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Gonadal development is acomplex process that involves sex determination followed
by divergent maturation into either testes or ovaries'. Historically, limited tissue

accessibility, alack of reliable in vitro models and critical differences between
humans and mice have hampered our knowledge of human gonadogenesis, despite
itsimportance in gonadal conditions and infertility. Here, we generated a
comprehensive map of first- and second-trimester human gonads using a
combination of single-cell and spatial transcriptomics, chromatin accessibility
assays and fluorescent microscopy. We extracted human-specific regulatory
programmes that control the development of germline and somatic cell lineages by
profiling equivalent developmental stages in mice. In both species, we define the
somatic cell states present at the time of sex specification, including the bipotent
early supporting population that, in males, upregulates the testis-determining factor
SRY and sPAX8s, agonadal lineage located at the gonadal-mesonephricinterface. In
females, we resolve the cellular and molecular events that give rise to the first and
second waves of granulosa cells that compartmentalize the developing ovary to
modulate germ cell differentiation. In males, we identify human SIGLECI5" and
TREMZ' fetal testicular macrophages, which signal to somatic cells outside and inside
the developing testis cords, respectively. This study provides acomprehensive
spatiotemporal map of human and mouse gonadal differentiation, which can guide
invitro gonadogenesis.

Inhumans, the undifferentiated bipotent gonads, whichemerge on the
ventral surface of the mesonephros, commit to ovarian or testicular
fate. Around 6 weeks after conception (postconceptional weeks; PCW),
gonadal somatic cells expressing SRY, the Y-linked testis-determining
factor, differentiate into Sertoli cells (testicular supporting cells) or,
inits absence, into pregranulosa cells (preGCs; ovarian supporting
cells)? Sertoli cells and preGCs coordinate the differentiation of the
remaining sex-specific gonadal somatic (for example, interstitial) and
germ cell lineages®. In males, primordial germ cells (PGCs), the gamete
precursors, differentiate into prespermatogonia, forming cord-like
structures with Sertoli cells and entering mitotic arrest. In females,
PGCs differentiate into oogonia, which enter an asynchronous transi-
tion from mitosis to meiosis. Later in development, granulosa cells
surround primary oocytes to form primordial follicles, remaining
quiescent until puberty*.

Here, we used single-cell multiomics and spatial methods to disen-
tangle the cellular and molecular programmes that mediate human
gonadal development in space and time. We uncover previously

uncharacterized cellular heterogeneity in the somatic lineage, with
relevance for gonadal conditions that have their origin during develop-
ment, such as differencesin sex development. Inaddition, we generated
mouse single-cell transcriptomics data to contextualize our human
findings with the mouse counterpart, facilitating translational research
between these species.

Human-mouse gonadal atlas

We profiled human gonadal and adjacent extragonadal tissue from
the first and second trimesters of gestation (6-21 PCW), covering
stages of sex determination and differentiation into ovaries and tes-
tes (female n =33, male n = 22; Fig.1a,b). We used several single-cell
genomics methods: (1) single-cell RNA sequencing (scRNA-seq); (2)
single-cell accessible chromatin sequencing (scATAC-seq) and (3)
combined single-nucleus RNA and ATAC sequencing (snRNA-seq/
scATAC-seq) to profile 347,709, 96,174 and 40,742 cells, respectively
(Fig.1b and Supplementary Tables1-3). We also generated single-cell
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Fig.1|Human-mouse harmonized single-cell atlases of gonadal and
extragonadal tissue. a, Schematicillustration of gonadal development
showing the mainstructures of the XX and XY gonads. b, Diagram summarizing
the stage and sex composition of our sample cohortalong with mainevents
occurring during gonadogenesis. ¢, Top shows the UMAP of cell lineages
(colour) inthe human female scRNA-seq (n =213,898), human female
scATAC-seq (n =84,631) and mouse female scRNA-seq (n =70,379) datasets.
Bottom shows UMAP projections of cell lineages (colour) in the human male
scRNA-seq (n=133,811), human male scATAC-seq (n = 52,285) and mouse male

transcriptomes of corresponding mouse tissue around the time of sex
determination, thatis, atembryonicdays (E) 10.5,11.5and 12.5 (63,929
cells), andintegrated them with a previously published dataset cover-
ing later gestational stages (E11.5 to postnatal day (P) 5)° (Supplemen-
tary Table1). Male and female samples were analysed separately and
cell annotation was assigned on the basis of the expression of known
markers and label transfer from scRNA-seq to scATAC-seq® (Fig. 1c,
Extended DataFigs.1la-d and 2a-d and Supplementary Note 1). The
abundant number of cells profiled in our study allowed us to resolve
new somatic cell states, whichwere not defined in a previous human
gonadal scRNA-seq study’ (Extended Data Fig. 1e).

To locate cells in the profiled tissues we (1) generated spatial
transcriptomics data using Visium and multiplexed single-molecule
fluorescent in situ hybridization (smFISH), and (2) isolated the
gonad and extragonadal tissue by microdissection to profile each
separately. Germ (DAZL") and supporting (GATA4*, WNT6") cells are
present exclusively within the gonads, whereas other cell types,
including coelomic epithelial (UPK3B*) and mesenchymal (PDG-
FRA") cells, are present in both the gonads and the mesonephros
(extragonadal tissue) (Fig. 1c and Extended Data Fig. 3a). In both
humans and mice, expression of the transcription factors (TFs)
GATA4,LHX9 and ARXis a hallmark of the gonadal coelomic epithe-
lium and mesenchymal cells, whereas GATA2 expression is restricted
tothe mesonephros and other extragonadal tissue (Extended Data
Fig.3b-e and Supplementary Note 1).

We find strong correspondence between the transcriptomic signa-
tures of the primary cell lineages in humans and mice, using asupport
vector machine (SVM) classifier trained on the human cells (Extended
DataFig.1fand Supplementary Note 2). Notable exceptions with low
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scRNA-seq (n=32,889) datasets. Clusters for mesothelial, supporting and
gonadal mesenchymal LHX9" cells were defined inanindependent per-lineage
reanalysis and projected onto this dataset (Fig. 3). Dashed lines outline the cell
populationsunique to the gonads. Doublets and low-quality control cellswere
removed. CoelEpi, coelomic epithelium; Endo, endothelial; Epi, epithelial;
F.Leydig, fetal Leydig; Gi, gonadal interstitial; Mesen, mesenchymal; Oi,
ovarianinterstitial; OSE, ovarian surface epithelium; preGC, pregranulosa
cells; PV, perivascular; sSPAX8, supporting PAX8"; Ti, testicular interstitial; SMC,
smooth muscle cell.

similarity (median prediction probability < 0.4) are the early support-
ingand gonadal mesenchymallineagesin both sexes, and pregranulosa
cells in females, which suggests a divergence in the development of
somatic cell lineages between humans and mice.

TFs modulating germ cell differentiation

PGCs colonize the human gonads at roughly 3-5 PCW®° and, guided by
the male and female supporting cells, start their differentiation into
either prespermatogonia or oogonia at roughly 6 PCW. To compare
the differentiation of human germ cells with that of other mammals,
we integrated our human and mouse gonadal germ cells with more
scRNA-seq gonadal germ cells datasets from mouse and macaque>®"
(Extended Data Fig. 4a-d, Supplementary Table 4 and Supplemen-
tary Note 3). We used trajectory reconstruction methods totrace the
differentiation of human PGCs into prespermatogonia and oocytes
(Extended Data Fig. 4e), and investigated the TF programmes that
mediate these transitions. We prioritized those TFs that were differ-
entially expressed and active in humans using both the transcriptome
and open chromatin data (Extended Data Fig. 5a-d) and compared
their expression dynamics between humans, macaques and mice
(Extended Data Fig. 5e and Supplementary Table 5). We identify
GATA4 as a primate-specific TF upregulated in PGCs. In all species
analysed, we find SOX4 is active in PGCs and prespermatogonia but
downregulated during oogenesis. In addition, the transition from
PGCs to prespermatogonia involves the activation of EGR4, KLF6
and KLF7.Fetal oocyte differentiation is more complex thanits male
counterpart: it involves meiosis initiation and a spatial trajectory,
with PGCs restricted to the outer cortex and cells migrating towards
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Fig.2|New gonadal somatic cells during sex determination in humans and
mice. a, UMAP of somatic cell states (colour) in the human scRNA-seq
(n=191,230), human scATAC-seq (n = 74,592) and mouse scRNA-seq
(n=45,468) datasets. Doublets and low-quality control cells were removed.

b, Dot plots show the variance-scaled, log-transformed expression of genes
(x-axis) characteristic of the first wave of somatic cells (y-axis) in humans and
mice. c, UMAP of somatic cells overlaid with RNA velocity mapsin two humans
(7 PCW testis; 7.5 PCW ovary) and two mice (E11.5 testis, E12.5 ovary) gonadal

the medulla as they differentiate’ (Extended Data Fig. 5f,g). Before
meiosisinitiation, coinciding with a premeiotic STRA8 surge, we find
the activation of ZGLP1, the oogenic TF recently described in mice®
(Extended Data Fig. 5e). At this premeiotic stage, human oogonia also
upregulate the ZICI factor, whichisinvolved inretinoic acid produc-
tion® that is necessary for meiosis induction. After entering meiosis,
oogoniaactivate DMRTC2 and ZNF711, previously described in mice,
together with another DMRT member, DMRTBI, which is analogously
upregulated in macaque and mouse oogonia. Furthermore, there is
upregulation of HOX factors (for example, HOXA3, HOXDS8) and cofac-
tors (for example, PBX3) in distinct oogonia stages. In oocytes, we find
activation of TP63 and ZHX3, with conserved expression dynamicsin
macaques and mice.

Somatic cells during sex determination

The coelomic epithelium in the gonadal ridge is the primary source
of gonadal somatic cells**. Using trajectory inference methods, we
identify the bipotent early supporting gonadal cells (ESGCs), con-
necting the GATA4' coelomic epithelium with either Sertoli cells or
the first wave of preGCs (preGC-I) in both humans and mice (Fig. 2a-c,
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samples, analysedindependently. d, Relative proportions of human and mouse
somatic cell states (colour) profiled with scRNA-seq, classified by sex and
developmental stage. Black arrows highlight the ESGCs. e, Dot plot showing
thevariance-scaled, log-transformed expression of human-specific early
somatic and ESGC markers (x-axis) in the first wave of human supporting cells
(y-axis). CoelEpi, coelomic epithelium; Gi, gonadal interstitial; Oi, ovarian
interstitial; preGC, pregranulosa cells; SPAX8, supporting PAX8; Ti, testicular
interstitial.

Extended Data Fig. 6a-c and Supplementary Note 4). ESGCs appear
transiently in the early gonads (roughly 6-8 PCW in humans and E11.5
in mice) and, in males, are the first gonadal somatic cells to express
the testis-determining factor SRY, which is required for Sertoli cell
commitment? (Fig. 2b,d, Extended Data Fig. 6d-fand Supplementary
Table 6). Thus, ESGCs are the bipotent precursors that giverise to the
sex-specific supporting cells in the early gonad.

We identify a core set of genes with conserved expression dynam-
ics between humans and mice as the GATA4' coelomic epithelial
cells, which differentiate into the first wave of supporting cells.
In humans, the coelomic epithelium and ESGCs are connected
through an early somatic cell population that downregulates
mesothelial markers (UPK3B~, LRRN4"), upregulates supporting
lineage markers (WNT6") and shares TFs with undifferentiated
gonadal interstitial (Gi) cells (ARX", TCF2I'; Fig. 2b). Next, human
and mouse ESGCs downregulate LHX9 and interstitial TFs (ARX",
TCF21") while further upregulating the supporting lineage marker
WNT6. ESGCs also upregulate GPR37 and DMRTI, the latter being
essential for testis development”. Male ESGCs are SRY* and initiate
the downregulation of the pro-ovarian RSPO1/WNT4-3-catenin
pathway (WNT4, RSPO1, AXIN2; Extended Data Fig. 6g).
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Accordingly, the expression of FOXL2, which is essential for
ovarian fate'®”, can already be detected in female ESGCs at this stage
(Fig.2b).

Human ESGCs upregulate stem-cellmarkers (LGRS, TSPANS'; Fig. 2e
and Extended DataFig. 6h). LGRS shows a different expression pattern
between humans and mice: in humans, LGRS is specific to ESGCs; in
mice, LgrSis upregulated during the second wave of pregranulosa
and Sertoli cell formation, with basal expressionin ESGCs (Extended
Data Fig. 6h). We detected the expression of TSPANS only in human
ESGCs (Fig. 2e and Extended Data Fig. 6h). Human female ESGCs also
upregulate OSR1, characteristic of preGC-1, which is notably absent
in mice (Fig. 2e and Extended Data Fig. 6h). Using a combination
of these markers, we located ESGCs in the developing human testes
and ovaries by multiplexed smFISH (Extended DataFig. 6i). At early
8 PCW (Carnegie stage (CS)19-CS20), ESGCs (TSPANS*, LGRS") reside
inthe ovarian medulla together with the preGC-1(OSR1") in females,
or the developing testis cords with early Sertoli cells (SOX9*, LGRS")
in males.

PAXS' cells define gonadal boundaries

Thegonadal-mesonephricinterfaceisasite ofextensivetissueremod-
elling during early gonadogenesis, regulating cell migration, vascu-
larization and formation of the rete testis, a network of tubules that
connects the testis cords with the reproductive ducts'®'®. We define
a supporting-like PAX8" population (sPAX8s) expressing gonadal
(GATA4*, LHX9" and NRSAI") and supporting (WNT6") markers that
emerges with the first wave of supporting cells in humans and mice
(Fig. 2a-d and Supplementary Note 5). sPAX8s are located at the
site where the rete testis will form in the testis, as shown by Visium
(Extended Data Fig. 7a), and are clearly distinct from epithelial
cellsin the Mullerian and Wolffian ducts, as shown by their low expres-
sion of epithelial markers (EPCAM"*, KRT19"*) and their independ-
ent clustering when analysed with epithelial cells (Extended Data
Fig.7b,c).

Our in-depth analysis of human samples covering a broad devel-
opmental window allowed us to distinguish two subsets of SPAX8s in
humans: early and late sSPAX8s. Early sSPAX8s are sexually undifferenti-
ated cellsenriched atroughly 6-8 PCWin both sexes (Fig. 2d). Staining
the gonads with smFISH shows that early SPAX8s (PAXS", EPCAM"")
are found inside the gonad, at the gonadal-mesonephric interface,
until 8 PCW (CS17 to CS20) (Fig. 3a and Extended Data Fig. 7d). We
also found this population at a similar location in mice (Extended
Data Fig. 7e). Late sSPAX8s (PAX8*, EPCAM"") are present only in
males from late 8 PCW (Fig. 2d). smFISH analyses detected sPAX8s at
the poles of the developing testis cords where the rete testis will
develop, in agreement with the Visium data (Fig. 3b and Extended
Data Fig. 7a,f). In developing human ovaries after 8 PCW, only a few
sPAX8s were found near the hilum (Extended Data Fig. 7g), in keep-
ing with the presence of a rudimentary rete ovarii that degenerates
at later stages®.

Both sPAX8 subsets show a unique transcriptional pattern of axon
guidance factors, suggesting they have a structural and supporting
role.Inhumans, early sSPAX8s express CXCL14, and its receptor CXCR4
isexpressed by endothelial and supporting cells, suggesting achemo-
tactic role for these populations (Extended Data Fig. 7h). Male late
sPAX8s express NRP2, the receptor for VEGF and SEMA3B/C, which are
upregulated by epithelial cells. SPAX8s distinctively express somato-
statin (SST) and IGFBP3, whose receptors are upregulated in various
cells, including supporting, epithelial, endothelial and coelomic epi-
thelial cells. Together, these data suggest that SPAX8s are a gonadal
supporting-like cell lineage in mammals that mediate the formation
of the rete testis and rete ovarii.

The second wave of pregranulosa cells

In mouse ovaries, the coelomic epithelium differentiates into the
ovarian surface epithelium and initiates a second wave of corti-
cal pregranulosa cells, independent of RSPO1/WNT4-3-catenin
signalling>*. In humans, we also define a second wave of granu-
losa cells (preGC-lla/b) appearing after 8 PCW (Fig. 2d), down-
regulating RSPO1/WNT4 (Fig. 4a) and forming a gradient from
the outer (preGC-lla) to the inner cortex (preGC-Ilb; Fig. 4b
and Supplementary Note 6). PreGC-lla coappear in space (outer cortex)
and time (mid-8 PCW) with OSE (UPK3B*, LHX2',IRX3"), and express
the retinoic acid inhibitor CYP26BI (meiosis inhibitor) as well as low
amounts of FOXL2.PreGC-llb appear at11 PCW, and upregulate FOXL2
and BMP2. At around 17 PCW, developing granulosa cells expressing
folliculogenesis markers (NOTCH3*, HEYL") and retinol dehydrogenase
(RDHI10") appear in the inner cortex. The first wave of pregranulosa
(preGC-l) isrestricted to the medulla as the ovary develops.

Despite the spatiotemporal similarities between preGCs across
species, projection of the human supporting signatures onto the mouse
counterpart using an SVM classifier shows divergent transcriptomic
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Fig.4|Transcriptional, spatiotemporal and paracrine signatures of human
pregranulosacells. a, Dot plots show the variance-scaled, log-transformed
expression of genes (x-axis) characteristic of ovarian supporting cells (y-axis)
inhuman scRNA-seq data. Top layer groups marker genes by categories.

b, Spatial mapping of granulosa cell types from the scRNA-seq human dataset
to spatial transcriptomics slide of11,14,17 and 19 PCW ovaries using
cell2location; n=2.Estimated cellabundance (colour intensity) for OSE,
preGC-1, preGC-lla, preGC-1lb and developing granulosacells (colour) in each
Visium spot shown over the haematoxylinand eosin (H&E) images. The black
rectangles highlight enlarged ovarian regions with forming follicles (top right).
Schematic representation of the spatial organization of pregranulosa cell
statesinthe human ovary (bottomright). Scale bars 1 mm (left) and 50 pmin
magnified regions (right). c, Heatmaps showing expression of selected TFs
across human, macaque and mouse ovarian supporting cells. Colour

programmes (medianpredictionprobability<0.4;Extended DataFig.8a).
We combined transcriptomics with chromatin accessibility to identify
the TF that regulates the granulosa waves in humans (Extended Data
Fig.8b-d). Accordingly, we find TF modules are well preserved between
humans and macaques but show essential differencesin mice (Fig. 4c,
Extended Data Fig. 8e,fand Supplementary Table 7). OSE activates the
primate-specific TF LHX2, which is kept active in preGC-lla (Fig. 4c).
As they differentiate, preGC-lIb cells upregulate FOXL2 and express
WNT-induced TFs (HIFIA*, FOXOI*, FOXPI"), a programme shared
by medullary preGC-Is, suggesting there is a higher WNT environment
deeper in the ovary. Developing granulosa cells in primates upreg-
ulate the steroid hormone receptor NRIH4 and the developmental
factor PBX3.
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Ligands and receptors

proportional to scaled log-transformed expression. For human ovarian
supporting cells only, 'o' denotes TF whose binding motifs are differentially
accessible (thatis, TF can bind their potential targets); 'a' denotes TF whose
targets are also differentially expressed (that s, differentially activated TF) and
asterisk denotes TF that meets both 'o’ and 'a’ conditions. Conservation
heatmap (right) highlights significant overexpression (log, fold change > 0 and
FDR < 0.05)ineachspecies. TFswhose upregulationis conserved across
speciesare highlighted with bold/coloured labels. d, Dot plots showing scaled
zscored expression of genes coding for interacting ligand-receptor proteins
(CellPhoneDB) insupporting and germ cell statesin the outer cortex, inner
cortex and primordial follicles. Specificinteracting partners are linked with a
matching symbol. CoelEpi, coelomic epithelium; Expr, expressed; FGC, fetal
germ cells; preGC, pregranulosa cells; granulosa, developing granulosa.

To study how human pregranulosa cells in the distinct cortical and
medullary microenvironments could influence germ cell differentia-
tion, we expanded our CellPhoneDB database to (1) include non-peptide
ligands and (2) link receptors with their downstream TFs (CellSign
module) (Extended Data Fig. 8g, Supplementary Table 8 and Supple-
mentary Note 6). PreGC-lla cells, present in the outer ovarian cortex,
express chemoattractants (for example, NRGI) and survival factors
(for example, KITLG), with STAT3 downstream of KIT active in PGCs
(Fig.4d and Extended Data Fig. 8h). PreGC-lIb cells, located in the inner
cortex, express ligands involved in meiosis initiation (for example,
retinoic acid by ALDHIAI) and oogenesis (for example, BMP2) to sup-
port PGC differentiation. Inthe medulla, preGC-Is upregulate enzymes
involved in oestrogen production (HSD17B6 and CYPI9AI). At roughly
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Fig.5|Tissue-resident macrophagesin the developingtestes.a, UMAP of
immune cell states (colour) in the human scRNA-seq data (n =20,556). Doublets
and low-quality control cells were removed. Eleven samples were enriched for
immune (CD45%) cells. Zoomed-in UMAPs show SIGLECIS* and TREM2* fetal
testicular macrophages (ftMs) labelled by sex. b, Dot plot showing
variance-scaled, log-transformed expression of marker genes (y-axis) for the
identified macrophage subsets (x-axis).c, UMAP projections of integrated
myeloid cells (colour) from several embryonic/fetal tissues (n = 58,948).
Zoomed-in UMAPs show osteoclast and microglia signature macrophages
labelled by tissue of origin. d, High-resolutionimaging of representative
human gonadal sections with intensity proportional to smFISH signal for RNA
markers. Left, 12 PCW testis and ovary stained for CD68 (yellow, macrophages),
F13A1 (red, tissue-repair macrophages) and NR2F2 (cyan, mesenchymal) (n = 2).
Middle, 12 PCW testis stained for PDGFRA (green, mesenchymal), CDHS (cyan,
endothelial), CD68 (red, macrophages) and SIGLEC1S5 (yellow, SIGLEC1S" ftMs).

17 PCW, preGC-lIb cells differentiate into developing granulosa cells,
which surround the oocyte to mediate follicle formation and/or regu-
late oocyte survival. We uncover a unique composition of extracel-
lular matrix proteins infollicles (Extended Data Fig. 8i), as well as new
granulosa-to-oocyte interaction candidates for mediating success-
ful follicular assembly (Fig. 4d). An example is netrin-1 (NTNI) and its
receptor DCC, whichare involved in axon guidance, cell migrationand
apoptosis (Extended Data Fig. 8j,k).

Two testis-specific resident macrophages

Tissue-resident macrophages have arole in mouse testicular devel-
opment and function??, To comprehensively characterize themin
humans, we sorted cells from 11samples using the pan-leukocyte marker
CD45 and integrated them with immune cells from the main analyses
(Fig.5a, Extended DataFig. 9a-f, Supplementary Table1and Supplemen-
tary Note 7). We defined two testis-specific macrophage populations

PDGFRA.

Developing
testis cords. ~

XY 8PCW

SIGLEC15" ftMs (white arrows) are outside the testis cords in proximity to
endothelial cells (n =5). Right, 8 PCW testis stained for SOX9 (magenta, Sertoli
(n=5)), POUSFI1 (magenta, PGCs (n =2)), CD68 (red, macrophages), P2RY12
(yellow, TREM2* ftMs) and PDGFRA (cyan, mesenchymal). TREM2* ftMs (white
arrows) areadjacent to the germ and Sertoli cells. White dashed rectangles
highlight gonadal regions magnified; scale bars,100 and 10 pmin magnified
regions; testicular developing cords are delineated with dashed lines.

e, Schematicsillustrating the spatial location of the distinct testicular
macrophage populations. cDC, conventional dendritic cells; ftM, fetal
testicular macrophages; ILC, innate lymphoid cells; mega, megakaryocytes;
MEMP, megakaryocyte-erythroid-mast cell progenitors; mono, monocytes;
neutro, neutrophils; NMP, neutrophil-myeloid progenitors; NK, natural killer
cells; pDC, plasmacytoid dendritic cell; prec, precursor; Pre-B, pre-B cells;
Pre-pro-B, pre-pro-Bcells; Pro-B, pro-B cells; prog, progenitor; T, T cells.

using scRNA-seq and validated them with smFISH: (1) SIGLEC1S" fetal tes-
ticular macrophages (ftMs), with an osteoclast-like signature (SIGLECIS,
ACPS, ATP6VOD2; refs.?* %) and (2) TREM2' ftMs, with a microglia-like
signature (TREM2, P2RYI12, SALLI; refs. %) (Fig. 5a,b, Extended Data
Fig.9g,h, Extended DataFig.10a and Supplementary Table 9). SIGLEC15*
and TREMZ2' ftMs are rare populations in comparison to the tissue-repair
macrophages characteristic of all developing tissues (2.8% SIGLEC1S*
ftMs, 5% TREM2+ ftMs, 92.2% tissue-repair macrophages). Integration
and projection using SVM of scRNA-seq datasets of myeloid cells in
other developing organs®**'"* onto our gonadal immune manifold
validated the shared transcriptomics profile between SIGLEC1S* ftMs
and osteoclasts, and between TREM2" ftMs and microglia (Fig. 5c and
Extended DataFig. 9i-k).

Withthe aid of structural gonadal markers, smFISH imaging located
tissue-repair macrophages (CD68’, F13A1") and SIGLECIS' ftMs (CD68",
SIGLEC15") in the interstitial space (PDGFRA" or NR2F2") (Fig. 5d and
Extended DataFig.10b). SIGLEC15" ftMs are close to endothelial cells
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(CDHS")inthetestes (Fig. 5d) and express COL1A2, which can potentially
interact with the integrins (a1/f1, a2/B1, a10/B1and «11/B1) expressed
byendothelialand mesenchymal cells (Extended Data Fig.9l). SIGLEC1S*
ftMs also express the remodelling molecule MMP9 and their numbers
decrease in later stages of development (Extended Data Fig. 10c),
suggesting a role in promoting mesonephric endothelial cell migra-
tion®®, atransient process required for testis cord formation (roughly
8-14 PCW). In addition, SIGLEC15" ftMs express LGALS9 and SPP1, in
keeping with a potential immunoregulatory role for this cell type
(Extended Data Fig. 9m).

TREM?2' ftMs are often found inside the testis cords (Fig. 5d and
Extended Data Fig.10d,e), where they are predicted to communicate
with Sertoliand germ cells by the interaction between TREM2 and apoli-
poproteins (CLU,APOA1,APOE) (Extended DataFig.91). TREM2' ftMs also
have their phagocytosis machinery active (MERTK, AXL, CYBB, BECNI,
MTOR) (Extended Data Fig. 91) and express immunomodulatory mol-
ecules (HAVCR2,ENTPDI1,CD276,IL10, TREM2) (Extended Data Fig. 9m).
This result indicates a role of TREM2" ftMs in removing damaged or
apoptotic cells while minimizing inflammation and oxidative stress
that could damage maturing germ cells* (Fig. 5e and Supplementary
Note 7).

Discussion

We generated a harmonized atlas of human and mouse gonadal devel-
opment toidentify new gonadal somatic cell types and their underlying
regulatory mechanisms. First, we describe ESGCs, abipotent transient
population whose numbers peak at the time of sex determination and
that connects the coelomic epithelium with Sertoli cells and the first
wave of pregranulosa cells. Accordingly, ESGCs are the first cells to
express the testis-determining factor SRYin XY gonads and, in humans,
express stem-cell markers such as TSPAN8 and LGRS. For the first time,
toour knowledge, these markers uniquely expressed by the bipotent
supporting progenitor population are defined in humans. Previously,
WT1and NR5A1 were used to identify an equivalent populationin
mice?, but we show that these markers are broadly expressed by other
gonadal somatic cells. Second, around the onset of sex determina-
tion, we define a previously uncharacterized gonadal supporting-like
population located at the gonadal-mesonephric border, which we
term sPAX8s. In humans, after 9 PCW, sPAX8s remain at the poles of
the developing cordsin males, where the rete testis develops, but are
virtually absent in females. sSPAX8s express canonical markers of the
supporting lineage and it is likely that their unique functions were
previously attributed to the other supporting cells (that is, granu-
losa or Sertoli cells). Third, we identify a first wave of medullary and
asecond wave of cortical pregranulosa cells in humans, similar to
mice>**8, Using a revised version of CellPhoneDB, we show that the
spatial microenvironments defined by the distinct pregranulosa cell
subsets in human ovaries regulate germ cell development. Despite
the similar spatiotemporal patterns in humans and mice, we show
that certain regulatory programmes differ; for example, LGRS, char-
acteristic of second-wave pregranulosa cellsin mice>®, isrestricted to
ESGCsin humans. LGRS thus marks different populationsin mice and
humans, highlighting the need for human-mouse harmonized atlases.
Fourth, we identify SIGLEC15" and TREM2" ftMs with an osteoclast- and
microglia-like profile, respectively. SIGLECIS" ftMs are found in the
peritubular spaces surrounding the testis cords, which might aid with
mesonephric endothelial cell migration®. TREM2' ftMs are mainly
located inside the testis cords, where they could help to maintain the
immunoregulatory environment previously described in prepubertal
testes®*0,

Overall, our comprehensive cellular map of human and mouse
gonadal development provides a unique resource to study gonadal
function, relevant to understanding infertility, differences in sex devel-
opment* and gonadal pathologies*’. We foresee that the discovery of
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new cell populations, together with our cross-species TF alignment, will
serve as ablueprint for the design of systems to differentiate gonadal
somatic cellsin vitro, which will affect the development of newin vitro
gametogenesis protocols*,
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Methods

Patient samples

All tissue samples used for this study were obtained with written
informed consent from all participantsin accordance with the guide-
lines in The Declaration of Helsinki 2000.

Human embryo and fetal samples were obtained from the MRC and
Wellcome-financed Human Developmental Biology Resource (HDBR,
http://www.hdbr.org), with appropriate maternal written consent and
approval from the Fulham Research Ethics Committee (REC reference
no.18/L0/0822) and Newcastle and North Tyneside 1 Research Ethics
Committee (REC reference no.18/NE/0290). The HDBR is regulated
by the UK Human Tissue Authority (www.hta.gov.uk) and operates
in accordance with the relevant Human Tissue Authority Codes of
Practice.

Assignment of developmental stage

Embryos up to 8 PCW were staged using the Carnegie staging method".
Atstagesbeyond 8 PCW, age was estimated from measurements of foot
lengthand heel-to-kneelength and compared with the standard growth
chart*. Apiece of skin, or if this was not possible, chorionic villi tissue,
was collected from every sample for quantitative PCR analysis using
markers for the sex chromosomes and autosomes 13,15,16, 18, 21 and
22, which are the most commonly seen chromosomal abnormalities.
Allsamples were karyotypically normal.

Tissue processing

Alltissues for sequencing and spatial work were collected in HypoTher-
mosol biopreservation medium and stored at 4 °C until processing.
Tissue dissociation was conducted within 24 h of tissue retrieval with
the exception of tissues that were cryopreserved and stored at—80 °C
(Supplementary Table1).

We used the previous protocol optimized for gonadal dissociation®
andthisisavailable at protocols.io (ref. *). Inshort, tissues were cut into
<1 mm?segments before being digested with Trypsin/EDTA 0.25% for
5-15minat37 °C withintermittent shaking. Samplesless than17 PCW
were also digested using a combination of collagenase and Trypsin/
EDTA, a protocol adapted from Wagner et al.>>*'. In short, samples
were first digested with collagenase 1A (1 mg ml™) and liberase TM
(50 pg ml™) for 45 min at 37 °C with intermittent shaking. The cell solu-
tionwas further digested with Trypsin/EDTA 0.25% for 10 min at 37 °C
withintermittent shaking. In both protocols, digested tissue was passed
through a100 pm filter and cells collected by centrifugation (500g for
5minat4 °C). Cells were washed with PBS before cell counting.

Cellsorting

Dissociated cells were incubated at 4 °C with 2.5 pl of antibodies in
1% FBS in Dulbecco’s PBS without calcium and magnesium (Thermo
Fisher Scientific,14190136). Toisolate CD45" and CD45 cells, we used
the antibody CD45-BUV395 BD Bioscience 563791 Clone HI30 (RUO)
Flow cytometry (dilution 2.5 pl:100 pl). 4,6-Diamidino-2-phenylindole
(DAPI) was used for live versus dead discrimination. Cells were sorted
using a Becton Dickinson (BD) FACS Aria Fusion with five excitation
lasers (355,405,488, 561and 635 nmred), and 18 fluorescent detectors,
plus forward and side scatter. The sorter was controlled using BD FACS
DIVA software (v.7), and FlowJo v.10.3 was used for analysis.

Single-nuclei suspension

Single-nuclei suspensions were isolated from dissociated cells when
performing scATAC-seq, following the manufacturers’instructions, and
from frozen tissue sections when performing multiomic snRNA-seq/
SCATAC-seq. For thelatter, thick (300 pm) sections were cryosectioned
andkeptinatube ondryiceuntil subsequent processing. Nucleiwere
released by Dounce homogenization as described in detail in the pro-
tocols.io (ref.%?).

Tissue cryopreservation

Fresh tissue was cut into <1 mm®segments before being resuspended
with1mlofice-cold Cryostor solution (CS10) (C2874-Sigma). The tissue
was frozen at —80 °C by decreasing the temperature at about 1°C per
minute. The detailed protocol is available at https://www.protocols.
io/view/tissue-freezing-in-cryostor-solution-processing-bgsnjwde.

Tissue freezing

Fresh tissue samples of human developing gonads were embeddedin
cold optimal cutting temperature compound (OCT) medium and flash
frozen using a dry ice-isopentane slurry. The protocol is available at
protocols.io (ref.%).

Tissue collection from mouse embryos

Developingovaries, testes and mesonephros were collected from E10.5,
E11.5 and E12.5 mouse embryos carrying the Oct4APE-GFP transgene.
Mice were housed inspecific pathogen-free conditions at the UK Home
Office-approved facility at the University of Cambridge. Mice were main-
tained with a 12 hlight/12 h dark cycle, with temperature ranging from
20-24 °C and humidity of 45-65%. Embryos were genotyped to identify
the gender. We included six males and three females at E10.5, six males
and twofemalesatE11.5,and three males and three females at E12.5. Sam-
ple size was not estimated. Developing gonads were dissected from the
mesonephros and both organs were separately dissociated with 0.25%
Trypsin/EDTA into single-cell suspensions as described for the human
tissue. Tissues (gonads or mesonephros) from the same sex and stage
were sequenced together. For smFISH imaging, we collected another
E13.5 female embryo. For sectioning, tissues were fixed in 4% (w/v) for-
maldehyde solution for 2 h at 4 °C. Samples were washed with PBS and
afterwards sequentially incubated with10 and 20% (w/v) sucrose at 4 °C.
After, samples were embedded in OCT and subsequently flash frozen
using a dry ice-isopentane slurry. All experimental procedures were in
agreementwiththe projectlicence PES96DIFE issued by the Animal Wel-
fare Ethical Review Board committee under the UK Home Office and car-
ried outinaHome Office designated facility, in accordance with ethical
guidelines and with the UK Animals (Scientific Procedures) Act of 1986.

Haematoxylin and eosin staining and imaging

Fresh frozensections were removed from -80 °C storage and air dried
before being fixed in 10% neutral buffered formalin for 5 min. After
beingrinsed with deionized water, slides were dipped in Mayer’s haema-
toxylinsolution for 90 s. Slides were completely rinsed in 4-5 washes of
deionized water, which also served to blue the haematoxylin. Aqueous
eosin (1%) was manually applied onto sections with a pipette and rinsed
with deionized water after 1-3 s. Slides were dehydrated through an
ethanol series (70, 70,100, 100%) and cleared twice in 100% xylene.
Slides were coverslipped and allowed to air dry before being imaged
on aHamamatsu NanoZoomer 2.0HT digital slide scanner.

Multiplexed smFISH and high-resolutionimaging

Large tissue section staining and fluorescent imaging were conducted
largely as described previously*. Sections were cut from fresh frozen or
fixed frozen samples embedded in OCT at athickness of 10 pmusinga
cryostat, placed onto SuperFrost Plus slides (VWR) and stored at —80 °C
until stained. For formalin-fixed paraffin-embedded samples, sections
were cut atathickness of 5 pumusing a microtome, placed onto Super-
Frost Plus slides (VWR) and left at 37 °C overnight to dry and ensure
adhesion. Tissue sections were then processed using a LeicaBOND RX to
automate staining with the RNAscope Multiplex Fluorescent Reagent Kit
v2 Assay (Advanced Cell Diagnostics, Bio-Techne), according to the man-
ufacturers’instructions. Probes are listed in Supplementary Table 10.
Before staining, human fresh frozen sections were post-fixed in 4%
paraformaldehydein PBS for 15 minat 4 °C, then dehydrated througha
series of 50,70,100 and 100% ethanol, for 5 min each. Following manual


http://www.hdbr.org
http://www.hta.gov.uk
https://www.protocols.io/view/tissue-freezing-in-cryostor-solution-processing-bgsnjwde
https://www.protocols.io/view/tissue-freezing-in-cryostor-solution-processing-bgsnjwde

pretreatment, automated processing included epitope retrieval by
protease digestion with Protease IV for 30 min before probe hybridiza-
tion. Mouse fixed frozen sections were subjected to the same manual
pretreatment described above. Subsequently, the automated process-
ing for these sectionsincluded heat-induced epitope retrieval at 95 °C
for 5 mininbuffer ER2 and digestion with Protease Il for 15 min before
probe hybridization. On this treatment, no endogenous fluorescence
from the Oct4APE-GFP transgene was observed. For formalin-fixed
paraffin-embedded sections, automated processing included baking at
60 °Cfor30 minand dewaxing, as well as heat-induced epitoperetrieval
at95 °Cfor 15 mininbuffer ER2 and digestion with Protease Ill for 15 min
before probe hybridization. Tyramide signal amplification with Opal
520, Opal 570 and Opal 650 (Akoya Biosciences) and TSA-biotin (TSA
Plus Biotin Kit, Perkin EImer) and streptavidin-conjugated Atto 425
(Sigma Aldrich) was used to develop RNAscope probe channels.

Stained sections were imaged with a Perkin EImer Opera Phenix
High-Content Screening System, in confocal mode with 1 pm z-step
size, using a x20 (numerical aperture (NA) 0.16, 0.299 pum per pixel),
x40 (NA 1.1, 0.149 pm per pixel) or x63 (NA 1.15, 0.091 pm per pixel)
water-immersion objectives. Channels were as follows: DAPI (excitation
375 nm, emission 435-480 nm), Atto 425 (excitation 425 nm, emission
463-501nm), Opal 520 (excitation 488 nm, emission 500-550 nm),
Opal 570 (excitation 561 nm, emission 570-630 nm) and Opal 650
(excitation 640 nm, emission 650-760 nm).

Image stitching

Confocal image stacks were stitched as two-dimensional maximum
intensity projections using proprietary Acapella scripts provided by
Perkin Elmer.

10X Genomics Chromium GEX (gene expression) library
preparation and sequencing

For the scRNA-seq experiments, cells were loaded according to the
manufacturer’s protocol for the Chromium Single Cell 5’ Kit v.1.0, v.1.1
and v.2 (10X Genomics) to attain between 2,000 and 10,000 cells per
reaction. Library preparation was carried out according to the manu-
facturer’s protocol. Libraries were sequenced, aiming at a minimum
coverage of 20,000 raw reads per cell, on the lllumina HiSeq4000 or
Novaseq 6000 systems using the sequencing format: read 1,26 cycles;
i7index, 8 cycles, i5index, O cycles; read 2, 98 cycles.

For the scATAC-seq and multimodal snRNA-seq/scATAC-seq experi-
ments, cells were loaded according to the manufacturer’s protocol
for the Chromium Single Cell ATAC v.1.0 and Chromium Single Cell
Multiome ATAC + Gene Expression v.1.0 to attain between 2,000 and
10,000 cells per well. Library preparation was carried out according to
the manufacturer’s protocol. Libraries for scATAC-seq were sequenced
on llluminaNovaSeq 6000, aiming at a minimum coverage of 10,000
fragments per cell, with the following sequencing format; read 1, 50
cycles;i7index, 8 cycles, i5index, 16 cycles; read 2, 50 cycles.

10X Genomics Visium library preparation and sequencing

Cryosections of 10 pmwere cutand placed on Visiumslides. These were
processed according to the manufacturer’sinstructions. Inbrief, sections
were fixed with cold methanol, stained with H&E and imaged on aHama-
matsuNanoZoomer S60 before permeabilization, reverse transcription
and complementary DNA synthesis using atemplate-switching protocol.
Second-strand cDNA was liberated from the slide and single-indexed
libraries prepared using al0X Genomics PCR-based protocol. Libraries
were sequenced (one per lane ona HiSeq4000), aiming for 300 million
raw reads per sample, with the following sequencing format; read 1,28
cycles,i7index, 8 cycles, i5index, O cycles and read 2, 91 cycles.

Alignment and quantification of sc or snRNA-seq data
For eachsequenced scRNA-seq library, we performed read alignment
tothe10X Genomics’ GRCh38v.3.1.0 (human) or Mm10-2020 (mouse)

reference genomes, quantification andinitial quality control using the
CellRanger Software (v.3.1,10X Genomics) using default parameters.
For eachsequenced multimodal snRNA-seq library, we performed read
alignment to the 10X Genomics’ GRCh38 v.3.1.0 (human) reference
genome, quantification and initial quality control using the Cell Ranger
ARC Software (v.1.0.1, 10X Genomics) using default parameters. Cell
Ranger filtered count matrices were used for downstream analysis.

Downstream scRNA-seq analysis

Doublet detection. We used Scrublet for cell doublet callingon a
per-library basis. We used a two-step diffusion doublet identification
followed by Bonferroni-false discovery rate (FDR) correctionand a sig-
nificance threshold of 0.01, as described™. Predicted doublets were not
excluded from theinitial analysis, but used afterwards to flag clusters
with high doublet scores.

Quality filters, alignment of data across different batches and
clustering. For scRNA-seq libraries, we integrated the filtered count
matrices from Cell Ranger and analysed themwith Scanpy v.1.7.0, with
the pipeline following their recommended standard practices. Inbrief,
we excluded genes expressed by fewer than three cells and excluded
cells expressing fewer than 500 genes (or 2,000 genes in mouse), more
than 20% mitochondrial content (5% in mouse) or with both more than
10% mitochondrial content and fewer than 1,500 counts correctly
mapped to the transcriptome. After converting the expression space
tolog(CPM/100 +1), the object was transposed to gene space toiden-
tify cell cycling genes in a data-driven manner, as described-. After
performing principal component analysis (PCA), neighbour identifica-
tionand Leiden clustering, the members of the gene clusterincluding
known cycling genes (CDK1, MKI167, CCNB2 and PCNA) were flagged as
the data-derived cell cycling genes and discarded in each downstream
analysis. Weidentified highly variable genes (n = 2,000) using Seurat v3
flavour on the raw counts, which were used to correct for batch effect
with single-cell variational inference (scVI) v.0.6.8. In the analysis of
human scRNA-seq, we corrected for sample source and donor effect
inboth the main and the germ and somatic reanalysis. In the analysis
of mouse scRNA-seq we corrected for sample effect and origin of the
dataset, thislastif combined with external data (below). Theresulting
latent representation of each cell in the dataset was used for neighbour
identification, Leiden clustering and uniform manifold approximation
and projection (UMAP) visualization.

General analysis was done separately on males and females in each
species. Germ, gonadal somatic, endothelial and immune cells were
subsequently reanalysedintegrating both sexesinto the same manifold,
using the approach described in the previous paragraph. Furthermore,
gonadal somatic cells from samples at the time of sex specification
(younger than CS23) were further reanalysed for fine-grained annota-
tion and validation.

Mouse gonad data. We combined our in-house mouse raw counts
matrix with the raw count matrices fromthe ovarian samples profiled
by Niuetal.’, comprising E11.5 to P5S developmental stages (GSE136441)°.
Forthe Niu et al.’ dataset, we excluded cells that expressed fewer than
1,000 genes or more than 20% of mitochondrial genes.

Forthe analysis of mouse germcells, we also included the mouse dataset
generated by Mayére et al.’°, which contains germ cells from mice from
E10to E18 developmental stages (GSE136220)'°. ENSEMBL gene IDs pro-
vided by the authors were converted to gene names using the appropriate
genome build (GRCm38.p5). We filtered out cells that expressed fewer
than 1,000 genes or more than 20% of mitochondrial genes. Next, we
concatenated male and female mouse germ cells data from our general
analysis (already including data from Niu et al.’) with the germ cells dataset
fromMayeéreetal.'’, keeping the genes shared between the three datasets.
The resulting matrix was integrated by sample and origin of the dataset
using scVlon the basis of the procedure described above.
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Macaque gonads data. Inaddition, we downloaded a macaque dataset
profiling fetal ovaries at stages E84 and F116 (GSE149629)" and included
itin our cross-species comparison of germ and female somatic cells.
Owingtolowsequencing depth, wefiltered out cells expressing fewer
than 300 genes and more than 20% of mitochondrial genes.

As for mice, macaque gene identifiers were converted to human
genes using ENSEMBL Biomart multi-species comparison filter. Genes
with several mappings were discarded.

Annotation of scRNA-seq datasets cross-species. Identification,
labelling and naming of the unbiased clusters was carried out on each
species individually using amanual approach that we validated using a
SVM classifier (see Cross-species comparison section below). For the
manual approach, we firstidentified cluster-specific genes that we used
to classify clusters into main cell types on the basis of bona fide marker
genes previously reportedintheliterature. Next, we refined the annota-
tionaccounting for the spatiotemporal dynamics in each sex.

To identify marker genes specific to a cluster, we used the TF-IDF
approach fromthe SoupX package v.1.5.0 (ref.*) inRv.4.0.3. To estimate
the cell cycle phase of each cell (that is, G1, S or G2/M), we aggregated
the expression of G2/M and S phase markers and classified the bar-
codes following the method described inref.* implemented in Scanpy
score_genes_cell_cycle function. We discarded the clusters that: (1)
were specifictoasingle donor; (2) had a higher average doubletscore;
(3) had lower numbers of expressed genes with no distinctive gene
expressed (from TF-IDF approach) or (4) were enriched for marker
genes for erythroid cells (red blood cells) and likely to be cell-free mes-
senger RNA soup®.

Cross-species comparison. We compared the transcriptional sig-
natures of the cell types identified in our human scRNA-seq to their
mouse counterparts, considering all developmental stages combined.
Mouse geneidentifiers were converted to human genes using ENSEMBL
Biomart multi-species comparison filter. Genes with several mappings
were discarded. Furthermore, genes associated with the cell cycle were
removed to avoid biases. Before training the model, human cell types
were downsampled to the cell type with the lowest number of cells to
obtainabalanced dataset. Here, 75% of the datawere used for training
the model and 25% of the data were used to test the model. Raw counts
were normalized and log-transformed, and the 300 most highly vari-
able genes were selected. We then trained an SVM classifier (sklearn.
svm.SVC) on human data and projected the cell type annotations onto
the mouse datasets. By doing so, we obtained a predicted probability
value that each cell in the mouse and macaque dataset corresponded
toevery given human cell type annotation. To study the transcriptomic
similarity of agiven cell type across species, we compared the estimated
probabilities between human-mouse matching cell types and visual-
ized them with boxplots. A detailed description of the workflow used
for cross-species comparisonis reported in Supplementary Note 2.

Agreement with external human gonads data. We evaluated the
consistency between the main lineagesidentified in our study with the
Smart-seq2 dataset of gonadal cells from Li et al.” (GSE86146). From Li
etal.’, we downloaded the normalized transcripts per million matrix
and annotated their cells using the ‘FullAnnot’ field provided in the
Sltable of the publication. We used the scmap tool* to project the Li
et al. annotations onto our dataset, using a similarity cut-off of 0.5 to
retrieve high confidence alignment, on each sex separately. To speed
up computational times, we downsampled our dataset to 50% size. Li
etal’s annotations were visualized onto the male and female UMAPs,
respectively.

Tovalidate the new ESGCs population, we queried the 10X scRNA-seq
dataset of developing testis from GSE143356 (ref. *®) analysed by Guo
et al.*. Here, we downloaded the raw expression count matrix, and

excluded cells expressing fewer than 300 genes and more than 20%
of mitochondrial genes. We carried out downstream analysis as pre-
viously described for UMAP visualization. Finally, we trained a SVM
classifier (sklearn.svm.SVC) on our early human male somatic cells
(<CS23) and projected cell type annotations onto the somatic cells
identified by Guo et al.*’ in equivalent stages (6, 7, 8 PCW only). The
label transfer workflow is analogous to that described for cross-species
comparison (Supplementary Note 2), except for the initial ENSEMBL
gene ID conversion, whichis not necessary in this case because we are
transferring labels between human datasets.

Analysis of immune cells in the gonads. Cell Ranger filtered count
matrices of CD45" enriched samples were processed using the workflow
described above for the main scRNA-seq analysis (doublet detection,
alignment of data across different batches with scVl and clustering).
These cells were thenmerged with the cluster ofimmune cells from the
non-enriched samples. The resulting clustered manifold was prelimi-
nary annotated by transferring labels from a publicly available dataset
of human fetal liver haematopoiesis®. Developing liver scRNA-seq raw
countswere downloaded from ArrayExpress (E-MTAB-7407), processed
with Scanpy v.1.7.0 workflow described above for the main scRNA-seq
analysis and filtered on the basis of the expression of CD45 (PTPRC) to
exclude non-immune cells. We then trained a SVM classifier (sklearn.
svm.SVC) onthefiltered liver dataset and used it to predict cell types on
our gonadalimmune dataset. The label transfer workflow is analogous
tothatdescribed for cross-species comparison (Supplementary Note 2),
except fortheinitial ENSEMBL gene ID conversion, whichis not neces-
saryinthis case as we are transferring labels between human datasets.
Predicted cell type annotations were validated or disproved by looking
at the expression of known marker genes.

To study the unique profile of our gonadal macrophages, we down-
loaded immune cells from several developingtissues: liver, skin, kidney,
yolk sac, gut, thymus, placenta, bone marrow and brain®?*"* Raw
sequencing datawere downloaded from ArrayExpress (E-MTAB-7407,
E-MTAB-8901, E-MTAB-8581, E-MTAB-0701, E-MTAB-9801) or Gene
Expression Omnibus (GEO) (GSE141862). For all datasets, we filtered
out cellsexpressing fewer than 300 genes and more than 20% of mito-
chondrial genes. Downstream data analyses for these datasets were
performed with the Scanpy v.1.7.0 workflow analogously to what is
described in the main scRNA-seq analysis section above. Myeloid cells
from fetalliver, skin, kidney, yolk sac, gut, thymus, placenta, bone mar-
row and brain datasets were selected on the basis of the expression of
established myeloid markers (CD14, CD68, CSFIR). We then combined
the resulting myeloid dataset with our gonadal myeloid cells and used
scVIwith a combined batch of donor and sample to integrate across
the different organs.

Projection of fetal osteoclasts from Jardine et al.*> and microglial
cells from Bian et al.” onto our immune dataset was done using an
SVM model. Similarly, we trained an SVM model on our gonadal mac-
rophages and projected the cell type annotations onto fetal testicular
myeloid cells from Chitiashvili et al.’. The label transfer workflow is
analogous to that described for cross-species comparison (Supple-
mentary Note 2), except for the initial ENSEMBL gene ID conversion,
whichisnotnecessaryinthis case asweare transferring labels between
human datasets

Trajectory inference in the germ and early somatic lineages. For
both germand early somatic cells, we modelled differentiation trajecto-
ries and conducted pseudotime analysis by ordering cells along the re-
constructed trajectory with Palantir (v.1.0.0)% following their tutorial.
Inbrief, cells were subsampled to balance cell type and sex contribution
(n=500 for germ and n =150 for somatic cells). The top 2,000 highly
variable genes were used for PCA. Next, we determined the diffusion
maps from the PCA space (with five top components), and projected
the diffusion components onto a t-SNE low dimensional embedding



to visualize the data. Finally, we used the function run_palantir (with
num_waypoints = 500) to estimate the pseudotime of each cell from
the root cell. The barcode with the highest normalized expression
of POUSFI (PGC marker) or UPK3B (mesothelial marker) was used as
the cell of originin the germ and early somatic analyses, respectively.
Terminal states were determined automatically by Palantir.

Forsamples at the time of sex specification, we computed RNA veloci-
ties® to model early somatic development with scVelo (v.0.2.4)% fol-
lowing their tutorial. Analysis was done on each sample separately
in humans and mice. First, we used STARsolo to quantify spliced and
unspliced counts, keeping the same 10X Genomics genome references
used in Cell Ranger before. Next, we reprocessed the somatic cells
(only cells at G1 phase) from each sample independently, performed
PCAonthetop 2,000 highly variable genes, neighbour identification
and UMAP projection to visualize previously annotated cell types.
Doublets and low quality control were discarded with unbiased Lei-
den clustering if necessary. We also excluded extragonadal coelomic
epithelium GATA2'. Using scVelo, we computed the RNA moments
and estimated velocities with ‘stochastic’ mode. Next, with scVelo we
combined transcriptional similarity-based trajectory inference with
directional RNA velocity and generated the velocity graph on the basis
of cosine similarities. To further characterize the cell fate decision
process in an unbiased way, we leveraged the RNA moments with the
CellRank package (v.1.5.1). Specifically, CellRank uses a random walk
model to learn directed, probabilistic state-change trajectories and
determine initial and terminal states. We set the number of terminal
states to four, letting CellRank determine the number of initial states.
We extracted the fate probability of each cell ending up in one of the
terminal states.

Alignment, quantification and quality control of ATAC data

We processed scATAC-seq libraries (read filtering, alignment, bar-
code counting and cell calling) with 10X Genomics Cell Ranger ATAC
pipeline (v.1.2.0) using the prebuilt 10X’s GRCh38 genome (v.3.1.0)
as reference. We called the peaks using an in-house implementation
of the approach described in Cusanovich et al.®® (available at https://
github.com/cellgeni/cellatac, revision 21-099). In short, the genome
was broken into 5 kb windows and then each cell barcode was scored
forinsertions in each window, generating a binary matrix of windows
by cells. Matrices from all samples were concatenated into a unified
matrix, which was filtered to retain only the top 200,000 most com-
monly used windows per sample. Using Signac (https://satijalab.org/
signac/v.0.2.5), the binary matrix was normalized with TF-IDF followed
by adimensionality reduction step using singular value decomposition.
Latent semanticindexing was clipped at +1.5. The first latent semantic
indexing component was ignored asit usually correlates with sequenc-
ing depth (technical variation) rather than a biological variation®. The
2-30 top remaining components were used to perform graph-based
Louvain clustering. Next, peaks were called separately on each cluster
using macs2 (ref. ¢*). Finally, peaks from all clusters were merged into
amaster peak set (that is, peaks overlapping in at least one base pair
were aggregated) and used to generate a binary peak by cell matrix,
indicating any reads occurring in each peak for each cell.

Downstream scATAC-seq analysis
Quality filters, alignment of data across different batches and clus-
tering. To obtain a set of high-quality peaks for downstream analysis,
we filtered out peaks that (1) wereincluded in the ENCODE blacklist, (2)
had awidth outside the 210-1,500 bp range and (3) were accessible in
lessthan4% of cells froma cellatac cluster. Low-quality cells were also
removed by setting to 5.5 the minimum threshold for log,p transformed
total counts per cell.

Weadopted the cisTopic approach®*¢v.0.3.0 for the core of our down-
stream analysis. cisTopic uses latent Dirichlet allocation to estimate the
probability of a region belonging to a regulatory topic (region-topic

distribution) and the contribution of a topic within each cell (topic-cell
distribution). The topic-cell matrix was used for constructing the neigh-
bourhood graph, computing UMAP projections and clustering with
the Leiden algorithm. Donor effects were corrected using Harmony®’
(theta = 0). Cell doublets were identified and removed using scrublet®s,

Gene activity scores. Next, we generated a denoised accessibil-
ity matrix (predictive distribution) by multiplying the topic-cell and
region-topicdistribution and used it to calculate gene activity scores. To
integrate them with scRNA-seq data, gene activity scores were rounded
and multiplied by a factor of 107, as previously described®.

Cell type annotation. To annotate cell types in scATAC-seq data, we
first performed label transfer from scRNA-seq data of matched indi-
viduals. We used canonical correlation analysis as a dimensionality
reduction method and vst as a selection method, along with 3,000
variable features and 25 dimensions for finding anchors between the
two datasets and transferring the annotations®. The predicted cell type
annotations by label transfer were validated by importing annotations
of the multiomic snRNA-seq/scATAC-seq profiling data. To visualize the
correspondence between scATAC-seq final annotations and predic-
tions from label transfer, we plotted the average label transfer score
(value between 0 and 1) of each cell type in the annotated cell types in
scATAC-seq data.

Cell type-specific cis-regulatory networks. Coaccessible peaksin
the genome and cis-coaccessibility networks (CCANs) were estimated
using the R package Cicero® v.1.3.4.11 with default parameters. We then
filtered the denoised accessibility matrix from cisTopic to keep only the
peaksincludedin CCANs. Theresulting matrix was further processed
to average cells by cell type and peaks by CCAN. Finally, we zscored the
matrix across CCANs and visualized the separation of CCANs by cell
type by hierarchical clustering and plotting the heatmap.

Alignment, quantification and quality control of Visium data

For each10X Genomics Visium sequencing data, we used Space Ranger
Software Suite (v.1.2.1) toalign to the GRCh38 humanreference genome
(official Cell Ranger reference, v.2020-A) and quantify gene counts.
Spots were automatically aligned to the paired H&E images by Space
Ranger software. All spots under tissue detected by Space Ranger were
included in downstream analysis.

Downstream analysis of 10X Genomics Visium data

Location of cell types in Visium data. To spatially locate the cell states
on the Visium transcriptomics slides, we used the cell2location tool
v.0.05-alpha (ref. °). As reference, we used scRNA-seq data from in-
dividuals of the same sex and gestational stage. We used general cell
annotations from the main analysis, with the exception of the main
gonadal lineages (germ, supporting and mesenchymal) for which we
considered theidentified subpopulations. We used default parameters
with the exception of cells_per_spot that was set to 20. Each Visium
section was analysed separately. Results were visualized following the
cell2location tutorial. Plots represent estimated abundance for cell
types. The size of the Visium spot in the plots was scaled accordingly
to enhance visualization.

CellPhoneDB and CellSign
We updated the CellphoneDB database to include: (1) extra manually
curated protein cell-cell interactions (n =1,852 interactions) and (2)
cell-cellinteractions involving non-protein ligands such as steroid
hormones and other small molecules (n =194). For the latter, we used
thelastbonafide enzymeinthe biosynthesis pathway (Supplementary
Table11a,b).

Toretrieve interactions between supporting and other cell popula-
tions identified in our gonadal samples, we used an updated version
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of our CellPhoneDB>*” (https://github.com/ventolab/CellphoneDB)
approach described in ref. 7. In short, we retrieved the interacting
pairs of ligands and receptors meeting the following requirements:
(1) all the protein members were expressed in at least 10% of the cell
type under consideration; and (2) atleast one of the protein members
intheligand or the receptor was a differentially expressed gene, with
an adjusted Pvalue below 0.01 and a log, fold change above 0.2. To
account for the distinct spatial location of cells, we further classified
the cells according to their location in the developing ovaries (outer
cortex, inner cortex, medulla) as observed by Visium and smFISH. We
filtered cell-cell interactions to exclude cell pairs that do not share
the same location.

Furthermore, we added anew module to the database called CellSign
thatlinksreceptorsin CellphoneDB to their known downstream TF. To
build CellSign, we have manually mined the literature to identify TFs
with high specificity for an upstream receptor and recorded the relevant
pubmed reference number (Supplementary Table 11c). We used this
database to link our CellPhoneDB results to the relevant downstream
TFs, which were derived from our TF analysis.

TF analysis

To prioritize the TF relevant for a cell state in a human lineage, we
integrated three measurements: (1) expression levels of the TF and
(2) the activity status of the TF measured from (2a) the expression
levels of their targets (described below in TF activities derived from
scRNA-seq) and/or (2b) the chromatin accessibility of their binding
motifs (described below in TF motif activity analysis from scATAC-seq).
Plots in mainfiguresinclude TFs meeting the following criteria: (1) TF
was differentially expressed, with log, fold change greater than 0.5
and adjusted P <0.01and (2) TF was differentially active, with log, fold
change greater than 0.75and adjusted P< 0.01in atleast one of the TF
activity measurements (2a/2b). For mouse and macaque, we performed
differential expression analysis only and compared the results to the
orthologous TF in humans.

TF differential expression. We computed differential expression using
the one-sided Wilcoxon Rank Sumtestimplemented in the FindAlIMark-
ers function with Seuratv.3.2.2, in a one-versus-all fashion.

TF activities derived from scRNA-seq. We estimated protein-level
activity for human TFs as a proxy of the combined expression levels of
their targets. Target genes were retrieved from Dorothea”, an orthogo-
nal collection of TF targets compiled from arange of different sources.
Next, we estimated TF activities for each cell using Viper’, a GSEA-like
approach, asimplemented in the Dorothea R package and tutorial”™.
Finally, toidentify TF whose activity was upregulated ina specific cell
type, we applied the Wilcoxon Rank Sum test from Seurat onto the
z-transformed ‘cell x TF’ activity matrix in a one-versus-all fashion.

TF motif activity analysis from scATAC-seq. TF motif activities were
computed using chromVar” v.1.12.2 with positional weight matrices
fromJASPAR2018 (ref.””), HOCOMOCOV1O (ref. ”®), SwissRegulon’,
HOMER®®, chromVar returns a matrix with binding activity estimates
of each TFin each cell, whichwe used to test for differential TF binding
activity between cell types in a one-versus-all fashion with Wilcoxon
Rank Sum test (FindAlIMarkers function in Seurat).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Datasets are available from ArrayExpress (www.ebi.ac.uk/arrayex-
press), with accession numbers E-MTAB-10551 (human scRNA-seq),

E-MTAB-10570 (human scATAC-seq), E-MTAB-11708 (humansnRNA-seq/
sCATAC-seq multiomics), E-MTAB-10589 (human Visium) and
E-MTAB-11480 (Mouse scRNA-seq). Multiplexed smFISH images are
available from BioStudies (www.ebi.ac.uk/biostudies), with accession
number S-BIAD393. All data are public access. scRNA-seq datasets to
reproduce UMAPs and dot plots can be accessed and downloaded
throughthe web portals www.reproductivecellatlas.org. External data-
sets for macaque (GSE149629), mouse (GSE136220 and GSE136441) and
human (GSE86146) gonads are available through their respective acces-
sions from GEO. External raw sequencing data from human developing
tissues are available from ArrayExpress (E-MTAB-7407, E-MTAB-8901,
E-MTAB-8581, E-MTAB-0701, E-MTAB-9801) or GEO (GSE141862). Source
data are provided with this paper.

Code availability

All the code used for data analysis is available at https://github.com/
Ventolab/HGDA.
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Extended DataFig.1| Quality control of scRNA-seq dataofthe human
developingovaries and testes. a, Schematic representation of the
computational workflow used to analyse scRNA-seq data. b, UMAP (uniform
manifold approximation and projection) of the male and female human (left)
and mouse (right) scRNA-seq datasets labelled by donor and sample. Dots from
thesame donor or sample share a colour. For female mouse scRNA-seq data, an
additional UMAP s coloured by the study of origin. ¢, Barplot showing the
proportions of human (top) and mouse (bottom) cells profiled with scRNA-seq
coloured by lineage and classified by sex and developmental stage (indicated in
post-conceptional weeks (PCW) or embryonic (E) / postnatal (P) days).d, Dot
plots showing the variance-scaled, log-transformed expression of genes
(X-axis) characteristic of the main lineages (Y-axis) detected in male and female
human (top) and mouse (bottom) scRNA-seq datasets. Top-layer groups
marker genes by categories. Lineages unique to developing ovaries and testes
are highlighted with"*". e, Predicted cell annotations from Li et al. 2017 scRNA-

seq analysis of human gonads on our human scRNA-seq dataset. Labels were
transferred using scmap separately for females (left) and males (right), witha
cutoffof 0.5. Cells that do not pass the 0.5 cutoff are labelled as “unassigned”.
Colourlegend for the mainlineages match those in Extended DataFig. 1c.
f,Boxplot showing the predicted probabilities of human cell types transferred
withaSupportVector Machine (SVM) model onto manually annotated mouse
celltypesaround the time of sex determination (n=29,297 cells; left) for both
females and males, or considering all developmental stages combined for
ovaries (n=70,379 cells; middle) and testes (n=;32,889; right) separately. The
box extends fromthe lower toupper quartile values of the data, withaline at
the median. The whiskers extend from the box to show the range of the data.
Flyer pointsare those past the end of the whiskers. CoelEpi =coelomic
epithelium; E=embryonic day; Endo = endothelial; Epi = epithelial; FGC =fetal
germ cells; P=postnatal day; PCW = post-conceptional weeks; SMC =smooth
muscle cells; Soma=somatic; PV = perivascular; Mese =mesenchymal.
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Extended DataFig.2|Analysis of the chromatin accessibility landscape of
thehumandeveloping ovaries and testes. a, Schematic representation of the
computational workflow used to analyse human scATAC-seq data. b, UMAP
(uniform manifold approximation and projection) of female (top) and male
(bottom) human scATAC-seq datasets labelled by donor and post-conceptional
weeks (PCW). Dots from the same donor share a colour. ¢, Heatmap reporting
label transfer scores from human scRNA-seq to scATAC-seq female (left) and
male (right) data of matched individuals. Colour intensity corresponds to the
average of the label transfer scores for all cellsineach annotated cell type.

d, UMAP projections of female (left) and male (right) human scATAC-seq
datasetslabelled by the cell lineage identified in snRNA-seq datafrom the
cell-coupled snRNA-seq/snATAC-seq profiling. Only gonadal tissue was
includedinthe combined snRNA-seq/scATAC-seq assay. CoelEpi=coelomic
epithelium; ESGC =early supporting gonadal cells; GC = germ cells; Mesen =
mesenchymal; OSE = ovarian surface epithelium; PCW = post-conceptional
weeks; PGC = primordial germ cells; preGC = pregranulosa cells; PV =
perivascular; SMC =smooth muscle cell; SPAX8 =supporting PAXS8.
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Extended DataFig. 3| Gonadal and extragonadal location of mesenchymal
and mesothelial cells. a, UMAP (uniform manifold approximation and
projection) of human (left) and mouse (right) scRNA-seq datasets labelled by
celllineage and tissue location. b, Spatial mapping of mesenchymal cell types
fromthe humanscRNA-seq dataset to aspatial transcriptomicsslide ofalate 8
post-conceptional weeks (PCW) testis,a12 PCW testis and an 11 PCW ovary with
cell2location. Estimated abundance for cell types (colour intensity)
contributed by eachmesenchymal subpopulation to each Visium spot (colour)
shown over the H&E images. Scalebars =1mm; n = 2. ¢, High-resolution
imaging of arepresentative gonadal section (sagittal) of ahuman XY fetal
gonad (Carnegie stage, (CS)17). Intensity proportional to smFISH signal for
UPK3B (red, coelomic epithelium), GATA4 (yellow, intra-gonadal) and GATA2
(cyan, extra-gonadal); n = 5. The white dashed rectangles (left) highlight the

enlarged sampleregion (right). Scale bars =100 pm (left) and 10 pmin
magnified regions (right). d, Dot plot showing the variance-scaled, log-
transformed expression of transcription factors (TFs) with mutually exclusive
expressionin gonadal and extragonadal mesenchymal and mesothelial cellsin
human and mouse scRNA-seq data. e, Spatial plot showing the variance-scaled,
log-transformed expression of TF with mutually exclusive expressionin
gonadal and extragonadal mesenchymal cells over the H&E images of alate 8
PCW testis,al2PCW testisand an11 PCW ovary; n=2.Scalebars=1mm.
CoelEpi=coelomicepithelium; Endo = endothelial; Epi = epithelial; G=gonad;
Gi=gonadalinterstitial; M=mesonephros; Mese = mesenchymal; Oi = ovarian
interstitial; PV = perivascular cell; SMC =smooth muscle cell; Ti=testicular
interstitial.
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Extended DataFig. 4 |Characterisation of germ cell states.a, UMAP
(uniform manifold approximation and projection) of germcell in the human
(top; n=10,993), mouse (middle; n=10,411) and external macaque (bottom:
n=2,685)scRNA-seq datasets labelled by germ cell states, sex, donor/sample
identity and developmental stage indicated in post-conceptional weeks (PCW)
orembryonic (E) / postnatal (P) days). Doublets and low QC cells removed.

b, Downsampled UMAP for human germ cells to account for up to 50 cells per
donor (colour) for confirmatory visualisation. ¢, Dot plots showing the
variance-scaled, log-transformed expression of genes characteristic of fetal
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oogenesis inthe human (top), mouse (middle) and macaque (bottom) germ
cellsscRNA-seqdata. d, Relative proportion of human germ cell states (colour)
profiled with scRNA-seq, classified by sexand developmental stage. e, t-SNE
(t-distributed stochastic neighbour embedding) projection of scRNA-seq data
ofhuman germ cells coloured by Palantir pseudo-time and probability of cells
to progress from the PGC status. Germ cells are downsampled to account for
500 cells foreachgermcell state. E=embryonic day; FGC = fetal germ cells;
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Extended DataFig.5|Crossspecies TF comparisonofgermcells.a, UMAP
of germ cell states (colour) inthe human scATAC-seq (n = 8,901) dataset.
Doublets and low QC cellsremoved. b, Heatmap reporting label transfer scores
fromhumanscRNA-seq toscATAC-seq germ cell data of matched individuals.
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identified insnRNA-seq datafromthe cell-coupled snRNA-seq/snATAC-seq
profiling. d, Hierarchical clustering of transcription factor (TF) binding
activity scoresineach humangerm celltype estimated from scATAC-seq data.
e, Heatmaps showing the expression of human-relevant transcription factors
(TF)inhuman, macaque and mouse germ cells. Colour proportional to scaled
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Extended DataFig. 6| Human-mouse comparison and trajectory inference
of early gonadal somatic cells. a, UMAP (uniform manifold approximation
and projection) of gonadal somatic cells in the human (top) and mouse
(bottom) scRNA-seq datasets coloured by sample of origin, sex and
developmental stage (indicated in post-conceptional weeks (PCW) or
embryonic (E)/ postnatal (P) day). Dots from the same donor or sample sharea
colour.b, UMAP projections of the fate probabilities of each cellending up in
one of the terminal states (scRNA-seq). Coloured symbolsindicate the initial
and terminal cell states predicted by CellRank. Top UMAPs depict two human
(7 post-conceptional weeks, PCW testis; 7.5 PCW ovary) gonadal samples while
bottom UMAPs depict two mouse (E11.5 testis and E12.5 ovary) gonadal
samples, analysed independently. ¢, t-SNE (t-distributed stochastic neighbour
embedding) projection of somatic cells coloured by Palantir pseudo-time and
probability of cells to progress from the gonadal coelomic epithelium GATA4+
inhumansbetween 6-8.5PCW (left) and mice at E10.5-E11.5 (right). Somatic
cellsare downsampled to account for 150 cells for each cell stateineach sexin
bothspecies.d, (left) UMAP projections of the predicted probability of ESGC
fromour dataset onto Guo etal., 2021 somatic cells manifold using a Support
Vector Machine (SVM) classifier. (right) UMAP projections on the validation
dataset of human fetal testis, re-analysed from Guo et al., 2021, labelled by
somatic cell state. e, Barplot showing the proportions of somatic cellsin the
Guoetal.,2021dataset coloured by cell state and classified by PCW. f, Dot plots

showing the variance-scaled, log-transformed expression of genes
characteristicof human ESGCinthe Guo etal.,2021dataset of human fetal
testis. g, Dot plot showingthe variance-scaled, log-transformed expression of
genesinthe WNT4/RSPO1 pathway in ESGC (splitin male and female), preGC-I
and Sertoli cells inthe human (top) and mouse (bottom) scRNA-seq dataset.
h, Dot plots showing the variance-scaled, log-transformed expression of
human-specific markers of ESGCin the mouse scRNA-seq dataset.i, High-
resolution, imaging of representative human gonadal sections with intensity
proportional to smFISH signal for RNA markers. (top) Carnegie stage 19 (CS19)
ovarystained for LGRS (red, ESGC), TSPANS8 (yellow, ESGC), RIMS4 (magenta, 1st
wave somatic cells), OSR1 (cyan, preGC-1). The white dashed line outlines the
ovary; the white dashed rectangle highlights the enlarged gonadal region.
ESGCs nuclei have been marked with dashed circles. (bottom) CS19 testis
stained for LGRS (red, ESGC), TSPANS (yellow, ESGC), SRY (magenta, ESGC),
SOX9 (cyan, Sertoli). The white dashed line outlines the testis. The white
dashedrectangle highlights the enlarged gonadal region. White arrowsin the
magnified areas mark ESGC nuclei; n=2.Scale bars =100 umand 10 pmin
magnified regions. CoelEpi=coelomicepithelium; E=embryonic day;
ESGC=early supporting gonadal cells; Gi =gonadal interstitial; P = postnatal
day; PCW = post-conceptional week; preGC = pre-granulosa cells;
sPAX8=supporting PAX8; Ti=testicular interstitial.
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Extended DataFig.7|See next page for caption.
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Extended DataFig.7 | Gonadal supporting PAXS8+cells define gonadal
boundaries. a, Spatial mapping of somatic cell types from the scRNA-seq
human dataset to three consecutive spatial transcriptomics slides ofal4 PCW
testis using cell2location. Estimated abundance for cell types (colour intensity)
contributed by each cell population to each spot (colour) shown over the H&E
image; n =3.Scale bars=1mm.b, UMAP (uniform manifold approximationand
projection) showing mesothelial, first wave supporting and epithelial cellsin
human first trimester (left) and mouse embryonic day (E) E10.5-E12.5 (right)
scRNA-seq datalabelled by celltype, location of the tissue, sex, donor or
sample and post-conceptional weeks (PCW) or stage. ¢, Dot plot showing the
variance-scaled, log-transformed expression of genes characteristic of the
mesothelial, supporting and epithelial subpopulationsin human first trimester
(top) and mouse E10.5-E12.5 (bottom) scRNA-seq data. d, High-resolution
large-areaimaging of representative gonadal section (sagittal) of ahuman fetal
testis (7PCW, Carnegie Stage CS17) withintensity proportional to smFISH
signal for GATA4 (green, gonadal), PAX8 (red, sPAX8 population) and GATA2
(cyan, extragonadal); n=5. Thissampleis alsoshownin Extended DataFig. 3c.
e, High-resolution large-areaimaging of arepresentative section of amouse
fetal ovary (E13.5) with intensity proportional to smFISH signal for LgrS (yellow,
cortical pre-granulosa), Pax8 (red, sPAX8), Hmgcs2 (green, medullary
pre-granulosa) and Gng13 (magenta, cortical pre-granulosa); n=2.

f,High-resolution large-areaimaging of representative sections of three
human fetal testes (sagittal late 8, transverse 11and transverse 12PCW; n=3)
withintensity proportional to smFISH signal for PAX8 (yellow, sSPAX8
population), NR5A1 (cyan, interstitial Fetal Leydig), EPCAM (red, lowin
supporting cells, highin epithelial cells of the reproductive tubules) and KLK11
(green; coelomic epithelium). g, High-resolution large-areaimaging of
representative sections of two human fetal ovaries (9 and 11 PCW; n = 2) with
intensity proportional to smFISH signal for the same panelin “f”. h, (left) Dot
plotshowingthescaled log-transformed expression of upregulated genes
coding for sPAX8ligands or receptor proteinsin the supporting testis cells.
(right) Dot plots showing the scaled log-transformed expression of genes
coding for cognate ligand or receptor proteinsin the supporting epithelial,
endothelialand germ cells. Interacting partners (i.e., with binding specificity)
arelinked witha matching symbol. CoelEpi=coelomic epithelium;
E=embryonic day; Epi = epithelial; ESGC =early supporting gonadal cells;
FGC=fetal germ cells; Gi =gonadal interstitial; M= mesonephros; PCW = post-
conceptional week; PGC = primordial germ cells; preGC = pre-granulosa cells;
sPAX8=supporting PAX8; Ti=testicular interstitial. For all smFISH panels,
unless otherwise specified, white dashed rectangles highlight gonadal regions
magnified; scale bars =100 pm and 10 pm in magnified regions.
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Extended DataFig. 8 |Second wave of fetal pre-granulosa. a, Boxplots of the
predicted probabilities (Y-axis) of the label transfer from human to mouse
supporting cells (X-axis) in the ovaries around the time of the second wave of
pre-granulosa cells (8-16 post-conceptional weeks (PCW) human, embryonic
day (E)12.5-E16.5 mouse, n =10,042 cells; left) and around the time of
folliculogenesis (17-21PCW human, E18.5- postnatal day (P)5 mouse, n=5,296
cells; right). The box extends from the lower to upper quartile values of the
data, withaline at the median. The whiskers extend from the box to show
therange of the data. Flyer points are those past the end of the whiskers.

b, Heatmapreporting label transfer scores from human scRNA-seq to scATAC-
seq somatic cell data of matched individuals. ¢, UMAP (uniform manifold
approximation and projection) of somatic cellsin the humanscATAC-seq
datasetlabelled by the cell state identified in snRNA-seq data from the cell-
coupled snRNA-seq/snATAC-seq profiling.d, Hierarchical clustering of
z-scores for each cis-co-accessibility network (CCAN) identified in human
ovariansupportingcellsin the human scATAC-seq dataset. e, UMAP
projections of somatic cellsinthe macaque scRNA-seq dataset re-analysed
fromZhaoetal.,2020 labelled by cell type and stage. f, Dot plots showing the
variance-scaled, log-transformed expression of genes (X-axis) characteristic of
ovariansupporting cells (Y-axis) in mouse (left) and macaque (right) scRNA-seq
data. Top-layer groups marker genes by categories. g, (top) Diagram showing
theinformation addedinthe updated version of CellPhoneDB database
(CellPhoneDB v4), whichincludes: (i) 534 novel (1,852 total) ligand-receptor
interactions; (ii) 194 novel interactions mediated by small molecules; (iii) 186
novel curated links between ligand-receptor and transcription factors
(CellSignmodule). (bottom) Diagram showing the new statistical framework to

inferactive cell-cellinteraction partners.Itincludes an additional step to
indicate active ligand-receptor partnersin our databased on the activation of
downstream ssignals on the receiver cell (CellSign module). Downstream
signalsare calculated based on TF expression and TF activity from scRNA-seq
and scATAC-seq data. h, Heatmap showing the expression of TF downstream
thereceptors (CellSign) upregulated in germ and supporting cells (shownin
Fig.4d). Colour proportional toscaled log-transformed expression. Symbols
highlight TF status, asin (Fig. 4b). Specificity betweenreceptors and the
corresponding downstream TF are indicated witha symbol matching the
upstreamreceptorsinFig.4d.i, Dot plots showingscaled log- transformed
expression of genes coding for interacting extra-cellular matrix (ECM) proteins
insupporting (top) and germ (bottom) cells states. j, High-resolutionimaging
of representative gonadal section of a human fetal ovary (19PCW), with
intensity proportional to smFISH signal for NTNI (green, granulosa), FIGLA
(yellow, oocytes), DCC (red, oocyte), FOXL2 (magenta, granulosa); n = 2. White
dashed rectangles highlight follicles and the enlarged gonadal region. Scale
bars=100 pmand 10 pmin the magnified region. k, Schematicillustration of
mainTFs, receptors, ligands and extracellular molecules regulating germ cell
differentiationinfluenced by the granulosalineage. New molecules identified
inourstudy are highlighted ingreen. CoelEpi=coelomic epithelium;
E=embryonic day; ESGC =early supporting gonadal cells; FGC =fetal germ
cells; Gi=gonadalinterstitial; Oi = ovarianinterstitial; OSE = ovarian surface
epithelium; P=postnatal day; PCW = post-conceptional week; PGC = primordial
germ cells; preGC = pre-granulosa cells; TF = transcription factor; Ti=testicular
interstitial; SPAX8 =supporting PAXS8.
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Extended DataFig. 9| Tissue-resident macrophagesinthe developing
testes. a, Schematicsillustrating the CD45+ enrichment strategy for gonadal
and extragonadal samples. The11samples that were sorted with the pan-
leukocyte marker CD45 are from the following developmental stages: 6,11,
12PCW males,and 7.5,8.4,1ate 8,9,11,11,14,17 PCW females. b, Gating strategy
tosortimmune cellsin gonadal samples for arepresentative donor (F93). Cells
were gated onlive, singlets and CD45+. ¢, UMAP projections of immune cells
labelled by sex, PCW and donor. d, Heatmap showing label transfer scores from
the fetalliver hematopoiesis dataset (Popescu et al.,2019) to our gonadal
immune dataset using aSupport Vector Machine (SVM) classifier. Low
probabilities assigned to neutrophils, which were not defined in the liver
dataset, and to macrophages e, Dot plot showing variance-scaled, log-
transformed expression of marker genes expressed in theidentified immune
subsets. f, Barplot showcasing the proportions ofimmune cells labelled by cell
state and classified by sexand developmental stage. g, Barplot showcasing the
proportion of cellsbelonging to eachidentified macrophage populationin
females and males. h, Dot plot showing the variance-scaled, log-transformed
expression of microgliamarkersin the cluster of TREM2+ftMin both sexes
reveals that the few female cells that belong to this cluster do not express the
key markers. i, Predicted probability of bone marrow osteoclasts fromJardine
etal., 2021 (left) and brain microglia cells from Bian et al., 2020 (right) onto our

gonadal immune manifold using a SVM classifier.j, UMAP (uniform manifold
approximation and projection) of the multi-organintegrated fetal myeloid
dataset labelled by tissue and donor. k, Dot plot showing variance-scaled, log-
transformed expression of marker genes expressedin theidentified cell
populations from the multi-organintegrated fetal myeloid dataset. 1, Dot plots
showing variance-scaled, log-transformed expression of interacting ligands
andreceptorsinthe SIGLECIS+and TREM2+ftM and gonadal cell populations.
Interacting partners (CellPhoneDB) areindicated with amatching symbol.

m, Dot plot showing variance-scaled, log-transformed expression of
immunoregulatory markersinhuman gonadal macrophages.cDC=
conventional Dendritic cells; ECM = extracellular matrix; ESGC = early
supporting gonadal cells; ftM = fetal testicular macrophages; Gi = gonadal
interstitial; ILC prec=innate lymphoid cell precursors; Mac =macrophages;
Mast =mast cells; Mega=megakaryocytes; MEMP =megakaryocyte-erythroid-
mast cell progenitors; Mono =monocytes; Neutro=neutrophil; NMP =
neutrophil-myeloid progenitors; NK =NaturalKiller cells; pDC = plasmacytoid
Dendritic cell; PV =perivascular; PCW = post-conceptional week; Prec =
precursor; Pre_B=pre-B cells; Pre_pro_B = pre-pro-B cells; Pro_B = pro-B cells;
Prob_=probability; SPAX8 =supporting PAX8; Gi=gonadal interstitia; T=T
cells; Ti=testicular interstitial.
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Extended DataFig.10 |Macrophages smFISH panels. a, High-resolution
imaging of representative sections of a fetal testes, with intensity proportional
to smFISH signal for RNA markers. (left) 11PCW testis stained for CD68 (green,
macrophages), SIGLEC1S5 (red, SIGLEC15+ftM), ATP6VOD2 (magenta, SIGLEC15+
ftM), ACPS5 (cyan, SIGLECIS+ ftM); n = 5. (middle) 10 PCW testis stained for CD68
(green, macrophages), P2RY12 (red, TREM2+ftM), SALLI (yellow, TREM2+ ftM);
n=4.(right) 8 PCW testis stained for CD68 (red, macrophages), SIGLECIS
(yellow, SIGLEC15+ftM) and P2RY12 (green, TREM2+ftM); n=3.b, High-
resolutionimaging of representative sections of two fetal testes (11and 12
PCW), withintensity proportional to smFISH signal for EPCAM (cyan, high=
epithelial cells; low =Sertoliand germ cells), PDGFRA (green, mesenchymal
cells), CD68 (red, macrophages), SIGLECIS (yellow, SIGLECI5+ftM);n=7.c, (top
left) UMAP (uniform manifold approximation and projection) of myeloid cells
from Guoetal.,2021labelled by PCW. (bottom left) Predicted probability of
SIGLEC15+ftM from our data onto myeloid cells from Guo et al.,2021 using a

Support Vector Machine classifier. (right) UMAP projections of myeloid cells
from Guo etal.,2021showing the expression of SIGLECI5+ ftM marker genes.

d, High-resolution large-areaimaging of arepresentative section of a full male
embryo (Carnegie Stage CS19), withintensity proportional to smFISH signal for
CD68 (green, macrophages), P2RY12 (red, TREM2+ftM and microglia), ELAVL3
(cyan, neural cells). White dashed rectangles highlight the magnified regions
fromthe following organs: testis (top), skin (middle), spinal cord (labelled as
CNS=central nervous system) (bottom); n =1e, High-resolution imaging of
representative gonadal sections of two fetal testes (12 and 14 PCW), with
intensity proportional to smFISH signal to SOX9 (cyan, Sertoli cells), CD68 (red,
macrophages), P2RY12 (yellow, TREM2+ftM); n = 5. ftM =fetal testicular
macrophages; PCW = post-conceptional week; prob_= probability. For all
smFISH panels, unless otherwise specified, white dashed rectangles highlight
gonadal regions magnified; scalebars =100 pum and 10 pum in magnified
regions; developingtestis cords are delineated with dashed lines.
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Data collection  No software was used for data collection
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Alignement, QC and barcode calling of multiomics GEX and ATACseq data with Cell Ranger ARC v.1.0.0 (10x Genomics).
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Alignement, QC and image processing Visium spatial transcriptomics data with Space Ranger v.1.2.1 (10x Genomics).

Downstream Analysis was carried out using Python (version 3) with Scanpy v.1.7.0.

Batch correction was carried out with scVIv.0.6.8.
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Cis-co-accessibility networks (CCANs) were estimated using the R package Cicero 69 v.1.3.4.11.
Transcription factor motif activities were computed using chromVar v.1.12.2

Custom code available at https://github.com/ventolab/HGDA.

The FACS sorter was controlled with BD FACS DIVA software v.7, and FlowJo v.10.3 was used for analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A

Lc0c Y21o




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Datasets are available from ArrayExpress (www.ebi.ac.uk/arrayexpress), with accession numbers E-MTAB-10551 (human scRNA-seq), E-MTAB-10570 (human
SCATAC-seq), E-MTAB-11708 (human snRNA-seq/scATAC-seq multiomics), E-MTAB-10589 (human Visium) and E-MTAB-11480 (Mouse scRNA-seq). Multiplexed
smFISH images are available from BioStudies (www.ebi.ac.uk/biostudies), with accession number S-BIAD393. All data is public access. scRNAseq datasets to
reproduce UMAPs and dotplots can be accessed and downloaded through the web portals www.reproductivecellatlas.org.

External datasets for macaque (GSE149629), mouse (GSE136220 and GSE136441) and human (GSE86146) gonads are available through their respective accessions

from GEO. External raw sequencing data from human developing tissues is available from ArrayExpress (E-MTAB-7407, E-MTAB-8901, E-MTAB-8581, E-MTAB-0701,
E-MTAB-9801) or GEO (GSE141862).
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We collected human fetal gonadal tissue from 55 donors. This cohort is equal or larger than previous single-cell transcriptomic atlases of fetal
tissues in humans (PMID:33184181; PMID:31597962; PMID:32079746; PMID:33208946), and should be sufficient to capture the main cell
types and states in the tissue.

We collected developing mouse gonads and mesonephros from 23 embryos. Embryos were genotyped to identify the gender. At least 2 males
and 2 females (mouse) were collected on any particular day. Specifically, we included 6 males and 3 females at E10.5, 6 males and 2 females
at E11.5, and 3 males and 3 females at E12.5. There were no calculations performed to determine sample size. This cohort is equal or larger
than previous reference single-cell transcriptomic atlas of fetal tissues in mouse (PMID:30283141), and should be sufficient to capture the
main cell types and states in the tissue.

Data exclusions  Seven scRNAseq libraries (all human tissues) were excluded from the final dataset due to low sequencing quality.

Replication For single cell transcriptomics atlasing, eight tissues were split and processed in parallel to study technical variability. Analysis of technical
replicates revealed the same gonadal populations.
For spatial transcriptomics, we included two technical replicates (consecutive tissue slides) for each of the five tissues analysed and confirmed
replicability of the cell mappings.
For high-resolution imaging using RNAScope probes, we performed the analysis on at least two slides from distinct donors. All atempts were
successful.

Randomization  Human samples were randomly allocated to this study through (HDBR; http://www.hdbr.org). Human sample collection was based on
availability of fetal donors.
Mice were not randomized due to practical constraints.
Since we aim to characterise the cellular dynamics of the developing gonad, we allocated both human and donor samples into developmental
windows based on age. Randomisation is not relevant for this study as we re not comparing disease groups.

Blinding This study made no comparison between discreet groups for human and mouse individuals, thus binding of investigators was not necessary.
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Antibodies
Antibodies used CD45-BUV395 BD Bioscience 563791 Clone HI30 (RUO) Flow cytometry - index data; 2.5ul:100ul
Validation CD45-BUV395 Flow cytometry (Routinely Tested) . Flow cytometric analysis of CD45 expression on human peripheral blood

lymphocytes (website).

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals We used E10.5, E11.5, E12.5 and E13.5 mouse embryos carrying the Oct4APE-GFP transgene (GOF strain). Mice were housed in
specific pathogen-free conditions at a Home Office-approved facility at the University of Cambridge. Mice were maintained with a 12
hour light/ 12 hour dark cycle, with temperature ranging from 20-24°C and humidity of 45-65%.

Wild animals The study did not involve wild animals
Field-collected samples The study did not involve samples collected from the field
Ethics oversight All experimental procedures were carried out in agreement with the project license PES96D1FE issued by the UK Home Office

(Animal Welfare Ethical Review Board (AWERB) committee) and carried out in a Home Office designated facility, in accordance with
ethical guidelines with the United Kingdom Animals (Scientific Procedures) Act of 1986.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

Population characteristics Human fetal gonads and mesonephros samples were obtained from both males and females, with age ranging between 6-21
post-conception weeks.

Recruitment Human embryo and fetal samples were obtained from the MRC and Wellcome-funded Human Developmental Biology
Resource (HDBR, http:// www.hdbr.org), with appropriate maternal written consent and approval from the Fulham Research
Ethics Committee (REC reference 18/L0/0822) and Newcastle & North Tyneside 1 Research Ethics Committee (REC reference
18/NE/0290). The HDBR is regulated by the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance
with the relevant HTA Codes of Practice.

Ethics oversight Human embryo and fetal samples were obtained from the MRC and Wellcome-funded Human Developmental Biology
Resource (HDBR43, http:// www.hdbr.org), with appropriate maternal written consent and approval from the Newcastle and
North Tyneside NHS Health Authority Joint Ethics Committee (08/H0906/21+5). The HDBR is regulated by the UK Human
Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the relevant HTA Codes of Practice.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Methodology

Sample preparation Cells were incubated at 4°C with 2.5ul of antibodies in 1% FBS in DPBS without Calcium and Magnesium
(ThermoFisher Scientific, 14190136). DAPI was used for live/dead discrimination.

Instrument Becton Dickinson (BD) FACS Aria Fusion. For granule experiment we used LSRFortessa FACS analyser (BD Biosciences)

Software Becton Dickinson (BD) FACS Aria Fusion was controlled using BD FACS DIVA software (version 7) and FlowJo v10.3 was used
for analysis.

Cell population abundance Abundance of CD45 positive and negative fractions for droplet single sequencing was determined by flow cytometry (~¥1.5%

of CD45+ in live, singlet fraction). The purity of these populations was determined by single-cell RNA sequencing.

Gating strategy Cells isolated for were gated on: live; singlets, and the following cell types sorted using overlapping gates: i) CD45+ ii) CD45-
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