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ARTICLE

Investigating the shared genetic architecture
of uterine leiomyoma and breast
cancer: A genome-wide cross-trait analysis

Xueyao Wu,1 Chenghan Xiao,1 Zhitong Han,2 Li Zhang,1 Xunying Zhao,1 Yu Hao,1 Jinyu Xiao,1

C. Scott Gallagher,3 Peter Kraft,4,5 Cynthia Casson Morton,6,7,8,9,12 Jiayuan Li,1,12,*
and Xia Jiang1,10,11,12,*
Summary
Little is known regarding the shared genetic architecture or causality underlying the phenotypic association observed for uterine leio-

myoma (UL) and breast cancer (BC). Leveraging summary statistics from the hitherto largest genome-wide association study (GWAS)

conducted in each trait, we investigated the genetic overlap and causal associations of UL with BC overall, as well as with its subtypes

defined by the status of estrogen receptor (ER). We observed a positive genetic correlation between UL and BC overall (rg ¼ 0.09, p ¼
6.00 3 10�3), which was consistent in ERþ subtype (rg ¼ 0.06, p ¼ 0.01) but not in ER� subtype (rg ¼ 0.06, p ¼ 0.08). Partitioning

the whole genome into 1,703 independent regions, local genetic correlation was identified at 22q13.1 for UL with BC overall and

with ERþ subtype. Significant genetic correlation was further discovered in 9 out of 14 functional categories, with the highest estimates

observed in coding, H3K9ac, and repressed regions. Cross-trait meta-analysis identified 9 novel loci shared between UL and BC. Men-

delian randomization demonstrated a significantly increased risk of BC overall (OR ¼ 1.09, 95% CI ¼ 1.01–1.18) and ERþ subtype

(OR¼ 1.09, 95% CI ¼ 1.01–1.17) for genetic liability to UL. No reverse causality was found. Our comprehensive genome-wide cross-trait

analysis demonstrates a shared genetic basis, pleiotropic loci, as well as a putative causal relationship between UL and BC, highlighting

an intrinsic link underlying these two complex female diseases.
Introduction

Uterine leiomyoma (UL), also known as fibroids, are

benign tumors affecting 5.4%–77.0% of women of repro-

ductive age.1 Although the majority of UL are asymptom-

atic, nearly 25% of women with UL may experience heavy

menstrual bleeding, abdominal pain, infertility, and

increased risk of miscarriage.2 Breast cancer (BC), on the

other hand, affects 1 in 10 women throughout their life-

times and ranks first in both incidence and mortality of fe-

male cancers.3 A shared etiology underlying these two

complex diseases has long been recognized. Several com-

mon risk factors including obesity, oral contraceptive use,

hormone replacement therapy, and reproductive factors

may lead to increased levels of estrogen and progester-

one.4,5 Furthermore, epidemiological studies have evalu-

ated and largely demonstrated a UL-BC phenotypic link.

Leveraging data from 2,411 BC-affected individuals and

the entire registered female population (aged 20 years or

above, N ¼ 162,449) of Gothenburg, Sweden, Lindegård

et al. found a significantly increased risk of UL associated

with non-fatal BC (observed/expected BC cases ¼ 1.7,
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p < 0.01).6 Later on, a prospective cohort study of 57,747

African American women reported a non-significant but

positive association for early-diagnosed UL with BC before

age 40 (IRR ¼ 1.39, 95% CI ¼ 0.97–1.99).7 With a two-

times augmented sample size and a median follow-up

time of 6.5 years, Shen et al. found a 31% increased risk

of BC in women diagnosed with UL compared to UL-free

referents of East Asian ancestry (HR ¼ 1.31, 95% CI ¼
1.13–1.52).8 Nevertheless, owing to the observational na-

ture of conventional epidemiological studies, phenotypic

correlations derived from these studies are likely subject

to bias, confounding, and reverse causality.9

Linking traits through genetics overcomes at least one

major challenge of observational studies—reverse causal-

ity—andwith careful design can also address confounding.

Indeed, current progress from genome-wide association

studies (GWASs) have elucidated a considerable number

of disease-associated variants (single nucleotide polymor-

phisms, SNPs) for both UL (n ¼ 29) and BC

(n > 150).10,11 The SNP heritability of UL and BC has

further been quantified as 3%–13%10,12 and 13%–

18%,11,13 respectively, indicating a non-trivial genetic
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component in disease susceptibility. Multiple loci (i.e.,

GREB1, NEK10, TERT, ESR1, TP53, andMCM8) influencing

both traits have also been identified,10,12 suggesting the

observed epidemiological association is at least in part

attributable to a shared genetic architecture.

The accumulating amount of genome-wide genetic

data enable the utilization of a recently developed statis-

tical genetics tool, named genome-wide cross-trait anal-

ysis. This design offers an unprecedented opportunity

to characterize comprehensively the shared genetic ar-

chitecture and causal link across traits, driving forward

epidemiologic associations with novel insights into the

underlying biological mechanisms.9 Such analysis has

several analytic aspects: a genetic correlation analysis to

estimate global and local genetic correlation, a cross-trait

meta-analysis to identify shared loci, and Mendelian

randomization (MR) to make causal inference. Neverthe-

less, to the best of our knowledge, no genome-wide cross-

trait analysis has been conducted to explore systemati-

cally the shared and distinct etiology underpinning UL

and BC.

Therefore, in this study, we performed a comprehensive

genome-wide cross-trait analysis to investigate the genetic

overlap as well as the causal relationship underlying UL

and BC. First, we quantified genetic correlation to under-

stand shared genetic basis. Next, we applied cross-trait

meta-analysis to identify pleiotropic loci, of which biolog-

ical function was further annotated, leveraging informa-

tion from high-quality functional resources. Finally, we

performed a bidirectional two-sample MR analysis to infer

putative causal relationships. The overall study design is

shown in Figure 1.
Material and methods

Data summary
This is a secondary analysis of existing GWASs. Summary statistics

were retrieved from publicly available GWASs conducted for UL

and BC. Details on the characteristics of each included dataset

are presented in Table S1.

Uterine leiomyoma

The latest GWAS of UL was performed by Gallagher et al. in

2019,10 meta-analyzing data from five participating cohorts of

the FibroGENE consortium (Women’s Genome Health Study

[WGHS], Northern Finnish Birth Cohort [NFBC], QIMR

Berghofer Medical Research Institute [QIMR], UK Biobank

[UKB], and 23andMe). This GWAS combined 8.7 million vari-

ants in 35,474 UL-affected women and 267,505 female control

subjects (all of European ancestry). UL was determined based

on either self-report or clinical documentation. SNPs were

imputed to the 1000 Genomes Project (1KGP) Phase 3 reference

panel or the Haplo-type Reference Consortium (HRC) reference

panel. A fixed-effect inverse-variance-weighted meta-analysis

was conducted across all cohorts. Top-associated SNPs in the

combined meta-analysis reaching a p threshold of 5 3 10�8

were reported.

We extracted relevant information of the 29 GWAS-identified

UL-associated significant SNPs and used those SNPs as instru-
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mental variables (IVs). Details on the characteristics of UL-associ-

ated IVs are shown in Table S2. We also retrieved full set summary

statistics of UL.

Breast cancer

For BC overall, the most recent also the largest GWAS was per-

formed by Zhang et al. in 2020,11 meta-analyzing data from 82

participating studies of the Breast Cancer Association Consortium

(BCAC) and 11 other BC genetic studies. This GWAS combined

10.8 million variants in 133,384 BC-affected women and

113,789 female control subjects (all of European ancestry). SNPs

were imputed to the 1KGP Phase 3 reference panel. A fixed-effect

inverse-variance-weighted meta-analysis was conducted across all

studies. Top-associated SNPs in the combinedmeta-analysis reach-

ing a p threshold of 53 10�8 were reported. This GWAS confirmed

153 previous-reported BC SNPs and additionally identified 32

novel BC SNPs, for a total of 185 SNPs.

For subtype-specific BC, we retrieved summary statistics from

the largest published GWAS on estrogen receptor (ER)þ and ER–

BC performed by Michailidou et al. in 2017.13 This GWAS meta-

analyzed data from BCAC and DRIVE (Discovery, Biology and

Risk of Inherited Variants in Breast Cancer Consortium),

combining 11.8 million variants in 122,977 BC-affected women

(of which 69,501 were ERþ cases and 21,468 were ER–) and

105,974 female control subjects (all of European ancestry). Data

imputed to the 1KGP reference panel were analyzed using a

fixed-effects inverse-variance-weighted meta-analysis.

From both GWASs, we extracted effect sizes and relevant infor-

mation for the 29 UL-associated IVs. We also extracted relevant in-

formation of the 185 GWAS-identified BC-associated significant

SNPs (characteristics of which are shown in Table S3) and retrieved

full set summary statistics of BC.
Statistical analysis
Global genetic correlation analysis

To evaluate a shared genetic basis between UL and BC, we per-

formed a global genetic correlation analysis using linkage disequi-

librium (LD) score regression (LDSC).14 LDSC estimates genetic

correlation (rg) (ranging from �1 to 1) using only summary statis-

tics, relying on the fact that GWAS effect size estimate for a given

variant includes the effects of all variants in LD with that variant,

which can be extended to the analysis of genetic correlation be-

tween traits if the c2 statistics are replaced with the product of

two z-scores from traits of interest. More precisely, by implement-

ing the algorithms described below, LDSC uses the slope from the

regression of z-scores on LD-score to estimate rg:

E
�
z1jz2jlj

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1N2rg

p
M

lj þ Nsrffiffiffiffiffiffiffiffiffiffiffiffi
N1N2

p

rg ¼ rg

� ffiffiffiffiffiffiffiffiffiffi
h2
1h

2
2

q

where z1j and z2j are the z-scores of SNP j from trait 1 and trait 2, rg
N1 and N2 are the sample sizes for trait 1 and trait 2, rg is the ge-

netic covariance, lj is the LD-score, M is number of SNPs, Ns is

the number of overlapping samples, r is the phenotypic correla-

tion in overlapping samples, and h1
2 and h2

2 are the SNP heritabil-

ity of trait 1 and trait 2.

LDSC analysis was performed using the known LD structure of

European ancestry reference data from 1KGP and was restricted

to only HapMap3 SNPs, recognized as well imputed in most

studies to minimize bias due to low imputation quality. We
an Journal of Human Genetics 109, 1272–1285, July 7, 2022 1273



Figure 1. Overall study design of genome-wide cross-trait analysis
GWAS summary statistics for each trait of interest were retrieved from publicly available GWASs. A global genetic correlation analysis
between uterine leiomyoma and breast cancer was conducted. The estimated global genetic correlation was further dissected at LD-
defined regions and by functional categories. Cross-trait meta-analysis was applied to identify pleiotropic loci, and a bidirectional
two-sample Mendelian randomization analysis was used to infer putative causal relationship. UL, uterine leiomyoma; BC, breast cancer;
ER, estrogen receptor; GTEx, Genotype-Tissue Expression project; GWAS, genome-wide association study.
conducted LDSC with and without a constrained intercept, as

constraining the single-trait heritability intercept increases the

accuracy of estimation when sample overlap and population strat-

ification are minimal.14 A false discovery rate (FDR) corrected

p value (Benjamin-Hochberg procedure) of 0.05 was used as signif-

icant threshold (FDR p < 0.05).

Local genetic correlation analysis

Global genetic correlations estimated by LDSC are based on aggre-

gated information across all variants in the genome. It is possible

that even though two traits are of negligible global genetic corre-

lation, there are specific regions in the genome contributing to

both traits. Therefore, we further calculated pairwise local genetic

correlations for UL and BC using r-HESS.15 r-HESS provides a pre-

cise quantification of the similarity between pairs of traits driven

by genetic variations at each specific region in the genome, using

approximately 1,703 independent LD blocks with an average

length of 1.6 Mb. Bonferroni correction was applied to adjust for

multiple testing (two-tailed p < 0.05/1,703).15

Partitioned genetic correlation analysis

To investigate the contribution of genomic functional elements,

we further partitioned the global UL-BC genetic correlation using

stratified-LDSC.16 Fourteen functional categories were used: cod-
1274 The American Journal of Human Genetics 109, 1272–1285, July
ing region, conserved region, DNase digital genomic foot-printing

(DGF) region, DNase I hypersensitive sites (DHSs), fetal DHS,

intronic region, promotor, repressed region, super-enhancer, tran-

scribed region, and histonemarks H3K27ac, H3K4me1, H3K4me3,

and H3K9ac. Stratified-LDSC partitions SNPs into different func-

tional categories and calculates LD-score for each given SNP to

that category, which were used to estimate genetic correlation

within that specific functional category.

Cross-trait meta-analysis

Shared genetic components suggest either genetic variants having

independent effect on both traits (pleiotropy) or genetic variants

influencing one trait via its effect on the other (causality). We

next performed a cross-trait meta-analysis using Cross-Phenotype

Association (CPASSOC)17 to identify pleiotropic loci. Using sum-

mary statistics of single SNP-trait associations from GWAS,

CPASSOC provides two estimates, SHom and SHet. SHom is based

on a fixed-effect meta-analysis approach and can be viewed as

the maximum of weighted sum of trait-specific genetic effects. It

is less powerful under the presence of between-study heterogene-

ity, which is common when meta-analyzing multiple traits. As an

extension of SHom, SHet maintains statistical power even under the

presence of heterogeneity by assigning more weights to the larger
7, 2022



trait-specific effect sizes. This method (SHet) was thus adopted for

the analysis herein.

Independent loci were obtained using the PLINK18 ‘‘clumping’’

function through applying the following parameters: –clump-p1

5e-8 –clump-p2 1e-5 –clump-r2 0.2 –clump-kb 500. Within each

locus, the variant with the lowest p value was kept as the index

SNP. Significant pleiotropic SNPs were defined as index variants

satisfying pCPASSOC < 5 3 10�8 and psingle-trait < 1 3 10�3 (for

both traits). SNPs that were not identified as significant by the

original single-trait GWASs, meaning they themselves were inde-

pendent (r2 < 0.20) of those previously reported genome-wide sig-

nificant SNPs (of BC and UL), and none of their neighboring SNPs

within 1.0 Mb region reached p < 5 3 10�8 in the single-trait

GWAS (of BC and UL), were considered as novel pleiotropic

SNPs and were prioritized in this study.

We used Ensemble Variant Effect Predictor (VEP)19 and 3DSNP20

for detailed functional annotation of the identified pleiotropic

SNPs.

Fine mapping credible set analysis

The index SNP does not necessarily indicate the causal SNP.21 We

further identified a credible set of variants that were 99% likely,

based on posterior probability, to contain causal variants at each

of the pleiotropic loci using FM-summary.22 Briefly, FM-summary

is a Bayesian fine-mapping algorithm that maps only the primary

signal and uses a flat prior with steepest descent approximation,

assuming at least one causal variant exists within a given region.

Colocalization analysis

Another approach to understanding the shared genetic basis cross

traits is to investigate whether the same variants are responsible

for two GWAS signals or whether it is distinct genetic variants

close to each other. We next performed a colocalization analysis

through Coloc.23 Coloc uses a Bayesian algorithm to generate pos-

terior probabilities for five mutually exclusive hypotheses

regarding the sharing of causal variants in a genomic region,

namely H0 (no association), H1 or H2 (association to one trait

only), H3 (association to both traits, two distinct SNPs), and H4 (as-

sociation to both traits, one shared SNP). We extracted summary

statistics for variants within 1.0 Mb of the index SNP at each

shared locus and calculated the posterior probability for H4

(PPH4) and H3 (PPH3). A locus was considered colocalized if

PPH4 or PPH3 was greater than 0.5.

Pathway and GTEx tissue enrichment analysis

To gain biological insights for the novel pleiotropic SNPs identified

from CPASSOC, we performed post-GWAS functional annotation

by leveraging multiple resources. We applied the WebGestalt

tool24 to assess the enrichment of novel shared genes in Gene

Ontology (GO) biological processes and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways. To identify tissues most

relevant to the shared genes, we performed GTEx tissue enrich-

ment analysis using functional mapping and annotation of

genome-wide association studies (FUMA)25 GENE2FUNC process

with 54 tissue types available from GTEx (v.8). The Benjamin-

Hochberg procedure was used to correct for multiple testing.

Cell-type-specific enrichment of SNP heritability

To understand further the (dis)similarity across traits, we parti-

tioned heritability using stratified-LDSC leveraging genome-wide

genetic variants of UL and BC. We used 396 annotations con-

structed by the Roadmap project for six chromatin marks (DHS,

H3K27ac, H3K36me3, H3K4me1, H3K4me3, and H3K9ac) in a

set of 88 primary cell types or tissues. Each cell-type-specific anno-

tation corresponded to a chromatin mark in a single cell type, and

there were 396 such annotations in total. We further divided these
The Americ
396 cell-type-specific annotations into 9 broad groups, namely ad-

ipose, central nervous system, digestive system, cardiovascular,

musculoskeletal and connective tissue, immune and blood, liver,

pancreas, and other.26 Annotation-specific enrichment values for

each trait were calculated using LDSC and were transformed into

color scale and visualized by hierarchical clustering. FDR-adjusted

p value was applied based on the specific numbers of comparisons

made in each analysis.

Mendelian randomization analysis

We finally performed a bidirectional two-sample MR analysis to

detect a putative causal relationship. The inverse-variance

weighted (IVW) approach was applied as our primary approach.27

This method pools the Wald ratio estimate of each SNP, obtained

from dividing the SNP-outcome estimate by the SNP-exposure es-

timate, using a random-effects inverse-variance method that

weights each ratio based on its standard error, and obtains the

average casual effect estimates between two traits. Complemen-

tary to IVW, we also adopted MR-Egger regression and weighted

median approach. MR-Egger regression can be used to detect and

correct for bias due to directional pleiotropy.28 Weighted median

approach provides a consistent estimate of the causal effect even

when up to 50% of genetic variants are invalid.29 These two ap-

proaches were less powerful than IVW in detecting true causal ef-

fects and were therefore used to complement with findings from

IVW. A causal estimate was considered significant if it was signifi-

cant in IVW and showed directional consistency in MR-Egger

regression and weighted median approach.

To validate MR model assumptions, that the IVs (1) are strongly

associated with the exposure, (2) share no common cause with the

outcome, and (3) affect the outcome only through the exposure,30

we conducted several important sensitivity analyses. First, we

excluded palindromic IVs, SNPs whose alleles are represented by

the same pair of nucleotides on the forward and the reverse

strands, introducing ambiguity into the identification of effect

allele. Second, we excluded pleiotropic SNPs which were associ-

ated with potential confounding phenotypes according to the

GWAS catalog. Third, we performed leave-one-out analysis where

one SNP was removed at a time and IVW was conducted based on

the remaining SNPs. Finally, MR-Pleiotropy Residual Sum and

Outlier (MR-PRESSO) method31 was applied to detect and correct

for horizontal pleiotropy. To adjust for potential confounding ef-

fect acting in particular through body mass index (BMI), a risk fac-

tor known to influence both UL and BC,4,5 we also employed a

multi-variable MR.32 To evaluate whether genetic liability to BC

exerts a causal effect on UL, we conducted a reverse-direction

MR where BC-associated independent SNPs were used as IVs.
Results

Global genetic correlation

Using unconstrained LDSC, a limited genetic correlation

was found for UL with BC overall at marginal significance

(rg ¼ 0.07, p ¼ 0.05). The estimate attenuated to null in BC

subtypes (ERþ: rg ¼ 0.04, p ¼ 0.35; ER�: rg ¼ 0.05, p ¼
0.28). Considering the negligible sample overlap shared

by UL and BC, we further constrained the intercepts of ge-

netic covariance estimates to zero, through which LDSC

could show greater power with slightly reduced standard

errors. As a result, a significant positive genetic

correlation was found for UL with BC overall (rg ¼ 0.09,
an Journal of Human Genetics 109, 1272–1285, July 7, 2022 1275



Table 1. Genome-wide genetic correlations between uterine leiomyoma and breast cancer using constrained and unconstrained LDSC

Trait 1 Trait 2

Constrained LDSC Unconstrained LDSC

rg rg_SE p rg rg_SE p

Uterine leiomyoma Breast cancer overall 0.09 0.03 6.00 3 10�3 0.07 0.04 5.01 3 10�2

Uterine leiomyoma ERþ breast cancer 0.06 0.03 1.00 3 10�2 0.04 0.04 0.35

Uterine leiomyoma ER– breast cancer 0.06 0.04 0.08 0.05 0.05 0.28

rg, genetic correlation; SE, standard error; ER, estrogen receptor.
p ¼ 6.00 3 10�3), which, when extended to BC subtypes,

remained significant for ERþ subtype (rg ¼ 0.06, p ¼
0.01, withstood multiple correction) but not for ER� sub-

type (rg ¼ 0.06, p ¼ 0.08) (Table 1).

Local genetic correlation

Given the significant global genetic correlation, we further

explored whether specific genomic regions conferred local

genetic correlation (Figure 2, Tables S4–S6). After multiple

correction, a strong local signal was found at 22q13.1

(chromosome 22: 39,307,894–40,545,797) for UL with

both BC overall (p ¼ 8.88 3 10�7) and ERþ subtype (p ¼
4.19 3 10�6). This genomic region harbors TNRC6B, a

contributor to tumorigenesis of different cancers,33 and

CBX7, associated with poor prognosis in ovarian clear

cell adenocarcinoma.34 We did not observe any additional

region that showed significant local genetic correlation.

Partitioned genetic correlation

To characterize genetic overlap at the level of functional

categories, we partitioned genetic correlation by 14 func-

tional groups (Figure 3, Table S7). UL was significantly

correlated with BC overall at 9 out of 14 functional cate-

gories, with rg ranging from 0.08 (H3K27ac) to 0.15 (cod-

ing). The repressed region (rg ¼ 0.14), H3K9ac (rg ¼ 0.12),

and promotor region (rg¼ 0.11) also showed strong genetic

correlation. Looking into BC subtypes, UL was signifi-

cantly associated with ERþ BC at 6 functional categories.

In addition to coding (rg ¼ 0.16), H3K9ac showed the sec-

ond strongest genetic correlation (rg ¼ 0.13). For UL and

ER– BC, no significant result was identified at any of these

functional groups.

Cross-trait meta-analysis and pleiotropic loci

Based on evidence of significant genetic overlap between

UL and BC, we next interrogated at individual variant level

to identify pleiotropic loci. A total of 8,170,973, 8,175,419,

and 8,175,424 SNPs common between UL and BC overall,

ERþ BC, and ER– BC were included in the cross-trait meta-

analysis, respectively. As a result, 50 independent loci

reached genome-wide significance in CPASSOC (fulfilling

pCPASSOC < 5 3 10�8 and psingle-trait < 1 3 10�3), including

29 loci shared between UL and BC overall, 17 loci shared

between UL and ERþ BC, and 14 loci shared between UL

and ER– BC (Tables S8–S10). Among these shared loci,

those closest to well-known oncogenes such as TERT,

TNRC6B, and TP53 showed the strongest signals (i.e., in-
1276 The American Journal of Human Genetics 109, 1272–1285, July
dex SNPs: rs10069690, rs2242652, rs4821942, and

rs78378222).

After excluding SNPs that were in LD (r2 R 0.20) with

any of the previously reported single-trait-associated sig-

nificant SNPs, we identified 8 novel pleiotropic SNPs for

UL and BC overall of which 1 was also shared by UL and

ERþ BC, and 1 novel pleiotropic SNP for UL and ER– BC,

totaling 9 newly discovered SNPs (Table 2). Notably,

rs3176337 (pCPASSOC ¼ 7.87 3 10�11), the most significant

novel SNP shared by UL and BC overall, was also identified

as a novel pleiotropic SNP for UL and ERþ BC. This locus

was near CDKN1A, a gene encoding a cyclin-dependent ki-

nase inhibitor, which is a pivotal cell cycle regulator

ensuring genomic stability and is often deregulated in

human cancer.35 The second most significant novel SNP

was mapped to PTPN11 (rs11066320, pCPASSOC ¼
1.313 10�09). PTPN11 is a member of the protein tyrosine

phosphatase family, involved in a variety of cellular pro-

cesses including cell growth, differentiation, mitotic cycle,

and oncogenic transformation.36 Index SNP rs35840638

implicating ADAP2 was the third strongest shared signal

(pCPASSOC ¼ 2.17 3 10�09), specifically shared by UL and

ER– BC. The fourth strongest signal was in close proximity

to an intergenic region closest to GSTM1 (rs4147562,

pCPASSOC ¼ 2.83 3 10�09), which encodes a glutathione

S-transferase that belongs to the mu class, and functions

in the detoxification of electrophilic compounds such as

products of oxidative stress and carcinogens.37 Other novel

shared genetic variants were rs13001657 (intergenic re-

gion), rs62408878 (GNB4, MFN1), rs9316500 (DLEU1,

RP11-175B12.2), rs3790110 (GNAO1), and rs2281925

(SLC2A4RG, ZBTB46), including regions previously impli-

cated in energy metabolism and multiple cell cycle pro-

cesses.38–41 Detailed annotation for each SNP discovered

by cross-trait meta-analysis is shown in Table S11.
Identification of causal variants and colocalization

Fine-mapping analysis assessed the 99% credible set of

causal variants at each of the CPASSOC-identified pleio-

tropic loci, providing targets for downstream experimental

analysis (results shown in Tables S12–S14). In general, we

identified 138 candidate causal SNPs for novel shared loci

between UL and BC overall, numbers specific to each index

SNP were: rs4147562 (2), rs13001657 (23), rs62408878 (1),

rs3176337 (5), rs11066320 (7), rs9316500 (11), rs3790110

(80), and rs2281925 (9). For novel loci shared between UL
7, 2022
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Figure 2. Local genetic correlation between uterine leiomyoma and breast cancer
(A) Manhattan plot showing the estimates of local genetic correlation, genetic covariance, and SNP heritability between uterine leio-
myoma and breast cancer overall. Red bars represent loci showing significant local genetic correlation after multiple testing adjustment
(p < 0.05/1,703).
(B) QQ-plot presenting region-specific p values from local genetic correlation between uterine leiomyoma and breast cancer overall.
(C) Manhattan plot showing the estimates of local genetic correlation, genetic covariance, and SNP heritability between uterine leio-
myoma and ERþ breast cancer. Red bars represent loci showing significant local genetic correlation after multiple testing adjustment
(p < 0.05/1,703).
(D) QQ-plot presenting region-specific p values from local genetic correlation between uterine leiomyoma and ERþ breast cancer. UL,
uterine leiomyoma; BC, breast cancer; ER, estrogen receptor.
and BC subtypes, 17 and 13 candidate causal SNPs were

discovered for rs3176337 and rs35840638, respectively.

Colocalization analysis was further performed to deter-

mine whether the genetic variants driving the association

in two traits are the same or different. Most shared loci be-

tween UL and BC colocalized at the same candidate causal

SNPs (PPH4 > 0.5) (22/50) or at different candidate causal

SNPs (PPH3 > 0.5) (16/50), reinforcing shared causal asso-

ciations (Table S15). Among the 9 novel pleiotropic loci, 2

loci (index SNP: rs11066320 and rs35840638) showed evi-

dence of colocalization (PPH4 > 0.5).

Biological pathway, GTEx tissue, and SNP-heritability

enrichment

After multiple correction, GO analysis across the 9

novel pleiotropic loci revealed enrichment in the

benzene-containing compound metabolic process

(GO:0042537, p ¼ 9.87 3 10�06). KEGG analysis further

identified significant enrichment in platinum drug resis-

tance (hsa01524, p ¼ 7.91 3 10�06). In GTEx tissue

enrichment analysis, heart left ventricle was identified

to be significantly enriched for the expression of novel

shared genes underlying UL and BC (Figure S1). Results

using all pleiotropic loci are shown in Tables S16 and

S17 and Figure S2.
The Americ
Partitioning SNP heritability by using 396 cell-type-spe-

cific annotations, we identified FDR-significant heritability

enrichment for UL in smooth muscle and cardiovascular

system (i.e., fetal heart, aorta, and right atrium). Although

no significant enrichment was observed for BC overall or

BC subtypes, they clustered closely with UL at each chro-

matin mark in musculoskeletal and connective, cardiovas-

cular and digestive system, as well as other tissues or cell

types such as ovary, obesity, mammary epithelial cells, fetal

kidney, and primary B cells. Interestingly, different clus-

tering patterns were observed comparing cell-type-specific

enrichment for ULwith ERþ versus ER– BC, where both UL

and ERþ subtype were enriched for certain annotations

while ER– subtype was not, for example, pancreas, fetal

lung, and certain blood/immune system-related compo-

nents (Figure S3).

Mendelian randomization

We finally conducted a two-sample MR using 28 GWAS-

identified UL-associated SNPs as IVs (one SNP, rs2456181,

was not available in the outcome GWASs). F-statistics for

these IVs was 804.14, suggesting strong instruments

(Tables S2 and S3). Using IVW, genetic liability to UL was

significantly associated with an increased risk of BC

overall (OR ¼ 1.09, 95%CI ¼ 1.01–1.18, p ¼ 0.03). The
an Journal of Human Genetics 109, 1272–1285, July 7, 2022 1277



Figure 3. Partitioned genetic correlation
between uterine leiomyoma and breast
cancer by genomic functional elements
Vertical axis represents genetic correlation.
Horizontal axis represents 14 functional
categories. Asterisks represent significance
(p < 0.05), error bars represent the stan-
dard error of genetic correlation. UL, uter-
ine leiomyoma; BC, breast cancer; ER, es-
trogen receptor; DGF, DNase digital
genomic footprinting; DHS, DNase I hy-
persensitive sites.
estimates remained directionally consistent in MR-Egger

regression and weighted median approach, despite

larger statistical uncertainties. No sign of horizontal

pleiotropy was detected (pMR-Egger intercept ¼ 0.45). Sub-

group analysis further identified such an association to

be restricted to ERþ subtype (IVW OR ¼ 1.09, 95%CI ¼
1.01–1.17, p ¼ 0.03; pMR-Egger intercept ¼ 0.94) but not to

ER� subtype (IVW OR ¼ 1.05, 95%CI ¼ 0.88–1.25, p ¼
0.57; pMR-Egger intercept ¼ 0.05) (Figure 4).

We performed important sensitivity analysis to verify

MRmodel assumptions. The causal effect of UL in BC over-

all or ERþ subtype remained significant after excluding

palindromic SNPs or pleiotropic SNPs. The leave-one-out

analysis demonstrated that the observed causal relation-

ship was not driven by any outlying variant (Figure S4). Af-

ter removing outliers, MR-PRESSO yielded similar associa-

tions (BC overall OR ¼ 1.05, p ¼ 0.049; ERþ subtype

OR ¼ 1.09, p ¼ 2.67 3 10�3; ER� subtype OR ¼ 1.02,

p¼ 0.72) (Figure 4). Multi-variable IVW taking into consid-

eration BMI generated similar results (BC overall OR ¼
1.10, p ¼ 0.02; ERþ subtype OR ¼ 1.10, p ¼ 0.03; ER� sub-

type OR ¼ 1.06, p ¼ 0.57), suggesting a causal association

of UL with BC independent of obesity.

Using the 185 GWAS-identified BC-associated SNPs as

IVs, we performed a reverse-direction MR. No evidence

was found on the association between genetic liability to

BC and UL risk (IVW OR ¼ 1.00, p ¼ 0.80; MR-Egger

OR ¼ 1.01, p ¼ 0.68; weighted median OR ¼ 1.00, p ¼
0.87) (Figure 4).
Discussion

To the best of our knowledge, this is the first large-scale

genome-wide cross-trait analysis that systematically inter-

rogates the shared genetic basis underlying UL and BC,

two highly complicated and entangled disorders. We

found evidence supporting a significant genetic correla-

tion of UL with BC and with its ERþ subtype. When the

whole genome was partitioned, significant correlations

were further discovered within a specific genomic region

(22q13.1) and functional categories (e.g., coding,

H3K9ac, and repressed region). Using cross-trait meta-anal-

ysis, we identified multiple pleotropic loci with joint asso-
1278 The American Journal of Human Genetics 109, 1272–1285, July
ciations. Additionally, MR analysis highlighted a putative

causal role of UL on BC risk, restricted to ERþ subtype.

Using LDSC with a constrained intercept, we detected a

significant global genetic correlation of ULwith BC overall,

as well as with ERþ subtype. Constrained LDSC is known

for improving the statistical power of rg estimated under

the assumption of no sample overlap14 and was applied

in our study for two reasons. First, the UL and BC GWASs

shared no overlapping participating studies, and second,

the intercepts of genetic covariance were estimated at

around zero (�0.001–0.007). Both reasons indicate an

absence of bias from sample overlap or population stratifi-

cation, justifying the utilization of the method. Partition-

ing the whole genome into 1,703 nearly independent re-

gions, we found a strong local genetic correlation of UL

at 22q13.1 with both overall and ERþ BC. This region har-

bors TNRC6B, a gene previously reported to be indepen-

dently associated with UL and BC.10–12 In stratified-

LDSC, significant genetic correlation was further observed

in multiple annotated regions of the genome. The stron-

gest partitioned rg was found, unsurprisingly, to be in the

coding region, while partitioned rg was also high (or even

higher than the global rg) in certain non-coding regions,

including histone acetylation marks (i.e., H3K9ac) and his-

tone modification marks (i.e., H3K4me1 and H3K27me3),

highlighting their important roles in not only the progres-

sion of BC42 but also in the onset of disease. This observa-

tion is consistent with the idea that genetic variation

within functional non-coding elements is also substan-

tially involved in gene expression and regulation.43,44 Un-

fortunately, and consistently, no significant genetic corre-

lation was observed for UL and ER– BC at any level from

global rg to local rg.

While our findings demonstrate a putative shared etiol-

ogy between UL and BC, it can be the result of pleiotropy

(a situation in which a genetic variant or gene has effects

on multiple traits) and/or causality (a situation in which

a genetic variant has an effect on a trait via its genetic effect

on an intermediate trait).9 In our downstream analysis per-

formed to dissect such a complex genetic relationship, a

total of 50 shared loci between UL and BC were identified

of which 41 loci were previously reported to be signifi-

cantly associated with UL and/or BC. These loci harbor

genes previously implicated in risks of various carcinomas
7, 2022



Table 2. Novel pleiotropic loci between uterine leiomyoma and breast cancer (pCPASSOC < 5 3 10�8, 5 3 10�8 < single trait p value < 1 3 10�3)

SNP Chr: Position A1/A2

UL BC

pCPASSOC Genes within clumping range Linear closest genea Interacting genebBETA p BETA p

Uterine leiomyoma and breast cancer overall

rs4147562 chr1: 110,230,073–
110,230,099

A/T �0.46 2.9 3 10–05 0.04 3.5 3 10–05 2.8 3 10–09 intergenic region GSTM1 GSTM4

rs13001657 chr2: 88,795,621–89,103,554 A/G 0.04 1.1 3 10–04 0.03 4.2 3 10–05 2.2 3 10–08 ANKRD36BP2, EIF2AK3,
LOC101928371, RPIA, TEX37

– EIF2AK3

rs62408878 chr3: 179,112,234–
179,112,234

T/C 0.41 4.3 3 10–06 �0.03 6.5 3 10–04 7.3 3 10–09 intergenic region GNB4, MFN1 –

rs3176337 chr6: 36,618,140–36,648,920 A/C 0.04 4.8 3 10–06 �0.03 8.3 3 10–06 7.9 3 10–11 CDKN1A, PANDAR CDKN1A MIR3925

rs11066320 chr12: 112,486,818–
112,906,415

A/G �0.03 2.2 3 10–04 �0.03 6.6 3 10–07 1.3 3 10–09 HECTD4, MIR6861, NAA25,
PTPN11, RPL6, TRAFD1

PTPN11 –

rs9316500 chr13: 51,067,234–
51,131,247

T/G 0.03 4.1 3 10–04 0.03 4.4 3 10–06 1.3 3 10–08 DLEU1 DLEU1, RP11-175B12.2 –

rs3790110 chr16: 56,372,907–
56,547,254

T/C �0.03 5.0 3 10–04 �0.03 6.2 3 10–07 4.1 3 10–09 AMFR, BBS2, GNAO1,
NUDT21, OGFOD1

GNAO1 CES5A

rs2281925 chr20: 62,318,220–
62,376,503

A/G 0.05 3.0 3 10–04 0.04 2.7 3 10–05 4.7 3 10–08 ARFRP1, LIME1, RTEL1,
RTEL1-TNFRSF6B, SLC2A4RG,
TNFRSF6B, ZBTB46, ZGPAT

SLC2A4RG, ZBTB46 ZGPAT

Uterine leiomyoma and ERþ breast cancer

rs3176337 chr6: 36,618,140–36,648,920 A/C 0.04 4.8 3 10–06 �0.03 1.7 3 10–04 1.5 3 10–08 CDKN1A, PANDAR CDKN1A MIR3925

Uterine leiomyoma and ER– breast cancer

rs35840638 chr17: 29,166,302–
29,318,794

A/G �0.05 2.3 3 10–07 �0.05 1.9 3 10�04 2.2 3 10–09 ADAP2, ATAD5, DPRXP4,
RNF135, TEFM

ADAP2 MIR4724

Position is under build 37 (hg19). SNP, single nucleotide polymorphism; Chr, chromosome; UL, uterine leiomyoma; BC, breast cancer; ER, estrogen receptor.
aLinear closest genes of index SNPs were mapped by using VEP.
b3D interacting genes of index SNPs were mapped by using 3DSNP.

T
h
e
A
m
e
rica

n
Jo
u
rn
a
l
o
f
H
u
m
a
n
G
e
n
e
tics

1
0
9
,
1
2
7
2
–
1
2
8
5
,
Ju
ly

7
,
2
0
2
2

1
2
7
9



A B

DC

Figure 4. Bidirectional causal relationship underlying uterine leiomyoma and breast cancer
(A) Estimates of causal effect for genetic liability to uterine leiomyoma with breast cancer overall.
(B) Estimates of causal effect for genetic liability to breast cancer overall with uterine leiomyoma.
(C) Estimates of causal effect for genetic liability to uterine leiomyoma with ERþ breast cancer.
(D) Estimates of causal effect for genetic liability to uterine leiomyoma with ER– breast cancer. Boxes represent the point estimates of
causal effects, and error bars represent 95% confidence intervals. Inverse-variance weighted approach was adopted as the primary anal-
ysis. MR-Egger regression, weighted median, and MR-PRESSO approaches were adopted as sensitivity analysis. UL, uterine leiomyoma;
BC, breast cancer; ER, estrogen receptor.
(i.e., CDKN1A, GSTM1, MFN1, TERT, TP53) or hormone-

related traits (i.e., ESR1, GREB1, and MCM8). Multiple

genes showed strong evidence of colocalization

(PPH4 > 0.5), such as ATAD5, EXO1, HSPA4, MCM8,

MLLT10, PTPN11, TERT, and TP53, demonstrating etiolog-

ical connections. One advantage of meta-analyzing

GWASs of different traits is that it improves the statistical

power of detecting cross-trait genetic effects (especially

for traits with smaller sample sizes) by combining associa-

tion evidence from multiple GWASs, discovering signals

which might not have reached genome-wide significance

in a single-trait effort.45 Indeed, we found 9 novel loci to

be jointly associated with both UL and BC, among which

we highlight two interesting examples, SLC2A4RG/

ZBTB46 and ADAP/MIR4724.

While SLC2A4RG and ZBTB46weremapped by the same

locus (index SNP: rs2281925), their involvement in breast

tumorigenesis has rarely been studied. SLC2A4RG is a tran-

scriptional activator of the glucose transporter SLC2A4.46

Overexpression of SLC2A4RG could lead to an inhibition

of glioblastoma cell growth by downregulating the expres-

sion of cyclin-dependent kinases, suggesting the potential

tumor-suppressor role of SLC2A4RG.47 By performing

whole-exome sequencing on paired primary and metasta-

tic tumors, a recent study found SLC2A4RG as a signifi-
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cantly mutated gene inmetastatic BC, despite not reported

to play a role in primary BC.48 ZBTB46 is another transcrip-

tion factor specifically expressed by classical dendritic cells,

functioning as a key immune regulator.49 Recent studies

found ZBTB46 to be a novel tumor promoter for prostate

cancer.50,51 Based on microarray expression profile anal-

ysis, a study of Chinese women found an upregulated

long non-coding RNA, RP4-583P15.10, to be differentially

expressed between BC tissues and paired adjacent tissues,

located downstream of the natural antisense of ZBTB46.52

ADAP2 (index SNP: rs35840638) was identified as a sig-

nificant pleiotropic locus affecting both UL and ER– BC.

Furthermore, colocalization analysis showed that this lo-

cus had a great probability (98.2%) of containing a shared

causal variant of both traits. Using DNA copy number data

from 39 cancer types, Maroulio et al. identified ADAP2 as

an essential gene limiting the extent of homozygous dele-

tions in cancer genomes, suggesting its role in the survival

of tumor cells.53 In addition, ADAP2may be a potential in-

dicator for the early diagnosis and prognosis of acute

myeloid leukemia, suggested by Yu et al.54 However, there

is no result with respect to ADAP2 function in BC. This lo-

cus also interacts with miRNA MIR4724 in a three-dimen-

sional manner.20 miRNAs are a class of small non-coding

RNAs regulating a wide range of physiological processes
7, 2022



by repressing transcription or translation of their target

genes, which may contribute to cancer etiology.55

MIR4724 has only been implied as a candidate miRNA

biomarker for glaucoma.56 With an improved power

from cross-trait GWASs, our study suggests MIR4724 as a

potential risk gene underlying UL and BC.

By applying a comprehensive bidirectional MR design,

we identified a potential causal relationship between ge-

netic liability to UL and risk of BC, restricted to ERþ sub-

type. This was largely in line with our genetic correlation

analysis on a negligible intrinsic relationship between UL

and ER– BC. The strengths of our MR design include (1) ge-

netic instruments derived from the hitherto largest GWAS

based on hundreds of thousands of female participants for

each trait, (2) reverse-direction MR clarifying the direction

of the UL-BC relationship, (3) adjustment for obesity with

multi-variable MR to understand the direct effect, and (4)

the use of a variety of MR sensitivity analyses to guarantee

model assumptions. Consequently, the estimated causal

effects were directionally consistent across different statis-

tical approaches and sensitivity analyses, supporting the

validity of our findings. Our results are largely concordant

with findings from previous case-control studies reporting

positive associations of UL and BC6,57,58 and a finding

from a prospective cohort study that womenwith a history

of UL are at an elevated risk of reporting BC in the future.8

While biological mechanisms underlying the observed

causal effect remain inconclusive, one might lie in the ver-

tical pleiotropy (or ‘‘type II pleiotropy’’),59 where genetic

instruments for UL are associated with other traits (e.g.,

hormonal response), reflecting the downstream effects of

UL that are potentially on the causal pathway linking UL

to BC. Findings from our MR analysis have provided ge-

netic evidence for the UL-BC association, highlighting a

potential consideration of targeting women with UL for

BC prevention (e.g., screening). Future efforts should be

focused on the molecular characteristics of UL as well as

its clinical factors (e.g., location, multiplicity, size, and

recurrence) to target more precisely a population at risk

for BC.60,61

Leveraging information on gene expression, we found

largely consistent patterns of cell-type-specific heritability

enrichment for UL and BC at multiple annotations

including the cardiovascular system. Of note, GTEx tissue

enrichment analysis also found a cardiovascular compo-

nent, heart left ventricle, to be significantly enriched by

UL-BC shared genes. UL was previously reported to be asso-

ciated with hypertension and atherosclerosis.62,63 A recent

prospective study found that, although the presence of UL

was not associated with subsequent cardiovascular disease

(CVD), risk factors for CVD (particularly BMI and hyper-

tension) were substantially more prevalent in women

with UL than in UL-free referents.64 It has also been recog-

nized that BC and CVD share a number of common risk

factors. Studies have recommended that early recognition

and management of CVD risk factors are of utmost impor-

tance for BC treatment and prevention.65,66 Findings in
The Americ
our functional annotation analysis suggest possible com-

mon pathways leading to the comorbidity between UL

and BC, which requires additional work to reveal the un-

derlying pathophysiological mechanism.

As a subtype that possesses neither estrogen nor proges-

terone receptor (PR),67 ER– BC has been considered as less

likely to be associated with UL (a hormone-responsive dis-

order) from a traditional perspective. Using information

from genetic data, the current study identified multiple

risk loci shared by UL and ER– BC, supporting a non-negli-

gible pleiotropic effect. The similar enrichment patterns

regarding the heritability for UL and ER– BC observed at

various cell-type-specific annotations further corroborate

potential common underlying etiology. Although no evi-

dence on a significant genetic correlation or causal link

was shown, it should be noted that the estimated global

rg between UL and ER– BC is similar to that of the ERþ
BC (rg ¼ 0.06), with the number of ER– cases being less

than a third of their ERþ counterparts. In fact, the signifi-

cant genetic findings for ER– subtype are not entirely unex-

pected, as a substantial genetic correlation (rg ¼ 0.60) be-

tween the two BC subtypes has already been uncovered

by a recent large-scale GWAS.68

We acknowledge potential limitations of our study. First,

to avoid bias from population stratification, all genetic

data in this study were restricted to European ancestry,

limiting the generalizability to other ethnic populations.

Second, as most of the analytical software adopted by us

do not currently support the management and analysis

of sex chromosomes, we included only data from auto-

somes in our study (except in the MR analysis). This may

lead to potentially undetected associations due to under-

representation of X chromosome SNPs. Third, statistical

power might be insufficient for the ER– subgroup, yielding

null findings which might have been discovered with a

larger sample size. Similarly, additional BC subtypes based

on other hormonal receptor expression such as PR and hu-

man epidermal growth factor receptor 2 (HER2)69 were not

investigated in this study due to limited sample size, for

instance, the HER2 enriched-like BC cases analyzed by

Zhang et al.11 (n ¼ 2,884). Future studies with larger sam-

ple sizes of subtype-specific BC are warranted to extend

our findings. Finally, we used limited numbers of UL-asso-

ciated SNPs as IVs to detect the causal effect of UL on BC,

making it difficult to rule out weak instrument bias. How-

ever, each SNP-exposure association had an F-statistic

greater than 10, supporting the strength of the genetic var-

iants. We emphasize that our inferred causal relationship

is putative as it was generated based on GWAS summary

statistics. Larger and more powerful GWASs for UL and

BC are needed to establish definitively (or rule out) a po-

tential causal link. Future longitudinal studies as well as

experimental work are also warranted to investigate the

biological mechanism underlying the observed genetic

relationship.

To conclude, the current study furthers our understand-

ing to the observational association between UL and BC by
an Journal of Human Genetics 109, 1272–1285, July 7, 2022 1281



providing evidence of genetic correlation, revealing poten-

tial pleiotropic loci, and inferring a putative causal rela-

tionship. Our findings highlight an intrinsic link underly-

ing these two complex female diseases and shed new light

on the biological mechanisms; these findings might pro-

vide important directions for future therapeutic strategy

as well as risk prediction.
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