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Abstract: Despite the introduction of vaccines and drugs for SARS-CoV-2, the COVID-19 pandemic continues to 
spread throughout the world. In severe COVID-19 patients, elevated levels of proinflammatory cytokines have been 
detected in the blood, lung cells, and bronchoalveolar lavage, which is referred to as a cytokine storm, a conse-
quence of overactivation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome and resultant 
excessive cytokine production. The hyperinflammatory response and cytokine storm cause multiorgan impairment 
including the central nervous system, in addition to a detriment to the respiratory system. Hyperactive NLRP3 in-
flammasome, due to dysregulated immune response, is the primary cause of COVID-19 severity. The severity could 
be enhanced due to viral evolution leading to the emergence of mutated variants of concern, such as delta and 
omicron. In this review, we elaborate on the inflammatory responses associated with the NLRP3 inflammasome ac-
tivation in COVID-19 pathogenesis, the mechanisms for the NLRP3 inflammasome activation and pathway involved, 
cytokine storm, and neurological complications as long-term consequences of SARS-CoV-2 infection. Also discussed 
is the therapeutic potential of NLRP3 inflammasome inhibitors for the treatment of COVID-19. 
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Introduction 

Emerging and re-emerging pathogens are a 
massive threat to the world population and the 
primary global concern of the current public 
health [1, 2]. The emergence of severe acute 
respiratory syndrome coronavirus 2 (SARS-
CoV-2) was reported in Wuhan, China [3]. SARS-
CoV-2 is the etiologic agent of coronavirus dis-
ease 2019 (COVID-19), the culprit behind the 
current pandemic [4, 5]. This viral pathogen 
causes flu-like syndrome with mild symptoms  
in majority of infected individuals [6-8]. How- 
ever, a subset of infected patients (~15% in the 
early phase of the COVID-19 pandemic) suffer 
from severe illnesses that require hospitaliza-
tion and ventilation support [9, 10]. SARS-
CoV-2 has astounding infectivity due to global 
air connectivity, culminating in the worst pan-
demic ever [11-14]. According to the world 
health organization (WHO), as of February 23, 

2022, there are more than 426 million confir- 
med cases and over 5 million deaths (https://
covid19.who.int/). To treat COVID-19, drug re- 
purposing for expeditious drug development 
against SARS-CoV-2 is unprecedented [15, 16]. 
Meanwhile, work-speed vaccine pipelines and 
the application of modern biotechnology have 
yielded ever quicker vaccines [17, 18]. There- 
fore, vaccination represents one of the most 
promising counter-pandemic measures to the 
COVID-19 [19]. However, COVID-19 remains ma- 
ssive and the need for effective therapies 
urgent, in part due to the emergence of mutat-
ed variants of concern (VOCs) [20-22]. 

Phylogenetically, SARS-CoV-2 is a member of 
the genus β-coronavirus, which includes 2003 
SARS-CoV and 2012 the Middle East Respira- 
tory Syndrome coronavirus (MERS-CoV) [23-
25]. SARS-CoV-2 genome sequence is 80% 
similar to SARS-CoV [5, 26, 27]. Structurally, 
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SARS-CoV-2 resembles other coronaviruses 
(CoVs), is spherical with ~100 nm in diameter, 
and has a single-stranded positive-sense RNA 
(ssRNA) [28, 29]. It encodes 4-structural pro-
teins: membrane glycoprotein (M), spike gly- 
coprotein (S), envelope glycoprotein (E), and 
nucleocapsid (N) [30]. The N-protein conjugat-
ing with genomic RNA forms nucleocapsid, and 
to enclose nucleocapsid viral envelope assem-
bled by three protein components S, M, and E 
[29]. The SARS-CoV-2 S-protein binds to the 
receptors: angiotensin-converting enzyme 2 
(ACE2), and the viral entry is facilitated by  
transmembrane protein serine protease 2 
(TMPRSS2) [31-35]. Identification of polybasic 
cleavage site in the S-protein and its enhanced 
affinity for ACE2 [26, 36, 37] may impart in 
greater transmissibility and increased virulence 
of SARS-CoV-2 [38, 39]. The virus infects cells 
expressing ACE2, including monocytes, macro-
phages, alveolar cells, intestinal epithelial cells, 
endothelial cells, kidney cells, neurons, neuro-
epithelial cells and glial cells [36, 40-42]. 

In the lungs of SARS-CoV-2 infected patients, 
an elevated level of cytokine release has been 
reported. The elevated levels of cytokines trig-
ger an aberrant uncontrolled response known 
as cytokine storm, also referred to as cytokine 
release syndrome (CRS) [43-45]. The accumu-
lating cytokines empower SARS-CoV-2 invasion 
by attracting immune cells, engaging aggres-
sive inflammatory responses, and severe res- 
piratory complications like acute respiratory 
distress syndrome (ARDS) [46-49]. The ARDS 
and related acute lung injury (ALI) occur due to 
the storm of inflammatory cytokines, notably 
interleukin-1β (IL-1β), IL-6, and tumor necrosis 
factor (TNF)-α [50]. Although the mechanisms 
underlying cytokine storm are multifaceted, 
accumulating evidence indicates that host cells 
necessitate inflammasome activation to pro-
duce inflammatory cytokines leading to the 
storm [45, 51]. Inflammasomes are multipro-
tein cytosolic platforms with a tendency to 
aggregate in response to pathogen-induced or 
host-mediated assaults [52]. The NLR family 
pyrin domain-containing protein 3 (NLRP3) is a 
well-characterized inflammasome and initiates 
an inflammatory response by inducing exces-
sive cytokine production against viral infection 
[53]. An involvement of NLRP3 inflammasome 
in SARS-CoV-2-associated intracellular signal-
ing is shown in Figure 1.

In addition to its attack on the respiratory sys-
tem, SARS-CoV-2 was found to induce neuro-
logical syndromes including dizziness, hyper-
somnia, hypogeusia, headaches, myalgia, atax-
ia, seizures, and impaired consciousness in a 
high proportion of infected patients [54-56]. 
Indeed, COVID-19 patients exhibit diverse neu-
rological symptoms that are similar to other 
respiratory viral infections [57-60]. These neu-
rological symptoms in SARS-CoV-2-infected pa- 
tients are disabling and quite frequent in their 
occurrence [61, 62]. The neurodegenerative 
changes, brain edema, and even encephalitis 
were observed in the severe COVID-19 patients 
[33, 63-65] and some of them were found posi-
tive for SARS-CoV-2 in the cerebrospinal fluid 
(CSF) and brain tissues [66-68]. The presence 
of SARS-CoV-2 in the CSF and brain tissues  
in postmortem cases demonstrated that this 
virus is not only restricted to the respiratory 
system but can enter the central nervous sys-
tems (CNS) inducing neurological manifesta-
tions [69]. The consequences of SARS-CoV-2 
CNS infection are discussed in section titled 
NLRP3 inflammasome activation and COVID19-
assoociated neurological symptoms and illus-
trated in Figure 2.

Evidently, hyperinflammation and cytokine st- 
orm is the key pathophysiological processes 
leading to COVID-19 severity. This review ten- 
tatively covers the current progress on SARS-
CoV-2-induced NLRP3 inflammasome activa-
tion, hyperinflammation, cytokine storm, and 
neurological consequences. We scrutinize the 
COVID-19-mediated neurological symptoms as- 
sociated with NLRP3 inflammasome activation 
in microglia, astrocytes, and other CNS cells. 
Also discussed are the mechanistic pathways, 
checkpoints of inflammasome activation, cyto-
kine storm, and pyroptosis, which could be the 
potential targets for intervening/ameliorating 
the severity of the COVID-19 pandemic. 

Inflammasome complexes

The induction of the inflammatory process in 
cells is often mediated by inflammasomes 
which are multiprotein cytosolic platforms of 
the innate immune defense system [52]. In- 
flammasomes tend to aggregate in response to 
various microbe-associated and host-generat-
ed assaults and orchestrate the development 
of local and systemic inflammation [52, 70]. 
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These harmful threats are detected by compo-
nents of the host innate immune system, the 
pattern-recognition receptors (PRRs). To trig- 
ger inflammatory pathways for the removal of 
microbial infection and repairment of tissue 
damage PRRs recognize pathogen-associated 
molecular patterns (PAMPs) or endogenous 
stress generated damage-associated molecu-
lar patterns (DAMPs). Inflammasomes are de- 
fined by their sensor proteins (PRRs) and get 
oligomerized in response to PAMPs and DAMPs 
to activate caspase-1. There are five confirmed 
members of inflammasomes: nucleotide-bind-
ing oligomerization domain (NOD), leucine-rich 
repeat (LRR)-containing proteins (NLR) family 
representative NLRP1, NLRP3, NLRC4, absent-
in-melanoma 2 (AIM2) and pyrin [71, 72]. Ad- 
ditionally, other members of PRRs known for 

forming inflammasomes are NLRP2, NLRP6, 
NLRP7, NLRP12 and IFI16 [73-77]. Among vari-
ous inflammasomes, the NLRP3 inflammaso- 
me is a well-characterized and most studied 
molecular platform that responds to RNA virus-
es and gets activated against microbial infec-
tion (PAMPs) and host cell damage or aggre-
gates (DAMPs). NLRP3 inflammasome is com-
posed of the NLRP3 receptor, the adaptor mol-
ecule apoptosis-associated speck-like protein 
containing a caspase activation and recruit-
ment domain (ASC), and caspase-1. NLRP3 is  
a tripartite protein having an amino-terminal 
pyrin domain (PYD), a central NOD or NACHT, 
and an LRR domain [78]. To initiate inflamma-
some assembly PYD of NLRP3 interacts with 
PYD of ASC [79]. The NOD of NLRP3 possesses 
ATPase activity and is crucial for oligomeriza-

Figure 1. Activation of NLRP3 inflammasome by SARS-CoV-2. SARS-CoV-2 infection occurs by binding of Spike gly-
coprotein with cell surface receptor ACE2 leading to viral internalization, followed by the release of nucleic acid, 
viral replication and synthesis of viral proteins. Infection of SARS-CoV-2 upregulates the NFkB pathway leading to 
increased expression and synthesis of NLRP3 and IL-1β. Viral proteins including S, N, E and viroporins interact with 
NLRP3 and facilitate inflammasome assembly via oligomerization, the interaction of NLRP3 with ASC and cleav-
age of caspas1 leading to maturation and release of IL-18 and IL-1β. Ion channels and ion flux are also involved in 
NLRP3 inflammasome activation. Mitochondrial ROS and lysosomal degradation further impart NLRP3 inflamma-
some activation.
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tion of NLRP3 following the activation [80]. A 
commonly used NLRP3 inhibitor MCC950 tar-
gets ATPase activity of NOD [81, 82]. Following 
NLRP3 inflammasome assembly, caspase-1 
becomes activated by autoproteolytic cleavage 
and promotes maturation of proinflammatory 
cytokines, IL-1β, IL-18, IL-6, TNFα and gasder-
min-D (GSDMD), a pore-forming protein that 
incites pyroptosis (a type of inflammatory pro-
grammed cell death) [52, 83]. The hallmark of 
the active inflammasome is the presence of 
spec (puncta), these puncta or spec are micr- 
on-size structures formed by polymerization of 
ASC as a consequence of the activation by 
PAMPs, and DAMPs [84, 85]. 

Inflammasome activation and regulation

Inflammasomes are key signaling platforms 
responsible for detecting pathogenic microor-
ganisms and sterile stressors resulting in the 
activation and secretion of proinflammatory 
cytokines. The mechanisms of activation and 
regulation of inflammasomes are complex and 
ensure an effective but balanced inflamma-
some-mediated immune response. Owing to 
the well-characterized and most studied in- 
flammasome NLRP3, we will further contem-
plate activation and regulation mechanism 
using this. Despite the controversy, a two-step 
signaling model for the activation of NLRP3 
inflammasome is widely accepted, consisting 
of primming (first signal) and activation steps 
(second signal) [86-88]. Primming signals are 
generally ligands for toll-like receptors (TLRs), 
NLRs or cytokine receptors which in turn acti-
vate the NF-kB. Primming signals regulate the 
NLRP3 inflammasome by upregulating tran-
scription of key components (NLRP3 and IL-1β), 
as a basal expression of these components is 
insufficient for activation of inflammasome in 
resting cells [78, 89]. In response to TLR 
ligands, NF-kB induces signaling components 
MyD88 and TRIF, which regulate the induction 
of NLRP3 as well as pro-IL-1β [89]. However, 
the primming signal does not alter the expres-
sion profile of ACS, pro-caspase-1, and pro-
IL-18 [78]. Further, it was reported that apop-
totic signaling molecules caspase-8 and FADD 
prime NLRP3 induction [90, 91]. Interaction of 
IKK complex with caspase-8 promotes NFkB 
transcription and translocation for downstream 
signaling [92]. In contrast, the transcription-
independent role of priming was reported using 
rapid priming with lipopolysaccharide (LPS), 

where NLRP3 activation occurs in the ab- 
sence of its induction [93]. This rapid transcrip-
tion-independent priming is believed to be 
mediated by a signaling molecule downstream 
of TLRs and MyD88 known as IL-1 receptor-
associated kinase 1 (IRAK-1), [94]. Phospho- 
rylation of IRAK-1 induced by LPS primes acti-
vation of inflammasome in IKK complex inde-
pendent manner [95]. Nevertheless, beyond 
the transcriptional regulation, the primming 
step does more to license NLRP3 inflamma-
some activation.

Following the primming step, activation of 
NLRP3 inflammasome can be induced by a 
plethora of stimuli which includes, ATP, K+ iono-
phores [96], particulate matter [97, 98], heme 
[99], pathogen-associated RNA [100, 101], 
microbial toxins and integrant [102-104]. These 
biochemically diverse agonists induce multiple 
cellular and molecular signals including ionic 
flux, dysfunction of mitochondria, generation of 
reactive oxygen species (ROS), and lysosomal 
damage for the NLRP3 inflammasome activa-
tion. Activated inflammasome plays a critical 
role in host defense in anticipation of infectious 
agents mounting immune responses. Stringent 
inflammasome activation regulation is requir- 
ed as dysregulated NLRP3 inflammasome has 
been involved in the pathogenesis of numerous 
inflammatory diseases. Precise regulation of 
activation of NLRP3 inflammasome is critical 
for adequate immune protection to the host  
by subverting the tissue damage. The mecha-
nisms for the NLRP3 inflammasome regula- 
tion include post-translational alterations of 
NLRP3 as well as its interacting partners.

NLRP3 inflammasome in COVID-19

The involvement of excessive inflammation and 
resultant cytokine storm owing to uncontrolled 
release of cytokines is accountable for the 
unfavorable clinical outcomes of the COVID-19 
[105, 106]. The mechanism of inflammasome 
activation in SARS-CoV-2 is poorly explored, 
despite confirmed participation of NLRP3 in- 
flammasome in SARS-Co-V and MERS-CoV 
[107, 108]. However, the engagement of pyr- 
optosis and cytokine storm, where inflamma-
some-associated products such as IL-1β, IL-18, 
and LDH were detected in COVID-19 patient 
sera, suggests the association of inflamma-
some in the COVID-19 [105, 106, 109-111]. 
Further, as an inflammasome-independent 
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pathway can also produce inflammatory sub-
stances, it demands a definitive confirmation of 
the involvement of inflammasome in the SARS-
CoV-2 infection [112-114]. In an elegant article 
by Rodrigue and coworkers [85] on COVID-19, 
the involvement of NLRP3 inflammasome was 
confirmed in patients with moderate to severe 
infection of SARS-CoV-2. Other contemporary 
studies have shown the involvement of SARS-
CoV-2-induced activation of NLRP3 inflamma-
some in the COVID-19 [45, 115-119].

COVID-19 induced NLRP3 inflammasome acti-
vation and cytokine storm 

The immune system defends our body against 
invaders such as SARS-CoV-2. This defense 
system includes 2-arms, the innate and adap-
tive immune systems. The innate-immunity-
mediated antiviral responses are triggered by 
recognizing PAMPs, leading to the induction of 
adaptive immunity which is critical to protect- 
ing the host [120, 121]. The host cells in 
response to viral infection release cytokines, 
chemokines, leukotrienes, proteases, and ROS 
to enable viral clearance [122]. A stringent 
equilibrium between antagonistic signals and 
cellular response maintains the immune res- 
ponse evoked by pathogens and is responsible 
for preventing host tissue damage, by prevent-
ing continuous activation of the immune sys-
tem [122]. Usually, acute viral infections evoke 
systemic inflammatory responses leading to 
excessive synthesis and release of proinflam-
matory cytokines as a defense measure [122]. 
This systemic inflammatory response triggered 
by infections and drugs causes cytokine storm 
or CRS. Previously, influenza viral infection 
causing respiratory illness has been character-
ized as a stimulus for CRS [123]. Influenza 
patients undergo robust cytokine-mediated 
responses which are associated with fever, 
hypoxemia and hypotension [10, 123]. The syn-
drome may be mild or can develop into persis-
tent high-grade fevers, vasodilatory shock with 
hemodynamic instability demanding mechani-
cal ventilation [10, 123]. Similarly, the exis-
tence of elevated inflammatory cytokine levels 
in COVID-19 patients leading to CRS or cytokine 
storm culminate in lung collapse, respiratory 
failure and may lead to multiorgan failures 
[105]. Enhanced induction in IL-1β, TNFα, IL-6, 
IL-18, IL-10, IL-1RA, and C-X-C motif chemokine 
ligand 10 (CXCL10) was reported in severe 

COVID-19 patients exhibiting cytokine storm 
phenotype [106, 124]. These excessively re- 
leased cytokines may produce eosinopenia 
(low count of eosinophil) and lymphocytopenia 
(low count of CD4+T, CD8+T, and NK cells) and 
can induce naïve B-cell activation, Th17 differ-
entiation, neutrophil recruitment and monocyte 
stimulation [125-128]. Recently, it was demon-
strated that SARS-CoV-2 infection could lead  
to NLRP3 overactivation resulting in cytokine 
storms in the hematopoietic stem cells [116]. 
The NLRP3 is one of the most critical innate 
immune components that accelerate inflam-
mation by releasing IL-1β, IL-18 and provokes 
pyroptosis. There have been reports of a  
positive correlation of IL-18 and caspase-1  
with other inflammatory markers, including 
C-reactive protein (CRP), LDH, and IL-6 in  
the activation of inflammasome in COVID-19 
patients [85]. Further investigation to find out 
the cytokine storm in other organs and tissues 
causing the disease severity in COVID-19 is 
imperative. Thus, to control cytokine storm in 
SARS-CoV-2 infected patient NLRP3 inflamma-
some inhibitors can be harnessed alongside 
other inflammatory inhibitors.

NLRP3 inflammasome activation and COVID 
19-associated neurological symptoms

The activation of NLRP3 inflammasome and 
associated pathophysiology of various neuro-
logical disorders have been reported in numer-
ous neurological disorders, such as in Alzhei- 
mer’s disease (AD) [129-133], Parkinson’s dis-
ease (PD) [134-136], multiple sclerosis (MS) 
[137, 138], and traumatic brain injury [139-
141]. Viral infection in the brain (neuroinvasion) 
leads to inflammatory response resulting in 
neuroinflammation [142]. At the beginning of 
the COVID-19 pandemic, a general belief was 
that SARS-CoV-2 infection solely affects the 
respiratory system of humans [143], but the 
appearance of newer symptoms such as olfac-
tory and taste indicates an involvement of the 
CNS [144]. There is evidence that SARS-CoV-2 
can infect neuronal cells, the BBB endothelial 
cells, microglia, and astrocyte via ACE2 and 
another receptor known as cluster differentia-
tion 147 (CD147) [145, 146] and cause a neu-
rological deficit in a substantial proportion of 
COVID-19 patients [147, 148]. Figure 2 is the 
graphical representation of COVID-19 induced 
neurological syndromes. 
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In the CNS, the critical player of neuroinflam-
mation is microglial cells, a major source of pro-
inflammatory cytokines [149]. As resident mac-
rophages in the brain, microglia are account-
able for phagocytosis and removal of patho-
gens and neurotoxic agents [150]. They are 
also the target cells in SARS-CoV-2 CNS infec-
tion. Studies using postmortem samples of 
COVID-19 patients have demonstrated that 
SARS-CoV-2 was present in the brain compart-
ments [151, 152]. SARS-CoV-2 infection to the 
CNS was further confirmed by the observation 
that this virus can infect neural progenitors and 
brain organoids [153]. The entry of SARS-CoV-2 
into the brain may take a similar approach as 
other viruses to invade brain tissues, the he- 
matogenous route, the retrograde route [154], 
or the direct access to the brain via the olfac-
tory canal [105, 155]. Following entry, the virus 
and viral proteins can cause direct neural cell 
injury or promote microglial pro-inflammatory 
responses causing an indirect neural injury 
[156]. Inflammasome activation through SARS-
CoV-2 infection or entrance of viral proteins into 
the brain and other CNS compartments was 
reported. [157, 158]. It has been shown that 
incubation of spike glycoprotein S1 of SARS-
CoV-2 with BV2 microglial cells elevated levels 
of NLRP3, IL-1β, TNFα, IL-6, nitric oxide (NO) 
and enhanced activity of NFkB and caspase-1 
[157]. The S1 protein also triggered the produc-

tentiates the breakdown of BBB and the con- 
sequent leukocytes migration. COVID-19-induc- 
ed defects in gustation and olfaction could be a 
result of olfactory bulb injury due to, nasal cav-
ity inflammation. Thus, the binding of odorants 
to the olfactory receptors is blocked due to 
nasal inflammation resulting in dysfunction in 
the olfactory response [164]. Additionally, loss 
of taste (ageusia) occurs due to dysfunction in 
the taste buds [165]. In COVID-19 patients, it 
usually takes a longer time for the regeneration 
and recovery of damaged neurons in the olfac-
tory lobes [164]. Depending on the extent of 
viral insult, the loss of smell and taste may per-
sist for months to years [164]. It is widely re- 
cognized that senior individuals with compro-
mised health conditions are more vulnerable to 
COVID-19-associated fatal and long-term con-
sequences. The profile of NLRP3 inflamma-
some involvement in neurological consequenc-
es induced by COVID-19 is an unmet need for 
research. Considering age-related neurological 
deficits, COVID-19 brain infection could further 
exacerbate neurological symptoms in senior 
patients.

Mechanisms of NLRP3 inflammasome activa-
tion in COVID-19

Inflammasomes are large cytosolic multiprotein 
oligomers of the innate immune system which 

Figure 2. COVID-19-associated neurological consequences. The graphical 
representation of impacts of neurological outcomes in COVID-19 patients. 
These neurological syndromes are diverse in nature including dizziness, 
headache, loss of sense of taste and smell, brain fog and various inflamma-
tory brain diseases.

tion of interferon-beta (IFNβ), 
TNFα, and NFkB in the human 
microglia [159]. 

Extensive activation of cas-
cades of neuroinflammation is 
provoked by excessive release 
of cytokines and chemokines, 
which drives neuronal hyperex-
citability through activation of 
glutamate receptors accompa-
nied by induction of seizures 
[160, 161]. COVID-19 patients 
may give rise to inflammatory 
injury and brain edema owing 
to the immune system over-
exuberance response may 
lead to defective conscious-
ness [162]. Such immunologic 
response resulting in hyperin-
flammation may further ampli-
fy the cytokine storm [163]. It 
was presumed that intracrani-
al cytokine storm further po- 
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assemble in response to PAMPs and DAMPs 
leading to proinflammatory cytokine release 
and lytic cell death termed pyroptosis [52, 53]. 
The NLRP3 is a well-characterized sensor of 
the NLR family, detects a broad range of mic- 
robial motifs in addition to environmental irri-
tants and endogenous danger signals. The 
exact molecular mechanism for activation of 
NLRP3 inflammasome is largely unknown. It 
occurs in a two-step process: primming, the 
first signal and subsequent activation is the 
second signal. For SARS-CoV-2 primming trig-
gers are not well established, however, a re- 
cent study has shown that spike glycoprotein 
can initiate inflammasome activation [166]. 
Generally, NLRP3 inflammasome responds to 
an agglomeration of affront to the cells, which 
causes Ca2+ influx, K+ efflux, ROS production by 
mitochondria, mitochondrial dysfunction, and 
lysosomal rupture [52, 167-169]. In addition, 
the NLRP3 inflammasome can be activated by 
pore-forming toxins, extracellular ATP and large 
extracellular aggregates including cholesterol 
and uric acid crystals, and amyloid [53]. Viral 
infection evokes the NLRP3 inflammasome 
activation, which is also admissible with coro-
naviruses [170, 171]. 

Previous studies using SARS-CoV have demon-
strated that activation of the inflammasome 
occurs by E and ORF3a proteins via altering the 
permeability of K+ ions across the plasma mem-
brane and ROS production by mitochondria 
[50, 172]. In a recent study, inflammasome-
derived products including Casp1p20, IL-1β, 
IL-6 and IL-18 were also detected at higher lev-
els in SARS-CoV-2 infected patients and were 
correlated with the severity of disease [85, 
117]. It is conventionally agreed that activation 
of NLRP3 occurs in viral infection by assem-
bling NLRP3 with ASC and recruiting caspa- 
se-1, resulting in proinflammatory cytokine pro-
duction and GSDMD-mediated pyroptosis [45, 
85, 170, 173]. Further, SARS-CoV-2 N-protein 
was shown to directly interact with the NLRP3 
and promote the ASC assembly. This sequel of 
N-protein and NLRP3 interaction enhances pro-
teolytic activity of caspase-1 and enhanced 
release of IL-1β and IL-6, resulting in hyperin-
flammation and cytokine storm in the lungs 
[118]. Using the NLRP3 double knockout mice, 
Pan and colleagues have demonstrated that 
the lung NLRP3 inflammasomes activation was 
the cause of ARDS and resulting fetal death 
[118]. 

Other contemporary studies have revealed that 
SARS-CoV-2 S, E, ORF3a and ORF8 can induce 
inflammasome activation and hyperinflamma-
tion, leading to severe clinical outcomes [45, 
119, 174-176]. Nevertheless, investigations on 
the mechanisms of inflammasome activation 
induced by SARS-CoV-2 could be of immense 
interest in the battle against the pandemic of 
COVID-19. In the following section, we report 
current advances in NLRP3 inflammasome ac- 
tivation induced by proteins of SARS-CoV-2. 

SARS-CoV-2 proteins-mediated NLRP3 activa-
tion

In addition to SARS-CoV-2 infection-associa- 
ted activation of the NLRP3 inflammasome, 
SARS-CoV-2 proteins were also found to induce 
NLRP3 activation. Among them are S, N, E, 
Viroprin (ORF3a), and ORF8 proteins [45, 118, 
119, 157, 174-176]. How these proteins cause 
NLRP3 inflammasome activation and resultant 
biological consequences are discussed tenta-
tively in the following subsections.

SARS-CoV-2 Spike (S) 

The SARS-CoV-2 S-protein is a glycoprotein  
and a crucial player in infectivity as it binds to 
host cell receptors ACE2, which facilitates virus 
entry into the cells [177, 178]. It has been con-
sistently, demonstrated that the SARS-CoV-2 
S-protein interacts with ACE2 and causes the 
release of various cytokines including IL-1β, 
IL-6, IL-8, and IL-18 via the NLRP3 inflamma-
some-mediated activation of caspase-1 [171, 
174, 179]. The recombinant nucleic acid-based 
and subunit vaccines are against this antigenic 
protein [17, 18, 180]. The S-protein can trigger 
NLRP3 inflammasome activation, resulting in 
hyperinflammation and related cytokine storms 
[157, 166, 174]. It has been reported that incu-
bation of recombinant spike glycoprotein S1 of 
SARS-CoV-2 with peripheral blood mononucle-
ar cells (PBMCs) of humans evoked excessive 
cytokine production, which was abolished by 
dexamethasone [174]. The spike glycoprotein 
S1 evoked cytokine release through mecha-
nisms involving activation of NFkB, p38MAPK, 
and NLRP3 inflammasome as demonstrated by 
harnessing different specific inhibitors [174]. 
Further studies on BV2 microglial cells demon-
strated that spike glycoprotein S1 activated the 
NLRP3 inflammasome resulting in enhance-
ment of pro-inflammatory cytokine production 
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and nitric oxide [157]. These results indicate 
that viral spike glycoprotein S1, perhaps other 
viral proteins as well, plays a crucial role in the 
activation of the NLRP3 inflammasome. This 
exemplifies the involvement of NLRP3 inflam-
masome in alveolar cells in COVID-19. Using 
primary rat microglial cells and spike glycopro-
tein S1 of SARS-CoV-2, we observed activation 
of the NLRP3 inflammasome by measuring 
enhanced production of IL-1β and other cyto-
kines, as well as the expression of NO, and 
iNOS (Dutta and Xiong, unpublished data). Our 
results further demonstrated the neuroinflam-
matory properties of spike glycoprotein S1 via 
activation of the NLRP3 inflammasome. The 
spike glycoprotein S1-mediated inflammasome 
activation in rat microglial cultures was block- 
ed by an NLRP3 specific inhibitor MCC950 
(Dutta and Xiong, unpublished data). In addi-
tion, the S-protein of SARS-CoV-2 was found to 
damage hematopoietic stem/progenitor cells 
through pyroptosis mediated by NLRP3 inflam-
masome-dependent mechanism [115]. Never- 
theless, these experimental results, including 
ours, demonstrated that SARS-CoV-2 spike gly-
coprotein induces NLRP3 inflammasome acti- 
vation. 

SARS-CoV-2 nucleocapsid

It was shown that SARS-CoV-2 nucleocapsid 
(N-protein) interacts with NLRP3 and resulted 
in NLRP3 inflammasome activation in both cell 
cultures in vitro and a mouse model of viral 
infection in vivo [118]. The study demonstrated 
that N-protein interacted in a dose-dependent 
manner with NLRP3 and promoted the IL-1β 
maturation and release. Application of a spe-
cific NLRP3 inflammasome inhibitor MCC950 
and an inhibitor for Caspase-1 Ac-YVAD-cmk 
blocked the NLRP3 inflammasome activation 
[118]. This is a classic finding with an elucida-
tion of a mechanistic view of NLRP3 inflamma-
some activation by N-protein, where N-protein 
not only interacted with NLRP3 but also facili-
tated its assembly with ASC, a process of 
polymerization and activation. This was detect-
ed by increased spec or puncta formation after 
N-protein treatment. This study further identi-
fied the exact domain of N-protein (CTD, 260-
340aa), which interacts with the NLRP3 inflam-
masome using deletion mutation constructs 
and Co-IP. Deletion of this particular domain  
of N-protein resulted in a significant reduction 

in p17, p20, and ASC oligomerization, demon-
strating that the physical interaction between 
NLRP3 and N-protein was indispensable for  
the activation of the NLRP3 inflammasome 
[118]. Hence, treatments targeting N-protein 
might suppress cytokine storms and reduce 
lung injury and complications in other organs 
mediated by SARS-CoV-2-associated NLRP3 
overactivation. 

The N-protein of SARS-CoV-2 possesses dual 
actions on innate immune responses. At lower 
doses, it suppresses type I interferon (IFN-I) 
signaling as well as inflammatory cytokine ex- 
pression. In contrast, it promotes IFN-I signal-
ing and expression of inflammatory cytokine at 
higher doses [181]. Such dual functions were 
also observed in regulating the phosphoryla-
tion status of IRF3, STAT1, and STAT2 and their 
nuclear translocation [181]. N-protein combin- 
ed with TRIM25-protein was found to suppress 
the ubiquitination as well as activation of the 
retinoic acid-inducible gene (RIG-I) [181]. In 
addition, N-protein bounds to GSDMD linker 
region and hindered GSDMD cleavage by cas-
pase-1 [182]. These findings indicate that the 
N-protein of SARS-CoV-2 plays a pivotal role in 
triggering inflammatory responses in COVID- 
19.

SARS-CoV-2 envelope

The envelope protein (E-protein) of SARS-CoV-2 
is a small structural protein and plays a crucial 
role in the activation of the NLRP3 inflamma-
some [176]. The E-protein was shown to have 
dual roles in the modulation of NLRP3 inflam-
masome in human and murine macrophages.  
It suppressed activation of NLRP3 inflamma-
some in the stage of early infection but activat-
ed NLRP3 inflammasome at the advanced 
stage of the infection [176]. The mechanisms 
underlying its dual effects on NLRP3 inflamma-
some are not well characterized at present and 
further investigations are definitely desirable. 

SARS-CoV-2 ORF3a (viroporin)

Open reading frame 3a (ORF3a) is an accesso-
ry protein conserved in both SARS-CoV and 
SARS-CoV-2 [183, 184]. It is a viroporin, a 
transmembrane protein, that works as an ion 
channel and helps in the viral release [185, 
186]. In SARS-CoV, ORF3a protein activates 
NLRP3 inflammasomes leading to dysregulat- 
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ed immune response and elevated levels of 
proinflammatory cytokines [48, 187]. It was 
shown that SARS-CoV ORF3a protein can acti-
vate the NLRP3 inflammasome in lipopolysac-
charide primed macrophages [172]. Owing to 
conservation in ORF3a protein in SARS-CoV 
and SARS-CoV-2 [183, 184], the role of ORF3a 
in NLRP3 inflammasome activation is appar-
ent. A recent study has shown that ectopically 
expressed SARS-CoV-2 ORF3a activated the 
NLRP3 inflammasome by triggering IL-1β ex- 
pression via the NFkB pathway [175]. Further- 
more, the study revealed that this viroporin 
primed and activated inflammasome through 
both ASC-dependent and independent path-
ways. It was also shown that ORF3a-mediated 
activation of inflammasome was mediated via 
potassium ion efflux and by NEK7 and NLRP3 
oligomerization. Application of MCC950 block- 
ed ORF3a-mediated inflammasome activation. 

NLRP3 inflammasome as a therapeutic target 
for COVID-19

Because of poor immune fitness, dysregulated 
NLRP3 inflammasome and resultant hyperin-
flammation contribute to the COVID-19 severity 
[10, 188]. Inhibitors targeting the pathways of 
NLRP3 inflammasome activation can be con-
templated as a prospective therapy. The spe-

are proposed as potential therapeutic targets 
for the COVID-19 treatment [190]. Thus, inhibi-
tors targeting critical components of inflamma-
some activation, cellular pyroptosis, and down-
stream cytokine can be implicated in the treat-
ment of COVID-19 [43]. Indeed, it has been 
shown that targeting NLRP3 inflammasome 
could be a promising immune intervention ag- 
ainst the severe COVID-19 [191]. Thus, we ten-
tatively discuss a few NLRP3 inhibitors, both 
specific (selectively blocks the NLRP3 inflam-
masome) and non-specific (indirect inhibition  
of NLRP3-mediated signaling), on their thera-
peutic potential for COVID-19. Treatment with 
these inhibitors can block caspase-1 activity, 
resulting in an inhibition of IL-1β and other cyto-
kine production, and consequent reduction in 
inflammation (Figure 3). 

MCC950 (CRID3 or CP-456,773)

MCC950 is a specific inhibitor for NLRP3 in- 
flammasome with a small molecular weight. 
MCC950 blocks the ATPase activity by binding 
non-covalently near the Walker B motif of 
NLRP3 resulting in inhibition of NLRP3 [81, 
192-197]. Pigs and mice treated with MCC950 
exhibited a decreased infiltration of neutro-
phils, reduced expression of myocardial IL-1β 
and diminished infarct size and cardiac dys-

Figure 3. Inhibition of NLRP3 inflammasome may have therapeutic potential 
for COVID-19 and related neurological syndromes. Graphical representation 
of inflammasome inhibition by various inhibitors. The NLRP3 inflammasome 
is a prospective target for therapeutic approaches in the treatment of CO-
VID-19. Inhibitors against NLRP3 inflammasome may ameliorate SARS-CoV-
2-induced hyperinflammation and related cytokine storms. These inhibitors, 
in addition to their beneficial effects in lung and other organs, could also 
have therapeutic potential for COVID-19 neurological syndromes associated 
with microglial NLRP3 inflammasome activation.

cific inhibitor against NLRP3, 
MCC950, may have therapeu-
tic potential for patients at the 
early stage of the disease to 
prevent cytokine storms, ame-
liorate complications, and re- 
duce fatal outcomes [118]. 
Other inhibitors, like Ac-YVAD-
cmk which is a specific inhibi-
tor for caspase-1, can also be 
considered for the treatment, 
either alone or in combination 
with MCC950. The therapeutic 
efficacies of these inhibitors 
need to be evaluated by in 
vitro and in vivo models of dis-
ease and ultimately in clinical 
trials. Indeed, in the treatment 
of cardiovascular disease, the 
use of NLRP3 inhibitors has 
been reviewed in the literature 
[189], paving the path for us- 
ing NLRP3 inhibitors in COVID-
19. It is worth noting that in- 
flammasome and pyroptosis 



NLRP3 activation in SARS-CoV-2 hyperinflammation

147 Int J Physiol Pathophysiol Pharmacol 2022;14(3):138-160

function [198-200]. In lung ischemia-reperfu-
sion (IR), the NLRP3 inflammasome was found 
overactive in the murine lung IR model [201]. 
Animals pretreated with MCC950 significantly 
alleviated IR-induced lung injury by restricting 
the proinflammatory cytokine release and in- 
hibiting infiltration of neutrophils [201]. As neu-
trophil infiltration has been reported in severe 
COVID-19 patients along with cytokine storms 
[202], the use of MCC950 may attenuate neu-
trophil infiltrations and cytokine storms. In a 
recent study using monocytes from healthy 
donors, it was shown that MCC950 can inhibit 
SARS-CoV-2 infection-induced caspase-1 acti-
vation leading to IL-1β production [85]. Also, 
SARS-CoV-2 N-protein- and S-protein-induced 
NLRP3 inflammasome induction in lung cells, 
PBMCs, BV2 neural cells, and mice were inhib-
ited when treated with MCC950 [118, 157, 
174]. In addition to its treatment in lung injury 
and cardiovascular complications associated 
with NLRP3 inflammasome activation, MCC950 
was used to treat neuroinflammation-related 
injury as well. A study on spinal cord injury mice 
model showed that MCC950 restricted the 
inflammatory response and improved neuro-
logical sequel [203]. Such therapeutic effects 
were achieved by blocking the assembly of the 
NLRP3 inflammasome, including NLRP3-ACS 
and NLRP3-caspase-1 complex formation, and 
inhibiting the release of cytokines TNFα, IL-18 
and IL-1β [203]. Nevertheless, NLRP3 inflam-
masome inhibition by MCC950 has been app- 
lied for the treatment of multiple sclerosis  
(MS)-associated central neuropathic pain in 
patients with RR-MS [204]. Inspired by this 
study, MCC950 could be considered for treat-
ment of neuroinflammatory disease conditions 
due to SARS-CoV-2 infection. 

Glyburide

Glyburide is the first NLRP3 inhibitor that works 
in vitro but at a high dose [205]. It was shown 
that glyburide can inhibit NLRP3 inflamma-
some and lung tumorigenesis in mice [206], 
which implicates for the treatment of lung 
hyperinflammation in COVID-19 patients.

BAY11-7082

As a synthetic NFkB inhibitor, BAY11-7082 acts 
by alkylating the cysteine residue of the ATPase 
region of NLRP3 resulting in inhibition of the 
NF-kB pathway [207]. To explore its anti-inflam-

matory properties, BAY11-7-82 was tested in 
PBMCs treated with spike glycoprotein S1 of 
SARS-CoV-2. Treatment with S1 increased ph- 
osphorylation of NFkB p65, IkBα, and IkBα  
degradation, resulting in NFkB activation [174]. 
Such effects were blocked by either dexameth-
asone or BAY11-7082, leading to an inhibition 
of inflammasome activation [174]. In another 
study aiming to recapitulate neuroinflamma- 
tion by SARS-CoV-2 in BV2 cells, it was shown 
that BAY11-7082 inhibited the SARS-CoV-2 
S1-induced activation of NLRP3 inflammaso- 
me as assayed by a reduction in IL-1β, TNFα 
and IL-6 production [157]. These observations 
suggest that BAY11-7082 might have thera- 
peutic potential for COVID-19 cytokine storm 
and neurological consequences associated wi- 
th neuroinflammation.

OLT1177

OLT1177 is a specific small-molecule inhibitor 
for the NLRP3 functioning by blocking the 
ATPase activity [133, 208, 209]. It acts against 
mutants of NLRP3 in the cryopyrin-associa- 
ted periodic syndrome patients [210] and may 
have therapeutic potential for COVID-19. In a 
phase 2A clinical trial, OLT1177 was found safe 
and effective in reducing targeted joint pain  
in gout patients [211]. As the compound is 
already in a clinical trial, testing its efficacy in 
COVID-19 patients may open another avenue 
for the treatment of COVID-19.

Colchicine

This is a tricyclic alkaloid compound that is cur-
rently in use to treat familial Mediterranean 
fever, gout and acute as well as chronic pericar-
ditis [212, 213]. Colchicine impedes NLRP3 
and ASC interaction via disruption of microtu-
bule and inhibits the inflammasome activation 
[214]. In a recent review, colchicine was sug-
gested to repurpose for COVID-19 treatment 
owing to its anti-inflammatory and immuno-
modulatory nature [215]. Based on its current 
use in the CNS disease treatment, neuro-be- 
hcet’s syndrome, a severe chronic inflammato-
ry vascular disease [216], colchicine may have 
the potential in treating COVID-19-induced ne- 
uroinflammation.

Ac-YVAD-cmk

This is an efficacious inhibitor of caspase-1 
[217]. Caspase-1 plays a terminal effector role 
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in inflammasome by converting proinflamma- 
tory pro-IL-18 and pro-IL-1β into respective 
mature forms by cleavage [218]. Inhibition of 
caspase 1 blocks inflammatory processes as- 
sociated with inflammasome activation. Ac- 
YVAD-cmk possesses activity to effectively 
block activation of inflammasomes and display 
anti-inflammatory and anti-pyroptotic effects 
[219, 220]. Recently, it was shown that SARS-
CoV-2 N-protein mediated activation of NLRP3 
inflammasome was inhibited using Ac-YVAD-
cmk [118]. In a mouse model of depression,  
its inhibitory effect on caspase-1 was also  
demonstrated where immune activation and 
NLRP3-mediated depression were ameliorated 
by Ac-YVAD-cmk [220]. In view of its ability to 
selectively block IL-1β converting enzyme, 
Ac-YVAD-cmk could be considered as a poten-
tial treatment option for neuroinflammation 
and multiorgan damage in COVID-19 patients.

Anakinra 

As an interleukin-1 type I receptor (IL-1RI) 
antagonist, anakinra is in use for the treatment 
against multiple autoinflammatory diseases 
including familial Mediterranean fever, MS, and 
rheumatoid arthritis [221-223]. These clinical 
disorders, which benefited from anakinra, sh- 
are the same pathophysiological hallmarks  
of COVID-19, including macrophage activation 
syndrome (MAS), hemophagocytic lymphohys-
tiocytosis, and septic shock [224-226], raising 
the hope for its application for COVID-19 
patients. The use of anakinra was indeed fo- 
und to have clinical benefits in saving the lives 
of hospitalized COVID-19 patients with moder-
ate to severe manifestations [227]. 

Nevertheless, suitable NLRP3 inflammasome 
inhibitors with high efficacy and safety in clini-
cal trials may be considered for immediate 
COVID-19 treatment emergency use authoriza-
tion. While dexamethasone and other immuno-
suppressive drugs block type I IFN signaling, 
this may leave viral replication unchecked. The 
advantage of NLRP3 inflammasome inhibitors 
in COVID-19 leaves type I IFN signaling intact, 
which increases virus clearance by limiting the 
viral replication [228]. Also, it was shown that 
the NLRP3 inflammasome was repressed by 
type I IFN via reducing the pro-IL-1β level and 
its cleavage into mature IL-1β [229]. Thus, 
treatment of COVID-19 patients with inflam- 
masome inhibitors will encounter dual effects: 

leaving type I IFN levels high promoting anti- 
viral state and restraining the hyperinflamma-
tion induced by the NLRP3 inflammasome.

Summary

As SARS-CoV-2 is the etiologic agent for global 
COVID-19 pandemic fatalities, research into 
the underlying mechanisms is an unmet need. 
While specific molecular mechanisms influenc-
ing disease severity remain to be determined,  
a number of studies have demonstrated that 
activation of inflammasomes and inflammatory 
mediators including IL-1β, IL-18, IL-6 and LDH 
are intimately associated with the severity of 
COVID-19. While it is not restricted to infect  
the respiratory system, SARS-CoV-2 can attack 
other organ systems including the brain. COVID-
19 gives rise to a group of disease manifesta-
tions, and one of the dreadful consequences is 
the massive inflammatory response mediated 
by the NLRP3 inflammasome. Inflammasome 
signaling on one hand provides defense against 
microbial invasion, and on the other hand, as a 
countermeasure, produces hyperinflammatory 
responses. The NLRP3 is one of the well-char-
acterized inflammasomes which plays a salient 
role in hyperinflammatory responses in SARS-
CoV and MERS-CoV as well as in SARS-CoV-2 
infection. NLRP3 inflammasome activation in- 
duced by infection of SARS-CoV-2 not only 
causes severe respiratory complications but 
provokes neurological syndromes. This review 
has assembled current advances on the SARS-
CoV-2-mediated activation of NLRP3 inflamma-
some that may help us better understand the 
disease in a broader way and find ways to con-
tain the COVID-19 severity and death. 
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