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Abstract

The state and behavior of a cell can be influenced by both genetic and environmental factors. In 

particular, tumor progression is determined by underlying genetic aberrations1–4 as well as the 

makeup of the tumor microenvironment5,6. Quantifying the contributions of these factors requires 

new technologies that can accurately measure the spatial location of genomic sequence together 

with phenotypic readouts. Here we developed slide-DNA-seq, a method for capturing spatially-

resolved DNA sequences from intact tissue sections. We demonstrate that this method accurately 

preserves local tumor architecture and enables de novo discovery of distinct tumor clones and 

their copy number alterations. We then apply slide-DNA-seq to a mouse metastasis model and a 

primary human cancer, revealing that clonal populations are confined to distinct spatial regions. 

Moreover, through integration with spatial transcriptomics, we uncover distinct sets of genes that 

are associated with clone-specific genetic aberrations, the local tumor microenvironment, or both. 
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Together, this multi-modal spatial genomics approach provides a versatile platform for quantifying 

how cell-intrinsic and extrinsic factors contribute to gene expression, protein abundance, and other 

cellular phenotypes.

Tissue function requires precise spatial organization of cell types, whose states are 

influenced by cell-intrinsic genetic factors and extrinsic environmental cues. In cancer, 

clonal populations of tumor cells evolve a diverse repertoire of DNA mutations, copy 

number alterations (CNAs), and large chromosomal rearrangements1,2 an increased risk 

of drug resistance, metastasis, and relapse3,4. Concomitantly, surrounding normal cells 

that make up the tumor microenvironment communicate to form spatial neighborhoods 

with distinct biochemical and biomechanical properties5,6 that influence cell migration 

and invasion7,8, as well as drug permeability9. Decoupling and quantifying these genetic 

aberrations and environmental cues within a tumor is critical to understanding cancer 

progression and improving treatments.

Current methods for delineating intratumor genetic heterogeneity include deep-sequencing 

to quantify mutant allele frequencies10,11 and single-cell whole-genome sequencing12–14. 

These methods leverage genetic alterations that occur during the evolution of the tumor 

to reconstruct phylogenetic cell lineages10–14, but do not measure spatial organization. In 

contrast, multi-region sequencing methods15–17 such as laser capture microdissection (LCM) 

preserve spatial context, but are mostly limited to clearly observable late-stage cancers and 

require manual selection of cells, constraining throughput and de novo discovery. A new 

technology called in situ genome sequencing18 enables untargeted spatial measurements of 

DNA, but focuses on high-resolution imaging of chromosome structure, precluding analysis 

of tissue sections. It therefore remains poorly understood how tumor clones are organized 

within a tissue, and to what extent cancer progression is driven by clone-specific genetic 

aberrations or environmental cues, highlighting a need for new methods that can integrate 

genomic, transcriptomic, and spatial measurements at scale.

Spatially-resolved DNA sequencing

In previous work, we described Slide-seq19,20, a scalable technology that uses barcoded bead 

arrays to capture spatially-resolved genome-wide expression, referred to as slide-RNA-seq 

from here on for clarity. Here we developed slide-DNA-seq, a new method that enables 

spatially-resolved DNA sequencing from intact tissues.

We first generate a spatially indexed bead array (3-mm diameter) as developed for 

slide-RNA-seq19,20. Each 10 μm polystyrene bead contains a unique DNA barcode that 

corresponds to a spatial location and is read out using sequencing by ligation chemistry19,20. 

We then cryosection tissues and transfer a single 10 μm thick fresh-frozen section onto 

the sequenced bead array (Fig. 1a). In a new workflow that enables unbiased capture of 

DNA, the tissue section is treated with HCl to remove histones and transposed with Tn5 

to create genomic fragments flanked by custom adapter sequences21,22 (Supplementary 

Table 1). We then photocleave spatial barcodes from the beads, ligate them to proximal 

genomic fragments, and PCR amplify the resulting DNA sequencing library (Fig. 1b). 

Following library construction, we perform high-throughput paired-end sequencing and use 
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DNA barcodes to associate each genomic fragment with a spatial location on the bead array. 

These associations enable us to reconstruct the spatial organization of DNA in a tissue 

without imaging the sample under a microscope. We developed optimizations for tissue 

fixation, histone removal, and bridge oligo hybridization that collectively maximize library 

size, make chromatin uniformly accessible to Tn5 (Extended Data Fig. 1), and preserve 

tissue architecture (Extended Data Fig. 2). Following our initial optimizations, each array 

contains 20,000 to 40,000 beads with a median 165 to 421 fragments per bead (tumor 

tissues, Extended Data Fig. 3). Furthermore, we developed a proof-of-concept protocol 

variant that uses repeated Tn5 tagmentation to improve yield, resulting in a 10 fold increase 

in genomic fragments (Extended Data Fig. 3, Supplementary Methods). Detailed metrics for 

all tissues analyzed in this study are listed in Supplementary Table 2.

To determine the spatial and genomic resolution of this approach, we first applied slide-

DNA-seq to the mouse cerebellum, which contains distinct nuclei-dense (soma) and 

mitochondria-rich (neurites) regions (Fig. 1c). We reasoned that these patterns should be 

reflected in the spatial distribution of nuclear versus mitochondrial DNA fragments. Indeed, 

striations of nuclear versus mitochondrial DNA content were apparent from slide-DNA-seq 

data (Fig. 1d, Extended Data Fig. 3). We then leveraged these patterns to measure our 

spatial resolution by performing immunofluorescence (IF) and DAPI staining on serial tissue 

sections of the same cerebellum, resulting in a lateral diffusion estimate of ~25 μm (Fig. 

1e, Extended Data Fig. 4, Supplementary Methods). To measure genomic resolution, we 

corrected the data for sequence biases and normalized coverage using bulk sequencing of the 

same tissue (Extended Data Fig. 5, Supplementary Methods, Supplementary Discussion). 

Using this approach, 99.78% of non-overlapping 1 Mb genomic bins had a normalized copy 

number between 1.5 and 2.5 (Fig. 1f, Extended Data Fig. 6). Altogether, these data show 

that slide-DNA-seq can spatially localize genomic information within normal tissues.

Detecting spatial distribution of CNAs

We next applied slide-DNA-seq to measure the spatial distribution of copy number 

alterations (CNAs) in a tumor section by leveraging genetically engineered mouse models 

of lung adenocarcinoma known to harbor chromosomal amplifications and deletions23. 

First, we isolated and expanded a single tumor clone from a KrasG12D/+ Trp53−/− (KP) 

mouse lung tumor24,25 and injected this clone into the tail vein of a mouse, giving rise to 

large metastases in the liver (Fig. 1g). We then collected multiple serial sections of liver 

metastases to perform slide-DNA-seq, along with hematoxylin and eosin (H&E) staining 

and IF for Hmga2, a late stage tumor marker. To characterize tumor heterogeneity within the 

tissue, we developed a slide-DNA-seq analysis workflow consisting of two main tasks: 1) de 
novo identification and spatial localization of clonal populations and 2) characterization of 

genomic CNAs for each clone.

First, to detect and localize tumor clones within a tissue, we smooth beads based on spatial 

proximity (k = 50 nearest beads, ~110 μm diameter, Extended Data Fig. 3, median 18,587 

± 5,300 fragments) and perform principal component analysis (PCA) to find co-associated 

genomic regions with variable coverage across the tissue. We then use these regions to 

assign a clonal identity to each bead on the slide-DNA-seq array by k-means clustering 
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(Extended Data Fig. 7, Supplementary Methods). When we applied this approach to the liver 

metastases slide-DNA-seq array, principal component 1 (PC1, 2.89% variance explained) 

showed spatial patterning (Fig. 1h) that was visually concordant with IF on a serial section 

against the late stage tumor marker HMGA2 26–28 (Fig. 1i). To validate if this approach can 

identify genetically-distinct tumor clones, we performed downsampling on bulk sequencing 

of four tumor cell lines and found robust accuracy (99.38%) with as few as 1,000 fragments 

per sample (Extended Data Fig. 8, Supplementary Methods), suggesting it is sufficient for 

slide-DNA-seq data.

The second task in the analysis workflow is to characterize the CNAs present in each 

tumor clone. To do this, we aggregate 100-1000s of raw beads based on the cluster 

assignments from the first task and visualize the genomic coverage of each cluster at 1 

Mb resolution. When applied to the liver metastases array, the tumor-associated cluster 

displayed significant CNAs, including amplification of chromosome 6 that is characteristic 

for Kras-induced lung tumors23, while the normal cluster showed comparatively uniform 

coverage (Fig. 1j). Further comparisons to a biological replicate performed on a serial 

section revealed visually-concordant tissue architecture, as well as high correlation between 

tumor copy number profiles (Pearson’s r = 0.986, Extended Data Fig. 9). To quantify 

the accuracy of the copy number analysis, we used the diploid mouse cerebellum data to 

systematically evaluate coverage at a range of bin sizes and spatial resolutions (Extended 

Data Fig. 10, Supplementary Methods). Altogether, these results demonstrate that our slide-

DNA-seq analysis workflow enables de novo discovery and localization of tumor regions at 

approximately ~1 Mb genomic resolution (Supplementary Discussion).

Spatial genomics of metastatic clones

To demonstrate that our experimental and computational approach can distinguish between 

clones within a tissue, we injected multiple clones originating from two independently-

derived metastatic KP tumors into the tail vein of a mouse, which gave rise to large 

metastases in the liver. We then performed H&E staining and identified a region of the tissue 

that appeared to have two spatially-distinct metastases (Fig. 2a). Immunohistochemistry 

(IHC) on the same region of a serial section revealed that the two varied in protein levels 

of tumor marker HMGA226, suggesting that they may originate from different metastatic 

clones (Extended Data Fig. 11a).

We then applied slide-DNA-seq to a third serial section of the same liver tissue. Using the 

PCA approach described above, we found that both PC1 and PC2 explained substantial 

variance (4.21% and 2.50% respectively), allowing the beads to be assigned to 3 distinct 

clusters based on their genomic profiles (Fig. 2b). One of these clusters was visually 

concordant with the normal tissue observed in the H&E, while the other two appeared 

to correspond to the different metastases. We developed a permutation test to spatially 

localize statistically significant CNA gains or losses present in one or both of the metastases, 

detecting differential regions on chr6, chr15, and chr19 (Fig. 2c, Supplementary Methods). 

We then tested the aggregate genomic coverage in select regions for statistical significance 

(two-sided Wilcoxon Rank Sum Test, p-values in Fig. 2d), providing further evidence that 
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they were seeded by different clones. Additionally, we observed one clone was likely 

triploid, which we independently confirmed with flow cytometry (Extended Data Fig. 12).

To test whether genetic differences between the two clones were reflected in cell state, 

we performed slide-RNA-seqV220 on a fourth serial section and collected paired single-

nucleus RNA-seq. Unsupervised clustering of the snRNA-seq and spatial projection29 onto 

slide-RNA-seq beads (Methods, Supplementary Table 3) revealed that the two metastases 

were transcriptionally distinct (Fig. 2e, Extended Data Fig. 11b–c), resulting in 3,732 

genes differentially expressed between the two clones (Fig 2f, Supplementary Table 4, 

two-sided z-test, FDR < 0.01, log2(FC) > 1, minimum 100 transcripts). Clone A had 

higher expression of late-stage tumor markers, including Hmga2 (lung metastases), Tm4sf1 
(JAK/STAT), and Vimentin (cell motility), whereas the top hits for clone B included 

Aquaporin 5 (loss of lineage identity) and epithelial-to-mesenchymal transition (EMT) 

markers S100A4 and Versican25 (Fig. 2f–g). While both clones exhibited EMT and 

metastasis expression signatures, these differentially-expressed genes may reflect divergent 

paths of tumor evolution. Furthermore, we found differential monocyte localization (p = 

0.0002, permutation test) into clone B, reflecting a higher degree of immune infiltration 

(Extended Data Fig. 11e–f, Supplementary Methods). Altogether, these data demonstrate 

that paired slide-DNA-seq and slide-RNA-seq enable spatial characterization of genetically-

distinct metastatic tumor clones and their associated cell states.

Subclone detection in human colon cancer

We then sought to determine whether slide-DNA-seq could discover clonal heterogeneity de 
novo in a primary human tumor. We selected a stage IIIB colorectal tumor sample, because 

colorectal cancer is one of the most common causes of cancer-related deaths worldwide 

and 84% of tumors display chromosome instability30,31. As before, we performed H&E 

staining, multiplexed IHC, and slide-DNA-seq on serial sections (Fig. 3a). Looking first at 

the H&E staining, we observed many ~100-500 μm localized aggregates of tumor cells. 

We hypothesized that each of these aggregates could arise from a single clonal lineage, 

suggesting constraints on migration, or alternatively, each aggregate could contain a mixture 

of cells from different lineages, indicating cell intermixing.

To distinguish between these two possibilities, we performed PCA and unsupervised 

clustering on the slide-DNA-seq data as described above, which resulted in 3 distinct 

clusters of genomic profiles (Fig. 3b). One of these clusters was visually concordant with 

the normal tissue from the H&E staining (Fig. 3b right, blue), but also included regions 

of moderate PC1 scores, suggesting a low abundance of cancer cells harboring CNAs. In 

contrast, the other two clusters displayed high PC1 scores and were spatially restricted to 

distinct tumor aggregates, supporting the hypothesis that each aggregate originates from a 

single lineage. This finding is consistent with reports suggesting that individual colorectal 

tumor cells seed a glandular organization in which neighboring cells share a recent common 

ancestor32,33. We validated the tumor architecture detected by slide-DNA-seq through co-

registration of the slide-DNA-seq array, H&E stain, and IHC against tumor marker MKI67 

and immune marker CD45 (Fig. 3c).
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We then set out to characterize the genetic aberrations of the identified subclones. We 

found several, including chr8q amplification, and loss of chr15 and chr18, that were shared 

across all tumor regions (Fig. 3d–e, Supplementary Methods), indicating that they arose 

early in tumor evolution and may have played an important role in tumor initiation. The 

chr8q amplification contains genes known to promote tumor progression, including proto-

oncogenes MYC and MYBL134, while deletion of chr15 results in loss of multiple genes 

required for genome stability, including TP53BP135, RAD5136, and FAN137. Supporting 

these observations, chr8q gain and chr18 loss were identified as typical early events in an 

evolutionary history of 60 colorectal tumors10. In contrast to these shared aberrations, we 

observed subclonal amplifications of chr1q, chr7, and chr20, which presumably occurred at 

a later stage of evolution (Fig. 3d–e). Interestingly, previous analyses of colorectal cancers 

classified chr7p amplification as a typically clonal (rather than subclonal) event, while both 

loss and gain of chr20p were identified as frequent subclonal aberrations10,38. The detection 

and temporal classification of these events demonstrate the utility of slide-DNA-seq for 

studying the evolution of clonal heterogeneity.

To validate these genetic aberrations, we performed single-cell whole-genome sequencing 

(scWGS) on the same colorectal tumor. This approach sampled cells from the entirety 

of the tumor (100-fold greater material than the slide-DNA-seq tissue section), so we 

expected to potentially identify additional subclones. In line with this expectation, analysis 

of 2,274 high-coverage single-cell CNA profiles resulted in one normal and five tumor 

clusters, some of which resembled the slide-DNA-seq CNA profiles (Fig. 3f). We then 

sought to project the high-coverage sequencing onto the slide-DNA-seq array to identify 

CNAs at enhanced resolution (Supplementary Methods). The spatial regions predominantly 

matched two separate scWGS clusters, supporting the slide-DNA-seq-only analysis, but we 

also found a small region with distinct genetic aberrations that was revealed only through 

the higher coverage of the scWGS data (Fig. 3g, top, Extended Data Fig. 13). Having 

demonstrated improved spatial resolution, we then re-analyzed the matched scWGS clusters 

at 100 kb genomic resolution, revealing a complex CNA landscape in chromosome 8 (Fig. 

3g, bottom). Altogether, these analyses validate that slide-DNA-seq alone is sufficient for de 
novo discovery and localization of distinct tumor clones within a tissue, while also showing 

that CNA characterization can be enhanced through integration with scWGS.

Multi-modal analysis of clonal heterogeneity

Finally, to demonstrate the unique capabilities of a multi-modal spatial sequencing approach, 

we sought to quantify how tumor transcriptional programs are controlled by both genetics 

and environmental cues. We first performed H&E staining, slide-DNA-seq, and slide-RNA-

seqV2 on serial sections from a nearby region of the colorectal tumor (Fig. 4a) and co-

registered the arrays to integrate pathological, genomic, and transcriptomic information. We 

then identified spatially-distinct regions of tumor cells (Fig. 4b, Supplementary Methods), 

and proceeded to assign each one a subclonal identity (Fig. 4c) and quantify the local 

tumor density (Fig. 4d, Supplementary Methods). Comparison with the H&E stain validated 

the spatial architecture of the subclones identified by slide-DNA-seq, as well as the tumor 

density quantified by slide-RNA-seq (Extended Data Fig. 14).
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Given both subclonal identity (cell-intrinsic) and tumor density (cell-extrinsic) 

measurements, we set out to deconvolve how these factors contribute to the transcriptional 

programs of the colorectal tumor. To this end, we used a variance decomposition 

approach that, for each gene, calculates the percentage of gene expression variance 

explained by subclonal identity, tumor density, and unexplained variance (Supplementary 

Methods). Of the 25,074 genes detected by slide-RNA-seq 412 genes were significantly 

associated with subclonal identity, 638 genes by tumor density, and 1,098 genes by 

some combination of both (p < 0.05, variance explained > 30%, Fig. 4e, Supplementary 

Table 5). Genes associated with subclonal identity included known cancer genes located 

in amplified regions, such as PLAG1, an oncogene on chr8q39, and MCM7, a MYC 

target gene on chr7q involved in DNA replication initiation40 (Fig. 4f). Notable density-

associated genes include LGALS341 (Galectin-3), contributing to immunosuppression in 

the tumor microenvironment, and PROM1 (CD133), important for intestinal homeostasis, 

regeneration, and tumor initiation42 (Fig. 4g).

Beyond characterizing individual genes, we also performed gene set enrichment analysis 

to determine which molecular pathways were associated with subclonal identity or tumor 

density (Fig. 4h, Supplementary Methods). This analysis showed that subclonal identity 

primarily altered the expression of genes involved in cell growth and proliferation, with 

MYC and E2F target genes representing the top Hallmark gene sets for subclone 1 

(Extended Data Fig. 15). In contrast, genes associated with high tumor density were most 

enriched for cell adhesion molecule- and cadherin-binding properties (Fig. 4i, Extended 

Data Fig. 15), including extracellular matrix (ECM) component COL3A1, actin modulators 

FLNB and CALD1, and mechanotransduction regulator ITGB2 (CD18). Intriguingly, ECM 

stiffness and remodelling are thought to promote cell proliferation and tumor progression43, 

which may contribute to high tumor cell density. Overall, these analyses demonstrate the 

utility of this multi-modal approach to decouple and quantify contributions of genetic and 

environmental factors to gene expression.

Discussion:

Our study demonstrates that slide-DNA-seq can detect clonal heterogeneity, characterize the 

copy number alterations of each clone, and analyse their spatial distribution within a tissue. 

These capabilities, in combination with processing of serial sections for histopathology 

and slide-RNA-seq enable high-resolution multi-omic characterization of intratumoral 

heterogeneity44. Additionally, integration with single-cell whole-genome sequencing may 

enable spatial characterization of complex subclonal events, such as loss-of-heterozygosity 

or extrachromosomal DNA amplifications45. Going forward, we anticipate that slide-DNA-

seq will be especially useful to large-scale efforts to create atlases of tumor evolution10, 

adding spatial information to studies of clonal heterogeneity. It may also empower new 

frontiers in clinical diagnoses as a complement to standard pathology assays such as H&E 

staining, karyotyping, and DNA FISH.

Spatially-resolved DNA sequencing may also enable advances in many fields beyond 

cancer genomics, including spatially-resolved metagenomics46, evaluation of gene therapy 

delivery47, synthetic DNA data storage48, and lineage tracing in healthy tissues49. 
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Importantly, the core of this technology, i.e. fragmenting and barcoding DNA in situ 
to preserve spatial information for next-generation sequencing, is compatible with other 

sequencing-based assays. For example, direct tagmentation of the DNA without HCl 

treatment, or converting methylated cytosines to dihydrouracil before amplification, would 

allow spatially-resolved measurements of chromatin accessibility and DNA methylation 

respectively22,50. Altogether, slide-DNA-seq enables new opportunities to chart the spatial 

organization of cell states in human development, homeostasis, and disease.
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Extended Data

Extended Data Figure 1: Optimization of slide-DNA-seq protocol.
a, Library preparation steps. b-e, Library size comparisons for live vs fixed tissue (b); 
histone extraction protocols (c-d); and varying lengths of a bridge oligo used to connect 

the barcoded bead oligo to genomic fragments e, either hybridized after tagmentation (left 

bar) or pre-loaded onto the Tn5 transposase prior to tagmentation (rest). All values are 

normalized to control condition (first column). f, Rate of ligation of genomic fragments to 
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barcoded oligo either ordered in solution from IDT (left) or cleaved off from beads (center, 

right). g-j, Frequency of Tn5 insertions in the genome relative to the nearest transcription 

start site (TSS) for slide-DNA-seq of mouse cerebellum (g), mouse liver metastases (h), 

human colon tumor (i), and for single-cell ATAC-seq of a mouse brain (j). Error bars, 

mean ± s.d; n, number of replicate comparisons (generated from 4 biological samples); dots 

represent values of each replicate.

Extended Data Figure 2: Comparison of fixation conditions during histone extraction.
Cerebellar sections are exposed to treatment as stated (with or without prior fixation) and 

stained with DAPI. Scale bars, 500 μm.
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Extended Data Figure 3: Quantification of DNA fragments per slide-DNA-seq array.
a, Nuclear (left) and mitochondrial (center) DNA fragments per bead obtained for tissues 

used in this study. Right, mitochondrial fraction of fragments. 4x, protocol variant with 4x 

tagmentation. Black lines on violin plots indicate the mean. b, slide-DNA-seq of the mouse 

cerebellum experiment in Fig. 1. Beads are colored by the number of nuclear fragments 

(left), mitochondrial DNA fragments (center), and fraction of mitochondrial DNA fragments 

(right). c, Visualization of representative convex hulls for different spatial bin values of k for 

k-nearest neighbor smoothing. Beads are colored by raw counts, insets show convex hulls 
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for k = 1, 10, 25, and 50, centered on salmon colored beads. Hulls are generally circular 

except at the edge of the array. d, Distribution of mean fragments per 1 Mb genomic bin for 

different spatial bin values of k. The median diameter of the smoothed features is indicated 

in parentheses. e, Comparison of nuclear fragments (left) and effective diameter (right) per 

bead for different spatial bin values of k. Scale bars, 500 μm.

Extended Data Figure 4: Estimation of slide-DNA-seq lateral diffusion.
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a, Interpolated image showing the nuclear fraction of fragments of a 10 μm mouse cerebellar 

section processed for slide-DNA-seq. Cyan box indicates magnified area (right). Smaller 

boxes indicate regions taken for linescans in b and e. b, Pseudo-intensity (representing 

nuclear fraction of fragments) of linescan as indicated by red box in a. Black dots, halfmax. 

Full Width at Half Maximum (FWHM) = 57.3 μm. c, 10 μm serial section of the same 

mouse cerebellum stained with DAPI. Blue box indicates magnified area (right). Smaller 

boxes indicate regions taken for linescans in d and f. d, Linescan of DAPI intensity as 

indicated in c. Black dots, halfmax. FWHM = 16.4 μm. e, Same as b, but for 3 different 

regions as indicated by the smaller non-red boxes in a. For the left (green) and middle 

(yellow) panel, FWHM is calculated as twice the distance between the peak and the halfmax 

(marked by black dots). f, Same as d, but for 3 different regions as indicated by the smaller 

non-red boxes in b. For the left (green) and middle (yellow) panel, FWHM is calculated as 

twice the distance between the peak and the halfmax (marked by black dots). g, Bar graph 

of average FWHM (n=4 regions). Error bars, mean ± s.d. Upper bound for the diffusion 

measurement is half of largest FWHM (not taking into account the DAPI measurement). 

Scale bars, 500 μm (a, c), 200 μm (b, d).

Extended Data Figure 5: Normalization of slide-DNA-seq sequencing biases.
a, Top, raw sequencing reads per 1 Mb bin for mouse cerebellum slide-DNA-seq are plotted 

for GC-content, mappability, replication timing score, and Tn5 bias. Pearson’s r values are 

shown for each. Bottom, bias corrected coverage and correlation values after normalization. 
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b, Same as a but for tagmentation-based bulk sequencing of mouse cerebellum (Methods). 

c, Same as a but for slide-DNA seq of mouse liver metastases. d, Same as b but for 

tagmentation-based bulk sequencing of mouse liver metastases. Blue points, bins from chrX 

(not included in the calculation of the fit).

Extended Data Figure 6: Quantification of genomic coverage in a diploid sample.
Left (all panels), copy number profiles at 1 Mb genomic resolution of the mouse cerebellum 

for the sequencing modality and processing indicated. For this diploid sample, each copy 

Zhao et al. Page 14

Nature. Author manuscript; available in PMC 2022 July 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



number distribution is normalized to a median of 2. Right (all panels), histogram of the 

number of bins per copy number. a, Raw coverage profile of slide-DNA-seq. b, Coverage 

profile of slide-DNA-seq normalized by GC-content and mappability. c, Coverage profile 

for bulk tagmentation-based sequencing. d, Coverage profile of bulk sequencing normalized 

by GC-content and mappability. e, Coverage profile of slide-DNA-seq normalized by the 

GC-content and mappability divided by bulk sequencing normalized by GC-content and 

mappability.

Extended Data Figure 7: slide-DNA-seq clonal analysis workflow.
a, Principal components calculated from smoothed slide-DNA-seq beads, ordered by the 

percentage of variance explained for the mouse liver metastases array shown in Fig. 1. b, 

Weights per 1 Mb genomic bin for principal components 1 and 2. Red points indicate bins 

from chromosomes with an odd number, blue from chromosomes with an even number (and 

chrX). c, slide-DNA-seq array for the mouse liver metastases array shown in Fig. 1 with 

points colored by raw PC 1 scores (top left), smoothed PC 1 scores (top right), raw PC 2 

scores (bottom left), smoothed PC 2 scores (bottom right). d, Calinski-Harabasz criterion 

values used to select the optimal value of k for k-means clustering. e, slide-DNA-seq array 

colored by cluster assignment using the value of k selected in d. f-j, Same as a-e, but for the 

mouse liver metastases array shown in Fig. 2.
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Extended Data Figure 8: Accuracy of clonal assignment via downsampling of bulk tumor cell 
lines.
a, Raw copy number profiles for four tumor cell lines profiled using tagmentation-based 

bulk sequencing. b, Representative 10,000 fragments samples of the cell lines shown in a. 

c, Clonal assignment accuracy for 10,000 fragment samples (n=5,000 samples of each cell 

line) using the analysis workflow shown in Extended Data Fig. 7. d, Same as c but for 1,000 

fragment samples.
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Extended Data Figure 9: Reproducibility of slide-DNA-seq across serial sections.
a, Immunofluorescence (IF) against tumor marker HMGA2 (top) and two slide-DNA-

seq replicates (center, bottom) were performed on two serial sections of a mouse liver 

metastasis. Beads colored by PC1 scores (left) and cluster assignment (right) show similar 

spatial architecture between replicates. Scale bars, 500 μm. b, Aggregate copy number 

profiles of normal and tumor beads show high correlation (Pearson’s r = 0.986 and 0.992) 

between the two replicates.
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Extended Data Figure 10: Quantification of genomic coverage by bin size and number of beads.
Each column represents normalized copy number profiles aggregated across the number 

of slide-DNA-seq beads indicated (10,000; 1,000; or 100), while each row indicates the 

genomic bin size (10 Mb, 5 Mb, 2.5 Mb, 1 Mb, and 500 kb) for the mouse cerebellum array.
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Extended Data Figure 11: Integrated slide-RNA-seq and single-nucleus RNA-seq analysis of 
clones.
a, H&E stain (left), IHC against tumor marker HMGA2 (center), and Hmga2 expression 

from slide-RNA-seq (right) of three serial sections of mouse liver metastases. b, UMAP of 

unsupervised clustering of single nucleus RNA-seq performed on nuclei from mouse liver 

metastasis sample. c, Dot plot showing the expression of marker genes used to annotate 

clusters in b. d, Spatial projection of cell types from b onto the slide-RNA-seq array, colored 

in the same fashion. Black lines indicate spatial tumor clusters. e, Differential localization of 
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cell types between clone A, clone B and normal regions. Heatmap shows signed (positive, 

enrichment; negative, depletion) log10(p-value) from permutation testing (two-sided, not 

adjusted for multiple comparisons). f, Spatial plot of monocyte localization on the array, 

which is significantly enriched for clone B. Black lines indicate spatial tumor clusters. 

VSMC, vascular smooth muscle cell; LSEC, liver sinusoidal endothelial cells.

Extended Data Figure 12: Validation of ploidy and copy number of metastatic clones.
a, Assignment of beads to normal tissue, clone A, and clone B based on k-means 

clustering. b-d, Histogram of DNA content of single cells measured by propidium iodide 

(PI) fluorescence intensity through flow cytometry. (b) bone marrow cells (normal control); 

(c) clone A; (d) clone B. Diploid G1 (2N) and G2 (4N) gates are determined on bone 

marrow histogram and applied to clones A and B, revealing that the clone A genome is 

triploid; and the clone B genome is diploid with some amplifications (e.g. of chr. 15 and 19, 

see Fig. 2d). e, Aggregate copy number profiles of beads assigned to clone A. f, Aggregate 

copy number profiles of beads assigned to clone B.
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Extended Data Figure 13: Spatial projection of single-cell whole-genome sequencing (scWGS) 
clusters.
a, Genomic copy number profiles for 2,274 single cells obtained using scWGS, with cluster 

annotations colored. b, Top left: projection of scWGS clusters onto slide-DNA-seq. All 

other: three genomic regions of differential CNA profiles between the three projected 

clusters, shown are spatial heatmaps of signed p-value differences from the average profile 

(two-sided permutation test, not adjusted for multiple comparisons). c, Normalized copy 

number profiles for the three scWGS clusters, and the corresponding spatial clusters. 

Vertical lines denote variable regions from b. Single-cell cluster 2 (blue) shows complex 

CNA patterns that obscure cluster ploidy, nevertheless, copy number values are normalized 

to 2 for easy comparison to other clusters.
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Extended Data Figure 14: Tumor morphology of primary human colon cancer sample.
a, H&E stain of normal colon (left) and colon tumor (right) tissue from the same patient. 

Scale bars, 200 μm. b, Serial sections processed for H&E stain (left), slide-DNA-seq 

(center), and slide-RNA-seq (right). Scale bars, 500 μm. Yellow and black boxes indicate 

magnified areas in c and d, respectively. c, Magnified views of H&E stain, slide-DNA-seq 

and slide-RNA-seq reconstructions show concordant spatial tissue architecture across three 

modalities; scale bar, 200 μm. d, Magnified view of H&E stain of three regions that are 

assigned low, medium, and high tumor density by slide-RNA-seq transcriptomic analysis (b, 
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right). Arrows indicate regions of high tumor density identified through H&E stain. Scale 

bar, 100 μm.

Extended Data Figure 15: Biological pathways explained by subclone or tumor density.
a, Subclone-associated pathways identified through gene set enrichment analysis. b, 

Hallmark E2F target genes (n=200) plotted according to percent variance explained by 

clonal identity (x-axis) and tumor density (y-axis). Included genes colored by normalized 

density on the scatter plot, all other genes are shown in grey. c, Expression of highly 

subclone-associated E2F target genes (n=11, listed in a), plotted for spatial tumor regions 

of the slide-RNA-seq array from Fig. 4. d, MYC target genes (n=200) plotted according to 

percent variance explained by clonal identity (x-axis) and tumor density (y-axis). Included 

genes are colored by normalized density on the scatter plot, MYC is colored red, all other 
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genes are shown in grey. e, Expression of highly subclone-associated MYC target genes 

(n=16, listed in a), plotted for spatial tumor regions (left). Box plot showing normalized 

MYC target gene expression by subclone assignment; each point represents a spatial tumor 

cluster (right). Red line, mean, red box, 95% confidence interval for mean, blue box, 

standard deviation. f, MYC expression plotted for spatial tumor regions (left). Scatter 

plot showing normalized MYC expression by tumor cell density; each point represents a 

spatial tumor cluster (right). g, Subclone-associated pathways identified through gene set 

enrichment analysis. h, Cell adhesion molecule binding genes (n=514) plotted according to 

percent variance explained by clonal identity (x-axis) and tumor density (y-axis). Included 

genes are colored by normalized density on the scatter plot, all other genes are shown in grey 

(reproduced from Fig. 4i). i, Expression of highly density-associated cell adhesion molecule 

binding genes (n=14, listed in g), plotted for spatial tumor regions. Scale bars, 500 μm.
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Fig. 1: slide-DNA-seq enables spatially-resolved DNA sequencing.
a, Schematic of in situ bead indexing. Array of randomly-deposited beads is spatially 

indexed through in situ sequencing of DNA barcodes. Fresh-frozen tissue is cryosectioned 

onto array. b, Schematic of slide-DNA-seq library construction. Genomic DNA is transposed 

with Tn5. Hybridization of a bridge oligo allows ligation of photocleaved, spatially-indexed 

bead oligos to genomic fragments. ME, mosaic ends; BC, barcode; R1, Illumina read 1; R2, 

Illumina read 2. c, DAPI stained cryosection of a mouse cerebellum. Red circle indicates 

approximate region shown in d and e. d, slide-DNA-seq of a cerebellar section with beads 

colored by percentage of fragments aligned to mitochondrial genome. e, Serial section to d 
stained with DAPI and antibody against mitochondrial protein TOMM20. f, Normalized 

copy number per 1 Mb genomic bin for aggregated beads from d. g, Serial sections 

from KrasG12D/+; Tp53−/− liver metastases were processed for H&E staining (center, circle 

indicates region analyzed; right, dotted lines indicate tumor boundary), slide-DNA-seq (h), 
and IF against HMGA2 (i). h, slide-DNA-seq of mouse liver section with beads colored by 

principal component 1 scores (PC1). For visualization, scores for each bead are smoothed 
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by 50 PC neighbors and 10 spatial neighbors (36 μm diameter). i, Serial section to h stained 

with DAPI and antibody against tumor marker HMGA2 . j, Normalized copy number per 1 

Mb genomic bin for aggregated normal and tumor beads from liver section from h. Scale 

bars, 500 μm. Grey beads shown for spatial context but excluded from analysis.
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Fig. 2: Paired slide-DNA-seq and slide-RNA-seq characterize the genetics and transcriptomes of 
distinct metastatic clones.
a, Serial sections from KrasG12D/+; Trp53−/− liver metastases were processed for H&E 

staining (center, circle indicates region analyzed; right, dotted lines indicate tumor 

boundaries), immunohistochemistry (IHC, Extended Data Fig. 5), slide-DNA-seq (b-d), 

and slide-RNA-seq (e-g). b, Principal components 1 (left) and 2 (middle) of slide-DNA-seq 

genomic coverage. Beads clustered using k-means (k=3) and annotated as normal, clone 

A, or clone B (right). c, Genomic region enrichment signed p-values for chromosomes 

6 (126-150 Mb), 15, and 19 (two-sided permutation test, not adjusted for multiple 

comparisons). Amplifications, red; deletions, blue. d, Genomic coverage profiles of 

aggregate normal (blue), clone A (green), and clone B (red) beads from b. Genomic 

coverage normalized to 1 to compare profiles of different ploidy (Extended Data Fig. 12). 

p-values calculated using two-sided Wilcoxon Rank Sum test to compare clone and normal 

coverage. e, slide-RNA-seq of mouse liver serial section colored by tumor, normal and 

immune cell classes as assigned from single-cell projection. Detailed cell type labels in 

Extended Data Fig. 13. f, Differentially-expressed genes between clones A and B. Genes 

shown in g or referred to in text are labeled and colored in red. g, Normalized expression of 

select genes from f. Scale bars, 500 μm. Grey beads shown for spatial context but excluded 

from analysis.
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Fig. 3: De novo identification of spatial tumor clones in primary human colorectal cancer.
a, Serial sections of primary human colorectal tumor were processed for H&E staining 

(right, c), slide-DNA-seq (b-e), and multiplexed IHC (c); single-cell whole-genome 

sequencing (scWGS) was performed on the same sample (f-g). b, Principal components 

1 (left) and 2 (middle) of slide-DNA-seq genomic coverage. Beads clustered using k-means 

(k=3) and annotated as normal, subclone 1, or subclone 2 (right). c, Magnified view of 

boxed regions in a-b. Right, serial section stained with antibodies against MKI67 , CD45 , 

and DAPI. d, Genomic region enrichment signed p-values for chromosomes 8q, 15, and 

20 (two-sided permutation test, not adjusted for multiple comparisons). e, Copy number 

profiles for 293 high-coverage slide-DNA-seq beads. f, Copy number profiles for 2,274 

single cells profiled via scWGS. Profiles within each cluster are ordered by PC1 score in e-f. 
g, Matched single-cell clusters projected onto slide-DNA-seq array (top). Genomic coverage 

of chromosome 8 at 100 kb resolution for single-cell clusters 2 and 6 (bottom). Scale bars, 

500 μm. Amplifications, red; deletions, blue in d-f. Grey beads shown for spatial context but 

excluded from analysis.
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Fig. 4: Decomposition of transcriptional programs driven by genetic aberrations and tumor 
density.
a, Serial sections from nearby region of human colorectal tumor from Fig. 3 were processed 

for H&E staining, slide-DNA-seq (Extended Data Fig. 14), and slide-RNA-seq (b-j) b, 

slide-RNA-seq of colon tumor section with beads colored by assignment to normal, tumor, 

or immune clusters. Black lines denote boundaries of spatially-distinct tumor regions. 

c, Subclone labels for spatial tumor regions (defined via co-registration with slide-DNA-

seq serial section) plotted on slide-RNA-seq array from b. d, Tumor density plotted on 

slide-RNA-seq array from b. e, Genes plotted by percent variance explained by subclone 

(x-axis) and/or tumor density (y-axis), colored by plot density (n=2,148, stepwise regression, 

p<0.05). f, Top subclone-associated genes, with expression plotted for spatial tumor regions. 

g, Same as f but for top density-associated genes. h, Select gene sets significantly associated 

with either subclone or tumor density. i, Cell adhesion molecule binding genes (n=544) 

plotted by percent variance explained by subclone (x-axis) and tumor density (y-axis), 

colored by plot density. All other genes from e shown in grey. Scale bars, 500 μm. Grey 

beads shown for spatial context but excluded from analysis.
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