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ABSTRACT: A well production rate is an essential parameter in oil and gas field
development. Traditional models have limitations for the well production rate
estimation, e.g., numerical simulations are computation-expensive, and empirical
models are based on oversimplified assumptions. An artificial neural network (ANN)
is an artificial intelligence method commonly used in regression problems. This work
aims to apply an ANN model to estimate the oil production rate (OPR), water oil
ratio (WOR), and gas oil ratio (GOR). Specifically, data analysis was first performed
to select the appropriate well operation parameters for OPR, WOR, and GOR.
Different ANN hyperparameters (network, training function, and transfer function)
were then evaluated to determine the optimal ANN setting. Transfer function groups
were further analyzed to determine the best combination of transfer functions in the
hidden layers. In addition, this study adopted the relative root mean square error with
the statistical parameters from a stochastic point of view to select the optimal transfer
functions. The optimal ANN model’s average relative root mean square error reached 6.8% for OPR, 18.0% for WOR, and 1.98% for
GOR, which indicated the effectiveness of the optimized ANN model for well production estimation. Furthermore, comparison with
the empirical model and the inputs effect through a Monte Carlo simulation illustrated the strength and limitation of the ANN
model.

1. INTRODUCTION
In reservoir evaluation, the well production rate is one of the
critical parameters that helps petroleum engineers to make
decisions in exploration and operation. Three conventional
approaches were applied for the well production forecast:
analytical methods, numerical simulations, and empirical
models. Analytical approaches, based on the diffusivity
equation for steady-state flow, adopt certain assumptions to
simplify the complicated reservoir models to get the solutions
and are widely used in the prediction of well flow rates.
However, these solutions may not be able to fit the frequent
manual operations and state changes in the subsurface
multiphase flow.1 Numerical models can well describe the
reservoirs’ heterogeneity but are usually time-consuming and
require various types of data, e.g., logging, porosity, and
permeability.

Another way is using empirical equations to predict the well
production rate. Decline curve analysis (DCA) is one of the
most widely used empirical methods. DCA was first put
forward by Arps,2 who summarized exponential, harmonic, and
hyperbolic decline curves, and developed by subsequent
researchers.3−9 However, DCA may not accurately estimate
the actual well production because of its assumption
simplification for well operation. Machine learning (ML) is

the subarea of artificial intelligence (AI), which was introduced
in the 1950s as “the study field of computer’s ability to learn
things without being explicitly programmed”. In brief, it splits
the dataset into three parts: training, validation, and testing to
build models that serve the purpose.10 ML comprises a vast
number of models and algorithms. Some of them have become
popular in well production forecast in recent decades. For
example, Surguchev11 used an artificial neural network (ANN)
trained with backpropagation and scaled conjugate gradient to
evaluate the improved oil recovery (IOR) methods (water
flood, air injection, etc.). They chose 12 reservoir parameters
(porosity, permeability, viscosity, etc.) as input to evaluate the
IOR methods. Cao et al.12 utilized ANN to forecast both
existing and new well production. They compared the results
with DCA models and found that the ANN model has a much
better performance. Jia and Zhang13 compared ANN with
classic DCA models based on different historical data ranges.
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Vyas et al.14 used random forest, supported vector machine
(SVM), and multivariate adaptive regression splines (MARS)
to predict the early-time decline rate. Li et al.15 combined the
ANN model with DCA to predict the well production. They
use a logistic growth model (a DCA) to fit the well production
data from different formation conditions, and the results are
three model parameters (carrying capacity, constant, and
hyperbolic exponent). Then, the ANN model was constructed
with formation conditions as inputs and model parameters as
outputs. Finally, logistic growth models could be used to
predict well productions when the new formation conditions
were obtained for the ANN model. Khan16 compared the
ANN, adaptive neuro-fuzzy inference system (ANFIS), and
SVM for predicting the oil rate in artificial gas lift wells. Li et
al.17 and Masini et al.18 compared various ML models for
predicting the downhole pressure, and the process can also be
applied to predict well production. Xue et al.19 combined the
random forest and ensemble Kalman filter to forecast the
dynamic transient pressure automatically. Yavari et al.20

adopted the ANFIS model to estimate the pressure difference
from the end point (toe) to the hell in the lateral section of the
horizontal well. ANN models were also applied to the
prediction of minimum CO2 miscibility pressure.21,22 Fan et
al. developed an autoregressive integrated moving average-long
short-term memory (ARIMA-LSTM) hybrid model to forecast
the well production. Yang et al.23 constructed a GRU-ANN
machine learning hybrid model to predict coalbed methane
well production. Liao et al.24 applied a hybrid model that used
K-means clustering, an unsupervised machine learning method,
combined with DCA to predict the well production rate.

However, there are only a few publications that have
predicted the water oil ratio (WOR) and gas oil ratio (GOR)
along with the oil production rate (OPR). In addition, detailed
optimization of the neural network in well production
prediction is rarely mentioned in previously reported research.
In addition, most existing literature for the neural network
optimization is from a deterministic point of view without
considering the uncertainty/randomness in the initialization of
neural network parameters such as weight and bias. This study
aims to optimize the hyperparameters of an artificial neural
network in well production estimation, including the types of
neural networks, training function, and transfer function. This
study applied several evaluation parameters, e.g., average
absolute percentage error (AAPE), coefficient of determination
(R2), and relative root mean square error (relative RMSE) and
assessed the uncertainty of initialized parameters using some
statistical parameters to figure out the optimal ANN models
for the production estimation.

2. METHODOLOGY
2.1. ANN Hyperparameters. The machine learning

method selected in this research is the artificial neural network
(ANN), commonly adopted in well production prediction in
recent years. ANN is the information-processing algorithm
inspired by and mimicking the process of human brain’s
biological neural networks. It has the potential to analyze big
historical data and is widely applied in regression and
classification problems, especially cases that cannot be solved
by traditional mathematical models.25 Each ANN model
consists of sequential layers and connections: the input layer,
the (one or more) hidden layers, and the output layer. The
layer structure comprises several nodes called neurons (Figure
1). Each neuron contains a built-in function that addresses the

received signals, and the neurons in different layers are
connected to deliver information.

2.1.1. Neural Network Type. Neural network type is the
parameter determining the ANN model structure. This study
tested three types of neural networks (feedforward neural
network, function fitting neural network, and cascade-forward
neural network) in the ANN model construction. Feedforward
neural network (“newff” function in MATLAB) is a category of
ANN wherein the neurons are connected sequentially and do
not form a cycle, which is different from the recurrent neural
network. Function fitting neural network (“fitnet” function in
MATLAB) is a type of feedforward neural network that is
widely used in regression problems. Cascade-forward neural
network (“newcf” function in MATLAB) is similar to
feedforward neural network except that the input layer has
connections to every hidden layer.

The basic procedure in the neural network can be described
as follows:26 the numerical-converted features of observations
(inputs) are assigned to the input layer, and each neuron
denotes one feature. Then, weight and bias are applied to the
inputs when transmitted to the next layer’s neurons.
Specifically, each variable in the input layer is multiplied by
weight through the connection (each connection has
independent weights). All of the transformed variables are
then summed in each neuron of the hidden layer with an
additional value called bias. After that, the result is converted
by the built-in function called the transfer function or
activation function in the hidden layer neuron (Figure 2).
The process runs simultaneously in neurons of the same layer
and is repeated in the following layers until the output layer is
reached, where the output is generated.

Here a1, a2, and aN are the inputs, w1, w2, and wN are the
weights for the corresponding inputs, b is the extra bias value, z
is the sum of weighted inputs and bias, g is the built-in transfer
function, and aout is the hidden layer neuron output.

2.1.2. Training Function. Weights and biases are updated
by backpropagation, an algorithm applying the chain rule and
derivative of error function, in the ANN model. Training
functions determine the type of backpropagation algorithm.
Several training functions were tested to figure out the optimal
training function settings in this case study (Table 1).

Figure 1. Feedforward neural network, including one input layer (i),
two hidden layers (h1,h2), and one output layer (o).
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2.1.3. Transfer Function. Transfer function is the built-in
function inside the neuron, which converts the received
information from the previous layer. This study analyzes
different transfer function groups to obtain the optimal
solution for the prediction model. Table 2 lists the transfer
functions adopted in this study.

2.2. Error Functions. The average absolute percentage
error (AAPE) and coefficient of determination (R2) are two
metrics widely applied in data analysis. AAPE is the relative
error between the target actual value and the prediction result
(eq 1) and reflects the accuracy of the data-driven model.
However, AAPE is vulnerable to the extreme value, e.g., the
estimation result of 1 with the actual value 0.5 will lead to a

100% AAPE. R2 is the statistical parameter expressed by the
ratio of sum of square of the residual to the total variance of
the actual value (eq 2). However, R2 might be misleading when
the variance of the actual data is extremely low, e.g., the
variance of the actual value is 0.1 and the actual mean is 100,
but the variance of prediction is 0.05, which leads to 50% R2
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where yi is the actual value, ỹi is the estimated value, and y̅ is
the mean value of the dataset.

Another common evaluation metric is the root mean square
error (RMSE), which measures the residual s between the
target value and the estimations. However, RMSE may not
intuitively reflect the result when compared with different size
outputs without normalization, e.g., RMSE comparison of
output size 1000 with output size 1. Therefore, the relative
RMSE was used to compare the groups’ performance based on
the L2 norm (eq 3). It can directly reflect the performance of
the ANN model and reduce the influence of the extreme value,
which combines the advantage of AAPE and RMSE and avoids
their shortcomings
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where yi is the actual value and ỹi is the estimated value.

3. CASE STUDY
This study applies ANN models with two hidden layers to
predict OPR, GOR, and WOR. The actual production dataset
was initially cleaned and analyzed to select the suitable input
parameters. Then, ANN models were applied to predict the
target outputs. AAPE and R2 were adopted to evaluate the
ANN model effectiveness under different neural network,
training, and single transfer functions. Furthermore, relative
RMSE, mean, and standard deviation were applied to
determine the best transfer function group for ANN models.
Finally, the ANN models with the optimal neural network,
training, and transfer functions were selected and predicted the
target production parameters. The prediction process is shown
in Figure 3.

3.1. Data Preparation. The data source in this study
comes from the daily production data of a single well
belonging to the Volve Field, an offshore field located in
Norway.27 The data is derived from the multiphase flow period
of a production well (oil, gas, water). The shut-in periods are
removed since they are manually controlled and unpracticable
for WOR and GOR computation. After obtaining the data
from the Volve field database, we first cleaned the data to get a
valuable dataset. For example, the irrelevant data were
removed, e.g., record date and wellbore code. The records
containing missing features are removed, e.g., downhole
pressure and temperature, and the unreasonable data are
modified, e.g., 25 daily on-stream hours. After cleaning, 240
data points were selected for the case study. The dataset

Figure 2. Feedforward process in the neural network.

Table 1. Training Function Setting

training function abbreviation

Levenberg−Marquardt trainlm
Bayesian regularization trainbr
resilient backpropagation trainrp
BFGS quasi-Newton trainbfg
conjugate gradient with Fletcher−Reeves updates traincgf
conjugate gradient with Powell−Beale restarts traincgb
conjugate gradient with Polak−Ribieŕe updates traincgp

Table 2. Transfer Function Settinga

transfer function abbreviation equation

soft max softmax y e

e

xm

m
K xm

1
=

=

log-sigmoid logsig y 1
1 e x= +

triangular basis tribas y x x
x x

1 1 1
0 1 or 1{= | | < <

saturating linear satlin y
x

x x
x

0 0
0 1

1 1
=

l
moo
noo

symmetric saturating
linear satlins y

x
x x

x

1 1
1 1

1 1
=

l
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noo

positive linear poslin y x
x x
0, 0

, 0{= <

linear purelin y = x
radial basis radbas y = e−x2

normalized radial basis radbasn y e

e

xm

m
K xm

2

1
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=
aNote: For the soft max and normalized radial basis function, the
transformation of input will be normalized, where m denotes the mth
neuron in the layer, and K is the neuron number of the layer.
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contained downhole pressure, downhole temperature, pressure
difference of the tube, choke size, wellhead pressure, wellhead
temperature, pressure difference of choke, GOR, WOR, and
OPR (Table 3). GOR, WOR, and OPR were chosen as
outputs to compare with the practical production performance,
while other parameters were selected as inputs.

3.2. Data Analysis. The objective of the data analysis is to
determine the appropriate inputs for the machine learning
models and validate the data cleaning results. Data analysis is
composed of the regular analysis and correlation analysis.
Normal analysis parameters include minimum and maximum
(Table 4). They can be combined with production parameter
distribution histograms (Figure 4) to verify the data range and
detect the outliers or the missing value of the dataset.

The correlation coefficient and Spearman’s (rank) correla-
tion coefficient are two statistical norms of relationship
between two variables. The correlation coefficient describes
the linear relationship between two variables. A high absolute
value of the correlation coefficient means the connection is
strong, while a low absolute value means a weak relationship.

Compared with the correlation coefficient, Spearman’s (rank)
correlation coefficient represents the monotonic relationship
between two variables and could be applied to both linear and
nonlinear relationships. For example, in Figure 5a, the absolute
correlation coefficient between the choke size and WOR is
0.46. In contrast, in Figure 5b, the spearman absolute
correlation coefficient between the choke size and WOR is
0.85. The correlation coefficient means a strong relationship
exists between the choke size and WOR, and the association is
more likely to be nonlinear.

The inputs for OPR, WOR, and GOR were selected
according to the absolute values of the correlation coefficient
and Spearman correlation coefficient. The result is shown in
Table 5, where “high, medium and low” represent the
correlation between the inputs and outputs. The absolute
value of the correlation coefficient or Spearman correlation
coefficient higher than 0.6 is regarded as the high correlation.
In contrast, the absolute values of both correlation coefficient
and Spearman correlation coefficient lower than 0.2 are
considered low correlation. This study selected the high and
medium correlation parameters as inputs for three outputs.

3.3. Model Hyperparameter Selection. After selecting
inputs, the ANN model was adopted to estimate the OPR,
WOR, and GOR. First, we normalized the inputs to make
them have the same range. Then, we randomly chose the data
points for training and testing. Two hundred and forty data
points were used in our case, and 168 points were selected as
the training part, while the remaining were testing data points.
The neural network had two hidden layers, and each hidden
layer had 20 neurons.

This study evaluated three types of neural networks
(function fitting neural network, feedforward neural network,
and cascade-forward neural network) combined with various
training and transfer functions (the hidden layers in this
section have the same transfer function). There were 45
hyperparameter groups for each output (Appendix A). First,
the network and transfer functions were fixed, and several
training functions or backpropagation algorithms were
attempted to select the best one. Then, different transfer
functions or activity functions were tested based on the
suitable training function. After that, the network function was
changed and the same process was repeated. We ran the ANN
model and recorded the case with each hyperparameter group’s

Figure 3. Well production prediction workflow.

Table 3. Well Production Dataset from the Volve Field

abbreviation of the data type description

DHP downhole pressure (bar)
DHT downhole temperature (°C)
DP Tube tubing pressure difference (bar)
choke size choke size percentage (%)
WHP wellhead pressure (bar)
WHT wellhead temperature (bar)
DP choke size choke pressure difference (bar)
GOR gas oil ratio
WOR water oil ratio
OPR daily oil production rate (m3/d)

Table 4. Relevant Parameters of Data Analysis

DHP DHT (°C) DP tube choke size WHP

min 207.22 106.97 154.69 43.934 28.487
max 279.99 108.49 222.06 73.665 95.439

WHT DP choke size GOR WOR oil vol
min 43.698 2.3711 133. 91 0.0684 182.64
max 83.421 66.337 163.12 5.0763 940.93
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lowest average absolute percentage error (AAPE) and highest
coefficient of determination (R2) (Figures 6−8).

The results indicated a high accuracy of the ANN model
estimation. The AAPE of the best ANN hyperparameters
group for OPR, WOR, and GOR reach 5, 10, and 1%, while
the highest R2’s reach 0.985, 0.986, and 0.88. Moreover, the
different results for each output revealed the significance of the
selection of ANN hyperparameters. In addition, for the same
output estimation, e.g., production rate, the groups with lower
AAPE usually have higher R2 values, which denotes the
consistency of the evaluation parameters. However, AAPE and
R2 may show different results when compared with different

Figure 4. (a) GOR frequency histogram; (b) WOR frequency histogram; and (c) OPR frequency histogram.

Figure 5. (a) Correlation coefficient heatmap and (b) Spearman correlation coefficient heatmap.

Table 5. Input Selection

OPR WOR GOR

downhole pressure medium medium low
downhole temperature medium low medium
tube pressure difference high high low
choke size medium high low
wellhead pressure medium medium medium
wellhead temperature low medium medium
choke pressure difference medium high medium
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Figure 6. Each group’s R2 and AAPE for OPR. The best R2 reaches 0.978 and AAPE reaches 3.5%.

Figure 7. Each group’s R2 and AAPE for WOR. The best R2 reaches 0.973 and AAPE reaches 10%.

Figure 8. Each group’s R2 and AAPE for GOR. the best R2 reaches 0.780 and best AAPE reaches 1.0%.
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outputs estimation. For example, the prediction for GOR has a
lower AAPE than WOR, but the R2 for GOR shows a lower
value than WOR. The difference could be explained from
mathematical and physics aspects. According to the definition
of AAPE (eq 1), the relative error of GOR estimation was
much lower than WOR. However, due to the small relative
range of the GOR value compared with WOR, the ratio of the
sum of square residual to the total variance of GOR is bigger
than WOR (eq 2), and thus the R2 of GOR is smaller than that
of WOR. Furthermore, the relatively small variability of GOR
indicates that the majority of gas in place is stored as the
solution gas.

Based on the prediction evaluation, we selected the best
prediction group for OPR, WOR, and GOR (Table 6). It

should be noted that the transfer functions in two hidden
layers were kept consistent in this section. In the latter section,
we further explored the influence of various transfer function
groups for the prediction based on the current optimal network
and training function.

3.4. Transfer Function Analysis. In the previous section,
we set the two hidden layers with the same transfer function.
This section performed sensitivity analysis on transfer
functions, and our objective is to evaluate the influence of
different transfer functions on the prediction results and seek
to choose the combination of transfer functions with the lowest
error in two hidden layers.

The transfer function is the only variable in analysis based
on the given suitable network function and training function
from the above steps. In our case, we attempted nine transfer
functions, and there were 81 groups in total. We ran each
group tens of times to reduce the influence of randomization
inside the neural network. In this study, mean (μ) and mean
plus two standard deviations (μ + 2σ) of the relative RMSE,
inspired by the Gaussian distribution, are adopted as the
criteria for ANN models’ performance evaluation. The result of
two metrics for 81 transfer function groups are plotted in
Figure 9. Based on the heatmap, the optimal hyperparameter
group for each output was chosen, and their transfer functions
are listed in Table 7.

Several interesting phenomena could be observed from the
heatmap. First, the low relative RMSE values showed the
effectiveness of ANN models for output estimation. In
addition, the similarity between mean and mean plus two
standard deviations heatmaps verified the usefulness of the
evaluation metrics. Finally, the different results for the same
transfer function group in different outputs certified no
universal setting for the optimal ANN model. After considering
the mean and mean plus two standard deviations relative
RMSE, optimal transfer function groups were selected for the
ANN model construction (Table 7).

3.5. Results. According to the suitable hyperparameter
settings from previous sections, optimal ANN models for OPR,
WOR, and GOR were used to estimate the outputs (Figures

10−12). Note that the shut-in periods were excluded in the
production estimation since they are completely manually
controlled and unpracticable for the WOR and GOR
computation.The relative RMSEs reach 6.8, 18.0, and 1.98%
for OPR, WOR, and GOR, respectively. The results denote the
high accuracy of the data-driven model. The relatively higher
error for WOR forecast may be caused by the low correlation
between inputs and WOR or the relatively high range of the
WOR.

The production performance varies after the shut-in period.
Combining the new OPR and WOR plots (Figures 10 and 11),
there are two phenomena in the production performance after
the shut-in period. The OPR peaks at the beginning of the
reproduction period and then declines, e.g., 190−205 days. In
this case, the WOR increased but was consistently lower than
the level before the shut-in period. The variation might be
caused by the usage of the inflow control device, which can
partially choke flow to increase the oil production, while
delaying the water production increase. However, the OPR will
still naturally decrease. Another one is that the OPR begins at a
low level and then increases to the peak after the shut-in
period, while WOR shows the inverse trend, e.g., 290−300
days. The water injection starting from the shut-in period
could cause the variation combined with the expansion of open
choke size. The water injection and larger choke size lead to
the OPR growth, and the inflow control device delays the
water production increase or even reduces the water
production, which leads to the decrease of WOR. Well
performance could be further analyzed when more information
is available.

3.6. Discussion. In the previous section (Section 3.5),
ANN models with optimal hyperparameter settings were
developed and estimated the target outputs (OPR, WOR, and
GOR). This section explicitly discussed the strengths and
limitations of ANN models.

3.6.1. Comparison with Empirical Model. To verify the
effectiveness of the optimal ANN model, the Arps DCA was
applied to the OPR estimation. The initial two phases of the
production period, production period before and after the first
shut-in period, were adopted for the DCA fitting, since only
these two phases complied with the production decline trend.
The OPR estimation through ANN and DCA is shown in
Figure 10, and the relative RMSE of two approaches is shown
in Table 8.

According to the relative RMSE, the ANN model performs
better than Arps DCA in both phases. In addition, the relative
RMSE in phase 2 is lower than that in phase 1 for both
methods, which proves that the estimation methods perform
better for the production performance without frequent
operation variation. Furthermore, the comparison of relative
RMSE decrease, from phase 1 to phase 2 between ANN and
Arps DCA, verifies that Arps DCA is more susceptible to the
operation condition change. However, Arps DCA requires only
production data for the estimation, while the ANN model
requires various operation parameters, which could influence
its estimation accuracy. Since the accuracy between Arps DCA
(7.30% error) and ANN (4.04% error) is close, DCA is
suitable for the production estimation when the operation
condition is stable, and there is limited operation information.
When there is abundant information about operation
parameters and/or reservoir parameters, e.g., simulation data
or field data, the ANN model could show its strength.

Table 6. Optimal Hyperparameter Group for each Outputa

hyperparameter OPR WOR GOR

network function newcf newff newff
training function trainbr trainlm trainlm
transfer function radbasn poslin radbasn

aNote: Specific names of hyperparameters are included in Appendix
A.
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3.6.2. Input Effect. ANN models are applied to deal with the
real-world problems due to flexibility and efficiency. For the
regression problems, e.g., production parameter estimation,

ANN models can be regarded as complex functions. Thus,
outputs of the probabilistic distribution through Monte Carlo
simulation can be applied to ANN models as well. In this
section, the input effect for the estimation of OPR, WOR, and
GOR were explored through Monte Carlo simulation. First,
the input cumulative distribution functions were created based
on the input distribution fitting. Then, random numbers were
generated and converted to the random input variables
through cumulative distribution functions. Finally, the outputs
(OPR, WOR, and GOR) were obtained through ANN models.
In this study, we ran 5000 simulations to reduce the

Figure 9. Heatmaps of evaluation for relative RMSE of ANN models. (a) μ for OPR; (b) μ + 2σ for OPR; (c) μ for WOR; (d) μ + 2σ for WOR;
(e) μ for GOR; and (f) μ + 2σ for GOR.

Table 7. Optimal Transfer Function Group for Each
Outputa

transfer OPR WOR GOR

layer 1 satlin logsig radbas
layer 2 radbasn logsig radbasn

aNote: specific names of transfer functions are included in Appendix
A.
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Figure 10. Optimal prediction for OPR.

Figure 11. Optimal prediction for WOR.

Figure 12. Optimal prediction for GOR.
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uncertainty, and the histograms of OPR, WOR, and GOR are
shown in Figure 13.

The frequency of the outputs could be derived from Figure
13, which might be helpful for the field development. The
GOR ranges from 140 to 160, and the most likely value is
around 153, which verified the major status of the reservoir
gas. The OPR ranges from 200 to 1000 m3/d, and the most
likely value is around 280 m3/d, which could be applied to oil
recovery estimation and economic evaluation. However, the
negative value of WOR range is different from the common
sense. The possible reason is that the ANN model is the data-
driven model, and the low accuracy for WOR estimation led to
the probability of outliers, which is the limitation of the ANN
model. To solve this issue, physical constraint should be added,
e.g., WOR should be higher than 0. The application of
probabilistic distribution through the ANN model can be
applied in many areas of oil and gas industry, e.g., multiscale
analysis of subsurface characterization. However, the physical
properties should be notified when applying this approach to
avoid unreasonable results.

3.7. Future Direction. Some further research can be
conducted in the future. For example, the hidden layer number
and neuron numbers in hidden layers can be optimized. In

addition, the relationship between the physical meaning of
inputs and outputs could be considered during the hyper-
parameter setting, e.g., the pressure difference with the OPR.
Furthermore, the possibility of finding a standard optimal
ANN model applied to the different periods of the well or two
adjacent production wells is still an open question. In addition,
for the ANN application in other types of wells or reservoir
behavior, e.g., gas coning cases, the optimal hyperparameter
setting and effectiveness can be further discussed when the
data is available.

4. CONCLUSIONS
Well production performance is the critical parameter in the
economic evaluation in the oil and gas field. This study applied
the artificial neural network to estimate the single-well OPR,
WOR, and GOR through historical data matches. Different
types of neural networks, training, and transfer functions were
analyzed to find the optimal setting. The evaluation parameter
called relative root mean square error was adopted and
combined with statistical parameters to figure out the optimal
hyperparameter setting for ANN models stochastically. The
results showed the effectiveness of the optimal ANN models in
OPR, WOR, and GOR. In addition, the comparison with DCA
and the inputs effect illustrate the strength and limitation of
ANN models. More research directions could be deeply
explored based on this study, e.g., the transfer learning
application in production estimation.

Table 8. Relative RMSE of OPR Estimation

OPR estimation ANN (%) Arps DCA (%)

phase 1 5.85 18.75
phase 2 4.04 7.30

Figure 13. Distribution histogram of outputs. (a) WOR; (b) GOR; and (c) OPR.
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■ APPENDIX A
The appendix lists the ANN hyperparameters for Section 3.3,
including the neural network, training, and transfer function
settings for OPR, WOR, and GOR. There are 45 ANN groups
for each output, and the numbers within Table 9−11 deno te
the ANN group numbers. Table 9−11 also show the
hyperparameter abbreviations.
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