary Information

Additional supporting information may be found online in the
Supporting Information section at the end of the article.
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