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Abstract. Background: For prediction of many types of
clinical outcome, the skeletal muscle mass can be used as an
independent biomarker. Manual segmentation of the skeletal
muscles is time-consuming, therefore we present a deep-
learning-based approach for the identification of muscle mass
at the L3 level in clinical routine computed tomographic (CT)
data. Patients and Methods: We conducted a retrospective
study of 130 patient datasets. Individual CT slice analysis at
the L3 level was fed into a U-Net architecture. As a result,
we obtained segmentations of the musculus rectus abdominis,
abdominal wall muscles, musculus psoas major, musculus
quadratus lumborum and musculus erector spinae in the CT-
slice at the L3 level. Results: The Dice score was 0.95+0.02,
0.86+0.12, 0.93+0.05, 0.92+0.05, 0.86+0.08 for the erector
spine, abdominal wall, psoas and quadratus
lumborum muscles, respectively. For the overall skeletal
muscle mass, the test data achieved a Dice score of
0.95+0.03. Conclusion: Our network achieved Dice scores
larger than 0.86 for each of the five different muscle types
and 0.95 for the overall skeletal muscle mass. The subdivision
of muscle types can serve as a basis for obtaining future
biomarkers. Our network is publicly available so that it might
be beneficial for others to improve the clinical workflow
within examination of routine CT scans.
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Low skeletal muscle mass (LSMM) on sectional images such
as computer tomographic (CT) scans is a well-established
independent biomarker in several studies (1-8). LSMM predicts
clinically relevant outcomes in different oncological diseases.
For instance, in gastric cancer, LSMM was a predictor for
worse overall survival (hazard ratio=2.12, 95% confidence
interval=1.89-2.38; p<0.001) (2). Furthermore, in patients with
esophageal cancer who underwent curative resection, LSMM
was associated with poor overall (hazard ratio=1.5, 95%
confidence interval=1.35-1.85; p<0.001) and disease-free
(HR=1.46, 95% confidence interval=1.12-1.90]; p=0.005)
survival (1). Similar results have been shown for other
malignancies, such as lung cancer, head and neck carcinoma,
prostatic cancer, and malignant hematological diseases (3-6).

In Intensive Care Unit patients, LSMM was shown to
predict in-hospital mortality (7). In patients with COVID-19,
LSMM was found to be a predictor for short-term mortality
(8). Finally, LSMM predicted worse prognosis in patients
with other conditions such as transcatheter aortic valve
implantation, chronic obstructive pulmonary disease,
appendicitis, and colonic diverticulitis (9-11).

Usually, for the measurement of the skeletal musculature,
one axial CT slide at the third lumbar vertebra (L3) is used to
quantify the muscle area of paraspinal, abdominal wall and
psoas muscles. The skeletal muscle index is calculated by
dividing the muscle mass by the body height. Although this
approach is performed most frequently semi-automatically, it
is a time-consuming procedure. Therefore, there is a great need
for a fully automatic analysis of the skeletal musculature.

The aim of the present study was to develop a fully
automatic software based on deep learning for estimation of
skeletal muscle area and mass at the L3 level on CT scans.

Patients and Methods

Dataset. For the retrospective data analysis, the data set was derived
from our archiving system database. We used 130 consecutively
performed imaging studies from patients undergoing CT scans
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Prediction

Ground truth

Figure 1. Example of a patient’s L3 slice with manually segmented data
(Ground truth) and predicted classes by the network (Prediction) that
achieved high Dice scores, i.e., where the segmentation works very well.
Magenta denotes the musculus erector spinae, blue denotes musculus
rectus abdominis, green denotes the abdominal wall muscles, yellow
denotes the musculus psoas major, and red denotes the musculus
quadratus lumborum.

without filtering for any factors such as diagnosis, artifacts or
contrast agent phases. We chose this path since it was our objective
to build a robust and universal software approach. More precisely,
we chose series with 5-mm axial slice thickness and a soft-tissue
kernel. Subsequently, segmentation was performed on three adjacent
slices at the height of the L3. A dataset consisted of a CT volume
with a resolution of 5123 voxels, with manual segmentation of the
muscles around the L3 vertebra (three slices). The segmentation of
the muscles was divided into five muscle groups: Musculus rectus
abdominis, abdominal wall muscles, musculus psoas major,
musculus quadratus lumborum and musculus erector spinae (see
Figure 1).

Network model. We present a U-Net-based neural network for
fully automatic segmentation of skeletal muscle area based on 130
patient datasets. A depth of 4 was chosen for the network, with
feature maps duplicated at each level in the network i.e., 32, 64,
128, and 256. As a result, the network has 12.9 million learnable
parameters. Each down-evaluation block consists of two
repetitions of convolution, batch normalization and a Relu
activation function (12).

At the end of each downvaluation block, a pooling of the
maximum values takes place. The blocks of the upvaluation path
follow the same structure. Each block starts with the combination
of the feature maps of the previous upvaluation block and the
corresponding downvaluation block, followed by an upsampling.
This is followed by two repetitions of convolution, batch
normalization and a Relu activation function. Since the network
segments multiple classes, the activation function in the output layer
of the network is a softmax activation function.

For training the network, the Dice Loss was chosen as the loss
function with the Adam weight decay (AdamW) (13) optimizer and
a learning rate of le—2 to allow the network to converge quickly.
However, since the learning rate is too high in the later training
process, it is dynamically reduced when the accuracy no longer
changes.

Table 1. Evaluation of the segmentation accuracy of the trained neural
network based on the mean and standard deviation for Dice score,
Hamming distance and Jaccard Index.

Muscle Dice score  Hamming distance  Jaccard Index
Combined 0.95+0.03 0.95+0.04 0.91+0.05
Rectus 0.86+0.12 0.87+0.14 0.77+0.15
Abdominal wall 0.93+0.05 0.94+0.06 0.88+0.08
Psoas 0.92+0.05 0.91+0.07 0.85+0,08
Quadratus 0.86+0.08 0.86+0.10 0.76+0.10
Erector spine 0.95+0.02 0.95+0.03 0.90+0.04

To further improve the accuracy, the predictions of the network
were adjusted by thresholding, where values that were not in the
range of the Hounsfield units for muscles were removed from the
predictions. This can be done since it is known that values for
muscles can only lie in the range of between —20 and 200 HU.

Results

To assess the accuracy of the networks, a 10-fold cross-
validation was performed. As accuracy measures for the
evaluation, the Dice score (14) was calculated for each label.
In addition, the Hamming distance (15) and Jaccard index
(16) were also computed. The results are provided in Table
I. In order to obtain a statistical overview of our trained
network, violin plots are provided in Figure 2.

Discussion

We present a neural network for automatic segmentation of
skeletal muscle area based on 130 patient datasets. Our
network was inspired by the U-Net architecture and adapted
to the presented clinical application scenario. Due to its
importance within oncology, related approaches exist that
aim at similar measurements.

Hsu et al. present a general approach for using artificial
intelligence-based methods applied to routine abdominal CT
scans to assess body composition (17). They used a network
pre-trained on the LiTS data challenge (18) and designed a fully
automated approach to measure fat and muscle masses. Their
system included automatic identification of the L3 slice, as well
as automatic segmentation of fat and muscle tissue, but they
did not carry out any subdivision of the muscles. The authors
provide their code, training data and workflow solutions.

The work of Zopf and colleagues combined quantitative
spectral detector CT data with machine-learning approaches
and also focused on body composition analysis (19).
Although they employed neural networks to extract the
corresponding slice of the CT dataset, segmentation of the
skeletal muscle mass mainly depended on thresholding of
voxel intensities and analysis of iodine uptake.
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Kanavati et al. used a variant of the U-Net architecture to
automatically segment the erector spinae, psoas and rectus
abdominus muscles (Dice scores of 0.97+0.02, 0.95+0.04,
0.94+0.04, respectively) and reported a Dice score for the
combined muscle mass of 0.96+0.02 (20). Our approach was
similar to this, although we only used a tenth of the amount
of patient data. We also subdivided muscles into five muscle
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Figure 2. Violin plots of the Dice scores of test datasets for the rectus,
abdominal wall, psoas, quadratus and erector spine muscles. The violin
plots depict the distribution of the data (in green). Mean values and
standard deviation are illustrated by the box plot. The violin plots
visualize Dice scores for all test datasets and illustrates that the
majority of the datasets achieved very high scores as well as
underlining the absence of a critical number of outliers.

classes instead of three. Paris et al. achieved a Dice score of
0.983+0.0013 for the skeletal muscle mass (21) but also did
not subdivide into five different categories as presented in
our work.

The work by Burns et al. took five levels, L1-L5, into
account (22). Interestingly, they also subdivided into the five
muscle groups. For the overall skeletal muscle mass at the

1809



in vivo 36: 1807-1811 (2022)

L3 level, they reported a mean Dice score of 0.939+0.049.
The abdominal wall muscle and musculus quadratus
lumborum achieved a Dice score of 0.94 and 0.935,
respectively. We achieved lower results for the quadratus
muscle (0.86), but this value was higher than their reported
result for this muscle at all levels L1-L5 (0.819). Erector
spine muscle segmentation had a Dice score of 0.95 for all
lumbar levels, which our result at the L3 level (0.95) is in
accordance with. Psoas and rectus muscle segmentation for
all five levels achieved similar or slightly better results
compared to our approach, i.e., a Dice value of 0.92 vs. 0.92
for psoas and 0.90 vs. 0.86 for the rectus muscle.

For future work, an analysis of whether an increased
amount of data would increase the achieved accuracy of the
network would be interesting. In addition, a combination
with automatic identification of the L3 level as presented by
Belharbi ef al. (23) could be carried out.

In conclusion, we present an artificial intelligence-based
approach for automatic segmentation of skeletal muscles at the
L3 level in routine CT scans. Our network achieved Dice
scores larger than 0.86 for each of the five different muscle
types. The subdivision of muscle types can serve as a basis for
obtaining future biomarkers. Our network is publicly available
at www.forschungscampus-stimulate.de/bodycomposition so
that it might be beneficial for others to improve the clinical
work flow within routine CT scans.
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