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Abstract
Purpose: Noise power spectrum (NPS) is a commonly used performance
metric to evaluate noise-reduction techniques (NRT) in imaging systems. The
images reconstructed with and without an NRT can be compared via their NPS
to better understand the NRT’s effects on image noise. However, when compar-
ing NPSs,simple visual assessments or a comparison of NPS peaks or medians
are often used. These assessments make it difficult to objectively evaluate the
effect of noise reduction across all spatial frequencies. In this work, we propose
a new noise reduction profile (NRP) to facilitate a more complete and objective
evaluation of NPSs for a range of NRTs used specifically in computed tomog-
raphy (CT).
Methods and materials: The homogeneous section of the ACR or Catphan
phantoms was scanned on different CT scanners equipped with the following
NRTs: AIDR3D, AiCE, ASiR, ASiR-V, TrueFidelity, iDose, SAFIRE, and ADMIRE.
The images were then reconstructed with all strengths of each NRT in reference
to the baseline filtered back projection (FBP) images. One set of the baseline
FBP images was also processed with PixelShine, an NRT based on artificial
intelligence. The NPSs of the images before and after noise reduction were
calculated in both the xy-plane and along the z-direction. The difference in the
logarithmic scale between each NPS (baseline FBP and NRT) was then calcu-
lated and deemed the NRP.Furthermore, the relationship between the NRP and
NPS peak positions was mathematically analyzed.
Results: Each NRT has its own unique NRP. By comparing the NPS and NRP
for each NRT, it was found that NRP is related to the peak shift of NPS. Addi-
tionally, under the assumption that the NPS has one peak and is differentiable,
a relationship was mathematically derived between the slope of the NRP at the
peak position of the NPS before noise reduction and the shift of the NPS peak
position after noise reduction.
Conclusions: A new metric, NRP, was proposed based on NPS to objectively
evaluate and compare methods for noise reduction in CT.The NRP can be used
to compare the effects of various NRTs on image noise in both the xy-plane and
z-direction. It also enables unbiased assessment of the detailed noise reduction
properties of each NRT over all relevant spatial frequencies.
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1 INTRODUCTION

Since the first commercially available iterative recon-
struction methods appeared in the late 2000s,1 a
range of noise-reduction techniques (NRT) has been
introduced. Examples include statistical and model-
based iterative reconstructions,as well as deep learning
reconstructions.2–5 Recently, a post-processing denois-
ing technique based on deep learning that takes recon-
structed images as input has also become available.6

Unlike filtered back projection (FBP) reconstruction,
which is a linear process, these NRTs are nonlinear
processes and can therefore generate output images
with unique characteristics and appearance.5,7,8 With
the increasing demand for lower computed tomog-
raphy (CT) doses in recent years, the evaluation
of NRTs has become progressively relevant and
studied.5,9,10

The detailed evaluation of image noise is essential
to the assessment of any NRT. In the evaluation of
image noise, it is important to assess both the mag-
nitude (amount) and texture (apperance) of noise. For
example, Figure 1a,b are two CT images with a stan-
dard deviation (SD) of 15.3 and 46.3 Hounsfield units
(HU), respectively. The two images maintain a similar
image texture but were obtained at two different radi-
ation exposures. Figure 1c is an image derived from (b)
after Gaussian filtering. Both (a) and (c) have the same
SD of 15.3 HU, but very distinct image characteristics
due to different texture. This example clearly indicates
the importance of texture evaluation when compar-
ing images obtained from different reconstructions and
NRTs.

Noise power spectrum (NPS) can be used to measure
both the magnitude and texture of noise and is com-
monly adopted for evaluation of NRTs.11–13 The square
root of the area under the NPS curve (AUC) shows the
noise magnitude,and the shape of the curve represents
the noise texture over all spatial frequencies.

When evaluating an NRT using NPS, it is important
to evaluate not only the NPS of the denoised images

reconstructed with the NRT, but also the NPS of the
baseline FBP images without noise reduction.These two
NPS curves are compared and the changes in the AUC
and NPS-curve shapes are evaluated for the NRT. How-
ever, the comparison of the two NPS curves is normally
performed either visually2,14–16 or by comparing only the
peak or median frequencies.4,11,17,18 A visual compari-
son of the curves cannot on its own provide an objective
assessment of noise reduction at each frequency. Simi-
larly,comparing only the peak or median frequency does
not capture the full information of NPS because it is only
a single value metric.

It is especially challenging to compare NRTs using
NPS when the NRTs are from different CT scanners.
Each unique CT scanner operating under specific image
acquisition conditions will produce baseline FBP images
that are also unique. As a result, the optimal starting
point for assessment of any NRT is evaluation of the
NPS of the denoised image against the NPS of the
baseline FBP image. The difficulty with this method
then arises when these relative evaluations cannot be
compared objectively across the range of NRTs of
interest.

For example, Figure 2a,b shows the xy-plane and z-
direction NPSs of FBP and denoised images obtained
from CT scanner #1 with NRT A and CT scanner #2 with
NRT B, respectively. As expected, the NPSs of the two
baseline FBPs (in blue) are not equivalent because they
are derived from two different CT scanners. Therefore,
when the objective is to fairly evaluate NRT A relative
to NRT B, their respective NPSs from denoised images
cannot be compared directly. Instead, the relative differ-
ences between each unique set of: (1) baseline FBP
NPS and (2) NRT NPS must be compared. But even in
this scenario, an objective comparison is still difficult to
make using NPS.

Figure 3 shows the NPS curves in Figure 2 plotted
on a log scale. The difficulty remains in determining
whether the two NPS curves are approximately paral-
lel. This determination becomes challenging when the
NPS maintains a large curvature.There is no criterion to

(a) (b) (c)

F IGURE 1 (a) Higher radiation exposure image, (b) lower radiation exposure image, and (c) Gaussian filtering of (b) to match the SD of (a).
From the SD alone, it is not possible to distinguish the images of higher and lower radiation exposure images
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F IGURE 2 (a) and (b) are two examples of the xy-plane and z-directional NPSs of the FBP and NRT images from two different CT
scanners. Since the NPSs of the FBP images (blue) are different, it is not possible to simply compare NPSs of NRT A (red) and B (green) to
draw conclusion

F IGURE 3 Log scale representation of NPS shown in (a) and (b) of Figure 2. Even with the log scale, it is difficult to objectively recognize
the subtle differences between (a) and (b)
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TABLE 1 Noise-reduction techniques for comparison

Manufacturer Abbreviation Base Algorithm Input Data

Canon AIDR3D Statistical Iterative Reconstruction Image and projection

AiCE Deep Learning Reconstruction Projection

GE ASiR Statistical Iterative Reconstruction Image and projection

ASiR-V Hybrid of Statistical and Model-based Iterative Reconstruction Image and projection

TrueFidelity Deep Learning Reconstruction Projection

Philips iDose Statistical Iterative Reconstruction Image and projection

Siemens SAFIRE Statistical Iterative Reconstruction Image and projection

ADMIRE Model Based Iterative Reconstruction Image and projection

AlgoMedica PixelShine Deep Learning-based Noise Reduction Image

objectively capture the difference between the two NPS
curves in Figure 3.

To remedy this shortcoming, we recently proposed
central frequency ratio (CFR) and noise magnitude ratio
(NMR) as metrics for comparing NRTs.19 This method
has the advantage that an NRT with multiple different
settings of noise reduction can be represented by a sin-
gle performance curve between CFR and NMR, making
it possible to compare several NRTs on the same basis.
A preferred NRT is the one that maintains CFR while
increasing reducing noise, or NMR. However, even with
this method, the complexity of NPS is reduced to a sin-
gle value such as the center of gravity of the NPS over
spatial frequency (CFR), thus making it difficult to cap-
ture the completeness of the NPS.

In order to further improve the evaluation and compar-
ison of NRTs, it is desirable to objectively visualize the
complete degree of noise reduction of each NRT. The
primary aim of this work is to propose the new metric
of noise reduction profile (NRP) to objectively evaluate
NRTs of various CT vendors shown in Table 1.

A range of NRTs were evaluated, with brief descrip-
tions of each as follows:

AIDR3D8,20 is one of the iterative reconstruction
methods offered by Canon Medical Systems
(Otawara, Tochigi, Japan), now in its fourth gen-
eration. AIDR3D reduces noise by repeating the
analysis and processing of data in raw and image
data spaces. AiCE2 is Canon’s latest reconstruc-
tion method using deep learning.

ASiR21,22 is the first generation of statistical itera-
tive reconstructions from GE Healthcare (Wauke-
sha, Wisconsin, USA). ASiR-V23 is the third gen-
eration of iterative reconstruction, with improved
noise and object modeling compared to ASiR,
and a modeling process that incorpoates some of
the physical models used in the second genera-
tion VEO.23 TrueFidelity is a new, state-of -the-art
denoising reconstruction based on deep learning.

iDose24,25 is a fourth-generation hybrid iterative
reconstruction algorithm introduced by Philips
Healthcare (Eindhoven, Netherlands). The itera-

tive reconstruction is performed in both the raw
and image data spaces.

SAFIRE26 is the second generation of itera-
tive reconstructions from Siemens Healthineers
(Forchheim, Germany) and is classified as a sta-
tistical iterative reconstruction. ADMIRE27 is the
third generation. It utilizes a statistical model of
both raw and image data as well as a system
model of forward projection, putting it in the cate-
gory of model-based iterative reconstructions.28

PixelShine6,19,29 is a deep learning-based noise-
reduction from AlgoMedica (Sunnyvale, Califor-
nia, USA). It takes reconstructed CT images as
input and operates independently of the vendor,
CT model, acquisition conditions, or reconstruc-
tion used.

2 MATERIALS AND METHODS

The homogeneous module of the ACR CT phantom
(model 464, Gammex-RMI, Middleton, Wisconsin, USA)
or Catphan 500 phantom (The Phantom Laboratory,
Salem,New York) was scanned on various CT scanners
and reconstructed using FBP and various NRTs. Details
of the CT models, reconstruction methods, as well as
acquisition and reconstruction conditions are shown
in Table 2. The FBP images were baseline images
and those reconstructed using the NRTs of ADMIRE,
AIDR3D, AiCE, ASiR, ASiR-V, SAFIRE, TrueFidelity, and
iDose were denoised images. For PixelShine, the FBP
image at 25 mA was used as baseline, and was pro-
cessed with all strengths of PixelShine as denoised
images. All acquisitions were performed twice to elim-
inate image background in the NPS calculation.

2.1 Calculation of NPS

We used the method of Friedman et al.30 to calcu-
late NPS. As shown in Figure 4, 12 square cuboids
of 128 pixels × 128 pixels × 21 slices were extracted
from the difference of the phantom images acquired
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F IGURE 4 Extracted 12 square cuboids from the phantom images

F IGURE 5 Calculation of NPSxy and NPSz from 3D NPS

consecutively (twice) to remove the background of the
image, and 3D Fast Fourier Transform was applied to
each of them. The ensemble mean of the squares of
the corresponding voxel values was then calculated and
divided by two for the 3D NPS. As shown in Figure 5,
the rotational mean of the 3D NPS in the z-axis direc-
tion was calculated and its radial profile was defined as
NPSxy and its z-axis profile as NPSz.

2.2 Definition of Noise Reduction
Profile

Let NPSxy,NRT (f ) be the NPS in the xy-plane of a
denoised image by an NRT, and let NPSxy,FBP(f ) be the
NPS of an FBP image, where f is the spatial frequency.

Then NRPxy(f ) is the noise reduction profile of the NRT,
and is defined as

NRPxy(f ) = log
(
NPSxy,FBP(f )

)
− log

(
NPSxy,NRT (f )

)
= log

(NPSxy,FBP(f )

NPSxy,NRT (f )

)
, (1)

a logarithmic scale of the noise-reduction rate per spa-
tial frequency f.

Similarly, for the z-axis direction,NRPz(f ) is defined as

NRPz(f ) = log
(
NPSz,FBP(f )

)
− log

(
NPSz,NRT (f )

)
= log

(
NPSz,FBP(f )

NPSz,NRT (f )

)
, (2)
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where NPSz,NRT (f ) and NPSz,FBP(f ) are the z-axis NPS
of the denoised and FBP images, respectively.

2.3 Physical meaning of NRP

NRP of an NRT is the log scale of the noise reduc-
tion ratio at each spatial frequency. The log scale is
to reduce the dynamic range when comparing different
DRTs.When calculating NRP, it is critical to use the same
kernel for the reconstructions with and without NRT to
prevent factors other than noise reduction from appear-
ing in the NRP. Reconstruction kernel selection affects
the shape of NPS because each kernel is a filter, which
is in general a linear operator. For instance, a soft kernel
(or low-pass filter) shifts the NPS curve toward a lower
frequency, while a lung filter (or high-pass filter) shifts
the NPS curve toward a higher frequency. Therefore, if
different kernels are selected to reconstruct denoised
and FBP images, both the difference in noise compo-
nents due to NRT and the frequency processing due
to the usage of different kernels will be included in the
NRP. In this scenario, the noise reduction characteris-
tics of the NRT cannot be calculated correctly. To our
knowledge, Canon’s AiCE and FIRST, GE’s VEO, and
Siemens’ SAFIRE do not provide the same kernels of
FBP in their corresponding NRTs.Hence,when calculat-
ing NRP for these NRTs, the most similar kernels should
be selected for the reconstruction of the denoised and
FBP images. For some vendors, it is straightforward to
find similar kernels for NRT and FBP. For example, in
Siemens, if two kernels are with the same number, then
they are of similar kernel. If the similar kernels are not
explicit, the best way to find out for sure is to contact the
vendor.

3 RESULTS

Figures 6 and 7 show the xy plane and z-axis NRP
curves of the NRTs in Table 1. For reference, the cor-
responding NPS curves are also shown in Figure 6. In
NRP and NPS, graphs with the same intensity at each
NRT are shown in the same color. The NRP curves in
both figures are (a) ADMIRE, (b) AIDR3D, (c) ASiR, (d)
ASiR-V, (e) AiCE, (f) PixelShine, (g) SAFIRE, (h) True-
Fidelity, and (i) iDose. For each NRT, NRP curves for all
the strengths of noise reduction are plotted together in a
single graph. These graphs clearly show that each NRT
has its own uniquely shaped NRP curves, which were
not readily discernable in the NPS curves.

Figure 6a shows the NRP and NPS of ADMIRE in the
xy-plane, and Figure 7a shows the NRP of ADMIRE in
the z-direction. The NRP of ADMIRE rises slowly and
has a gentle peak around 0.7. The slope of the increas-
ing NRP becomes larger as the strength of ADMIRE
increases. Observing the corresponding NPS, the NPS

peak shifts to the lower frequency side with the increas-
ing strength of ADMIRE.As for the z-direction, the curve
is slightly curved, but almost constant.

The peaks of the NRPs of AIDR3D are around
the spatial frequency of 0.85 mm–1 in Figure 6b, and
the noise reduction rate is almost proportional to the
increase of spatial frequency up to 0.85 mm–1. The
slope of the rising NRP of AIDR3D varies slightly
depending on the strength of AIDR3D, but the slope is
relatively large even at the weakest strength. In the z-
direction (Figure 7b), the NRPs are bell-shaped curves
around the spatial frequency of 0.6 mm–1, exhibiting a
larger change over the spatial frequencies than the other
NRTs, whose NRPs in the z-direction are almost con-
stant.

Figures 6c and 7c show the NRPs of ASiR.The differ-
ence in noise reduction rate between low and high fre-
quencies at the strongest intensity in the xy-direction is
the largest compared to the other NRTs. After 0.8 mm–1

where the NPS is close to zero, it drops sharply. On the
other hand, the NRP in the z-direction is constant for all
frequencies.

Figures 6d and 7d show the NRP of ASiR-V in the
xy and z directions. The NRP in the xy plane increases
from 0 to 0.4 mm−1 and then becomes almost constant
between 0.4 and 0.8 mm−1. As in ASiR, there is a large
difference in the noise reduction rate between the low
and high frequency regions at strong strength, but the
noise reduction rate at the high frequency side of the
NRP is smaller than that of ASiR. In the z direction,
the NRP is flat, as in ASiR.

As shown in Figure 6e, the NRPs of AiCE increase
rapidly between 0 and 0.1 mm−1 and then gradually
increase towards 0.8 to 1.0 mm−1.For the STRONG set-
ting, there is a large difference in the noise reduction rate
between the low and high frequency regions. However,
for the MILD setting, the NRP is almost constant after
0.1 mm−1. On the other hand, as shown in Figure 7e,
the z-axis NRPs are not flat, but has a slight curve.

As shown in Figure 6f , the NRPs of PixelShine
increase between 0 and 0.15 mm–1, and then remain
constant up to 0.8 mm–1. After 0.8 mm–1 where the
NPS is close to zero,they decrease slightly .On the other
hand, as shown in Figure 7f , the z-axis NRP is flat for
the strengths of A1–A5, whereas the gentle bell-shaped
curves with peaks around 0.6 mm–1 are observed
above A6.

The NRP in the xy-plane of SAFIRE in Figure 6g is
similar to that of ADMIRE in (a).The slope of the tangent
line of the NRP around 0.25 mm−1 is larger for SAFIRE
than for ADMIRE.On the other hand,the z-direction NRP
of SAFIRE in Figure 7g has a larger curve shape than
that of ADMIRE.

The xy-plane NRPs for TrueFidelity show curves with
peaks around 0.7 mm–1 and steep declines above
0.7 mm–1 where the NPS is close to zero, as shown
in Figure 6h. The slopes of the curves become steeper
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F IGURE 6 NRP (top) and NPS (bottom) for each NRT in the xy-plane; (a) ADMIRE, (b) AIDR3D, (c) ASiR, (d) ASiR-V, (e) AiCE, (f)
PixelShine, (g) SAFIRE, (h) TrueFidelity, and (i) iDose
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F IGURE 7 NRP (top) and NPS (bottom) for each NRT in the z direction; (a) ADMIRE, (b) AIDR3D, (c) ASiR, (d) ASiR-V, (e) AiCE, (f)
PixelShine, (g) SAFIRE, (h) TrueFidelity, and (i) iDose
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as the strength increases, although even at the strength
H (high), the difference between the low and high fre-
quency ranges is smaller than those of ASiR and
ASiR-V. On the other hand, the NRPs in the z-direction
show relatively flat curves with different peak positions
depending on the strength (Figure 7h).

Next, as shown in Figure 6i, the NRPs in the xy-plane
of iDose slowly increase between 0 and 0.3 mm–1, flat-
ten up to about 0.7 mm–1, and then decrease slightly
above 0.7 mm–1 where the NPS is close to zero. As
shown in Figure 7i, the NRPs in the z-direction are
almost flat with a slight curvature.

4 DISCUSSIONS

In order to understand the NRPs obtained in Figures 6
and 7, we examined the NRPs of three simple noise
reduction approaches of scanning at a high radiation
dose, smoothing in the xy-plane with a two-dimensional
Gaussian filter and smoothing in the z-axis (table direc-
tion) with a one-dimensional Gaussian filter. These are
all linear noise reduction methods, different from the
nonlinear NRTs in Table 1. It is useful to interpret the
behavior of the nonlinear methods in comparison to
those of the linear methods, which are more readily and
easily understood.

In the method of noise reduction by increasing radi-
ation dose, images were acquired at 25 mA as a base-
line, and then at 50, 75, 100, and 150 mA (all considered
denoised images). All images were reconstructed with
FBP. The NPS and NRP are in Figure 8a. There is no
shift of the frequencies for the peaks of the NPS in the
xy-plane. It is difficult to determine if a shift has occurred
because there is no peak for the NPS in the z-axis direc-
tion. The NRP on the xy-plane is constant in the range
of 0–0.8 mm–1, and decreases slightly after 0.8 mm–1

where the NPS is almost zero. The NRP in the z-axis
direction was also constant in the entire range of spatial
frequencies.

In noise reduction by two-dimensional Gaussian filter-
ing in the xy-plane (GaussXY), a Gaussian filter with σ
= 0.4 to 1.0 pixels was applied to a baseline 25 mA
FBP image for a denoised image. The noise texture
is smoothed only in the xy plane, and it is smoothed
more by a large σ. There is no impact to the z-direction.
Figure 8b shows the NPS and NRP in the xy-plane and
z-direction, and the NPS peak shifts to the left with σ
only in the xy-plane. Again it is difficult to determine
the NPS in the z-axis direction because there is no
peak.The NRP in the xy-plane increases between 0 and
0.7 mm–1, reaches a peak between 0.7 and 0.75 mm–1,
and then decreases after 0.75 mm–1 where the NPS is
close to zero. Furthermore, between 0 and 0.7 mm–1,
the slope of NRP increases as σ increases. In con-
trast, the NRP in the z-direction is constant over all
frequencies.

Gaussian filtering along the z-axis (GaussZ) with
σ = 0.5 to 2.5 slices was applied to the baseline
25 mA FBP image for a denoised image. This is
equivalent to denoising by image reconstruction of
thicker slices, which reduces noise in the xy-plane.
Figure 8c shows the NPS and NRP in the xy-plane
and z-direction. In the NPS, there is no shift of the
peaks in the xy-plane, but in the z-axis, the entire
NPS curve is shifted to a lower frequency. The NRP
in the xy-plane is constant for all frequencies. In the
z-direction, The NRP in the z-direction has a peak
around the spatial frequency of 0.4–0.6 mm–1, and
the slope from 0 to the peak becomes larger as σ
increases.

4.1 Relationship between NRP
and NPS

From Figures 6 and 8, there is a direct relationship
between the shape of the NRP curve and the shift of
the NPS peak position. Here we derive the relationship
for the case where only one peak exists in the NPS of
the xy plane.

Let NPSFBP(f ) be the NPS of the image without
noise reduction, and be a function with one peak at f =
a(a > 0), differentiable for f > 0, monotonically increas-
ing for f < a, and monotonically decreasing for f > a.
Similarly, let NPSNRT (f ) be the NPS of the image after
noise reduction, with one peak at f = b(b > 0), differ-
entiable for f > 0, monotonically increasing for f < b,
and monotonically decreasing for f > b. From these
conditions,

NPS′

FBP (a) = 0, and NPS′

NRT (b) = 0.

Here, from Equation (1), NRP(f ) can be expressed as

NRP(f ) = log
(

NPSFBP(f )
NPSNRT (f )

)

= log (h(f )) .

Then,

NPSFBP (f ) = h(f )NPSNRT (f ).

From the Product Rule of calculus,

NPS′

FBP (a) = h′ (a) NPSNRT (a) + h (a) NPS′

NRT (a) = 0

NPS′

NRT (a) = −
NPSNRT (a)

h (a)
h′ (a) .

Here, NPSNRT (f ) > 0 and h(f ) > 0, there are three
possible values for NPS′

NRT (a).
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F IGURE 8 From top, NRP and NPS in the xy-plane and the z-direction, respectively, when noise is reduced by (a) scanning with higher
radiation doses, (b) applying a two-dimensional Gaussian filter in the xy-plane, and (c) applying a one-dimensional Gaussian filter in the z-axis.
The NRPs are constant in both the xy and z directions when the images are captured with higher radiation doses

a. When h′(a) > 0, NPS
′

NRT (a) < 0. The slope of the
tangent line of NPSNRT (f ) at f = a is negative, and
NPSNRT (f ) has a decreasing trend at f = a. Here,
NPSNRT (f ) has one peak at f = b(b > 0). It is differ-
entiable for f > 0, monotonically increasing for f < b
and monotonically decreasing for f > b. This leads to
a > b.

Therefore, when h′(a) > 0, the peak position of
NPSNRT (f ), f = b, is shifted to the lower frequency
side than the peak position of NPSFBP(f ), f = a.

b. When h′ (a) = 0, NPS′

NRT (a) = 0. In this case, a = b.
When h′ (a) = 0, the peak position of NPSNRT (f ) is
the same as the peak position of NPSFBP(f ).

c. When h′(a) < 0, NPS′

NRT (a) > 0. The peak position
f = b of NPSNRT (f ) is shifted to the high frequency
side than the peak position f = a of NPSFBP(f ).

Here, because NRP (f ) = log(h(f )) ,

NRP
′

(f ) =
h′(f )
h(f )

.

Since h(f ) > 0, the sign of NRP′(f ) always matches
that of h′(f ).

In summary, at the peak position f = a of NPSFBP(f ),

∙ when NRP
′

(a)>0, the peak position of NPSNRT (f ) is
shifted to the lower frequency side than the peak posi-
tion of NPSFBP(f );

∙ when NRP
′

(a) = 0, the peak position of NPSNRT (f )
matches the peak position of NPSFBP(f );

∙ when NRP
′

(a) < 0, the peak position of NPSNRT (f )
is shifted to the higher frequency side than the peak
position of NPSFBP(f ).
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TABLE 3 Center frequencies (mm−1) of baseline and denoised images. The central frequency does not shift at higher radiation dose levels.
However, the central frequencies shift with AiCE MILD and PixelShine even though there is no change at the peak position of NPS

Higher Dose AiCE PixelShine
Central frequency Central frequency Central frequency

Baseline 0.329 Baseline 0.356 Baseline 0.329

50 mA 0.329 MILD 0.317 A1 0.326

75 mA 0.326 A2 0.323

100 mA 0.329 A3 0.319

150 mA 0.324 A4 0.316

A5 0.312

A6 0.315

A7 0.312

A8 0.309

A9 0.305

F IGURE 9 The xy-plane and z-axis NRP of the NRTs in Figure 2: (a) NRT A and (b) NRT B. The two NRPs can be compared even when
the NPS of the FBP images are different

The mathematically derived relationship can be con-
firmed in Figure 6, where the blue color curve in the
NPS represents NPSFBP(f ). From the slope of NRP
at the peak position of the NPS, we found that the
slope of NRP is close to zero for AiCE MILD and Pix-
elShine at all strengths. The peak positions of these
NPSs are not shifted from the ones of the FBP NPSs.
For the other NRTs, the slope of the NRP at the peak
position of the NPS of FBP is positive, and the peak
position of the NPS is shifted to the lower frequency
side.

Although the slopes of the NRPs at the peak positions
of the NPSs before noise reduction are zero for AiCE
MILD and PixelShine, they are clearly different from the
higher dose imaging in Figure 8, where the NRPs are
constant over the entire spatial frequencies. Therefore,
we investigated the central frequencies before and after
noise reduction by scanning at higher radiation doses
for AiCE MILD,and PixelShine.The results are shown in
Table 3. The central frequency does not shift at higher
radiation dose levels. However, the central frequen-
cies shift with AiCE MILD and PixelShine even though
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there is no change in the peak position of NPS. It is
possible that if the NRPs are not completely constant,
a shift in the central frequency of the NPS may occur
even if there is no shift of the peak position in NPS. The
proof is shown in the Appendix.

4.2 Comparison by NRP

Calculating NRP facilitates the comparison of NRTs,
even when their FBP images are different. For exam-
ple, Figure 9 shows the NRP curves for the two NRTs
shown in (a) and (b) of Figure 2. Each NRT can be rep-
resented by a single curve, and the NRP as a function
of spatial frequency becomes apparent at a glance. In
addition, even subtle differences become noticeable, as
can be seen from the z-axis NRPs.

It is important to understand that there are the-
oretical limitations to using NPS for evaluating and
comparing NRTs. The definition of NPS assumes lin-
earity of the system and stationarity of the noise,
which may be invalidated in situations where nonlin-
ear algorithms are used for image reconstruction and
denoising. It is still possible, however, that the NPS
can serve as one of qualitative metrics to assess the
quality of CT systems using nonlinear reconstruction
techniques.

In addition, it should be noted that all of the NRTs
shown in Table 1 are nonlinear, so the noise reduction
properties may depend on parameters such as radiation
dose, convolution kernel, and FOV. When attempting to
make direct comparisons, it is important to pay attention
to these parameters.

Finally, when computing the NRP, it is important to
use the same kernel with and without NRT. Canon’s
AiCE and FIRST and Siemens’ SAFIRE do not use the
same kernel as FBP. The most similar kernel should be
selected to reconstruct the denoised and FBP images
when calculating the NRP.

5 CONCLUSIONS

We proposed a new metric, the noise reduction profile
(NRP), for evaluating and comparing NRTs in CT imag-
ing. We calculated the NRP curves for most of the com-
mercially available NRTs and demonstrated that each
NRT has its own unique NRP. Furthermore, the relation-
ship between the shape of the NRP and the shifts in
NPS due to application of NRTs was mathematically
clarified.The NRP facilitates objective comparison of the
detailed noise reduction properties of each NRT over all
relevant spatial frequencies.
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APPENDIX
RELATIONSHIP BETWEEN NRP AND NPS CEN-
TRAL FREQUENCY SHIFT
Let NPSFBP(f ) be the NPS of the image before noise
reduction, and let NPSFBP(f ) > 0 and differentiable for
f > 0. Similarly, let NPSNRT (f ) be the NPS of the image
after noise reduction by a NRT, and let NPSNRT (f ) > 0
and differentiable for f > 0.

From Equation (1), NRP(f ) can be expressed as

NRP (f ) = log
(

NPSFBP(f )
NPSNRT (f )

)

= log (h(f )) .

Then,

NPSFBP (f ) = h(f ) ⋅ NPSNRT (f ). (A1)

Let the area under NPSFBP(f ) be SFBP and the area
under NPSNRT (f ) be SNRT . Then the central frequency
of NPSFBP(f ), CFFBP is

CFFBP =
1

SFBP ∫
1

0
f ⋅ NPSFBP(f )df .

From Equation (A1),

CFFBP =
1

SFBP ∫
1

0
f ⋅ h(f ) ⋅ NPSNRT (f )df .

Here, by describing

G (f ) = ∫ f ⋅ NPSNRT (f )df, (A2)

and using Integration by parts, we get

CFFBP =
1

SFBP

{
[G(f ) ⋅ h(f )]10 − ∫

1

0
G(f ) ⋅ h′(f )df

}
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=
1

SFBP

{
G (1) ⋅ h (1) − G (0) ⋅ h (0)

− ∫
1

0
G(f ) ⋅ h′(f )df

}
. (A3)

Now, from Equation (A2),

∫
1

0
f ⋅ NPSNRT (f ) df = G (1) − G (0) ,

and then,

G (1) = ∫
1

0
f ⋅ NPSNRT (f )df + G (0) .

Substituting this into Equation (A3), we get

CFFBP =
1

SFBP

{
h (1)∫

1

0
f ⋅ NPSNRT (f )df + G (0) ⋅ h (1)

− G (0) ⋅ h (0) − ∫
1

0
G(f ) ⋅ h′(f )df

}

=
h (1)
SFBP

⋅ SNRT ⋅
1

SNRT ∫
1

0
f ⋅ NPSNRT (f )df

+
G (0)
SFBP

[h (1) − h (0)] −
1

SFBP ∫
1

0
G(f ) ⋅ h′(f )df

=
SNRT

SFBP
⋅ h (1) ⋅ CFNRT +

G (0)
SFBP

[h (1) − h (0)]

−
1

SFBP ∫
1

0
G(f ) ⋅ h′(f )df (A4)

Here, when h (f ) = k,

h (1) = h (0) = k,

h′(f ) = 0.

Therefore,the second and third terms in Equation (A4)
are both zero, and

CFFBP =
SNRT

SFBP
⋅ k ⋅ CFNRT . (A5)

Here, because of NPSFBP (f ) = k ⋅ NPSNRT (f ),

∫
1

0
NPSFBP(f )df = ∫

1

0
k ⋅ NPSNRT (f )df

= k ∫
1

0
NPSNRT (f )df .

Then,

SFBP = k ⋅ SNRT

k =
SFBP

SNRT
.

Substituting this into Equation (A5), we get

CFFBP =
SNRT

SFBP
⋅ k ⋅ CFNRT

=
SNRT

SFBP
⋅

SFBP

SNRT
⋅ CFNRT

= CFNRT .

When NRP(f ) is constant over f , the central fre-
quencies of NPSFBP(f ) and NPSNRT (f ) coincide. When
NRP(f ) is not constant, the second and third terms in
Equation (A4) are not zero, and the central frequencies
of NPSFBP(f ) and NPSNRT (f ) may not coincide.
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