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Abstract
A disintegrin and metalloproteases (ADAMs) are key mediators of cell signaling by ectodomain shedding of various growth 
factors, cytokines, receptors and adhesion molecules at the cellular membrane. ADAMs regulate cell proliferation, cell 
growth, inflammation, and other regular cellular processes. ADAM17, the most extensively studied ADAM family member, 
is also known as tumor necrosis factor (TNF)-α converting enzyme (TACE). ADAMs-mediated shedding of cytokines such 
as TNF-α orchestrates immune system or inflammatory cascades and ADAMs-mediated shedding of growth factors causes 
cell growth or proliferation by transactivation of the growth factor receptors including epidermal growth factor receptor. 
Therefore, increased ADAMs-mediated shedding can induce inflammation, tissue remodeling and dysfunction associated 
with various cardiovascular diseases such as hypertension and atherosclerosis, and ADAMs can be a potential therapeutic 
target in these diseases. In this review, we focus on the role of ADAMs in cardiovascular pathophysiology and cardiovascular 
diseases. The main aim of this review is to stimulate new interest in this area by highlighting remarkable evidence.

Keywords Signal transduction · Hypertension · Atherosclerosis · Heart disease · Vascular biology · Endothelium · 
Inflammation · Angiotensin

Introduction

A disintegrin and metalloprotease (ADAM) family proteins 
belong to a  Zn2+-dependent protease superfamily that are 
expressed as type 1 transmembrane proteins. In human, 22 
ADAM proteins have been identified: ADAM1, 2, 3B, 7, 
8, 9, 10, 11, 12, 15, 17, 18, 19, 20, 21, 22, 23, 28, 29, 30, 
32, and 33 in MEROPS database within the M12B Adama-
lysin subfamily of metallopeptidases; https ://merop s.sange 
r.ac.uk/. Almost half of ADAMs are exclusively or pre-
dominantly expressed in testis and epididymis, whereas 11 
ADAMs (ADAM8, 9.10, 11, 12, 15, 17, 19, 22. 23 and 33) 
are ubiquitously expressed [1]. Interestingly, only 12 human 
ADAMs are proteolytically active (ADAM8, 9, 10, 12, 15, 
17, 19, 20, 21, 28, 30 and 33). These ADAMs work as key 
mediators of cell signaling by ectodomain shedding of vari-
ous growth factors, cytokines, receptors and adhesion mol-
ecules at the cellular membrane. The proteolytically inactive 

ADAMs are considered to participate in cellular commu-
nication through their adhesive properties. Accordingly, 
ADAMs regulate cell proliferation, cell growth, inflamma-
tion, and other cellular processes [2].

Among ADAM family members, ADAM17, also known 
as tumor necrosis factor (TNF)-α converting enzyme 
(TACE), is the most well-studied protein. ADAM17 was 
first purified and cloned in 1997 as a metalloproteinase that 
specifically cleaves precursor TNF-α [3, 4]. These findings 
completely changed the significance of ADAMs from mere 
adhesion molecules to important regulators of cell signaling.

ADAM17 consists of an N-terminal signal sequence, 
a prodomain, a catalytic domain with a typical HEXX-
HXXGXXH sequence, a disintegrin domain, a membrane 
proximal domain, a transmembrane domain and a cytoplas-
mic tail (Fig. 1) [5, 6]. ADAM17 exists as a multimer at 
the cell membrane, and this multimerization is mediated 
by an EGF-like domain [7]. The maturation of ADAM17 
proenzyme requires furin-dependent processing at either a 
canonical proprotein convertase (PC) cleavage site at the 
boundary between the prodomain and catalytic domain [8] 
or an upstream PC cleavage site [9]. These cleavages are 
thought to be essential for adequate activation of ADAM17. 
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ADAM17 is expressed very broadly in somatic tissues and 
a variety of growth factors, cytokines, receptors, adhesion 
molecules and other molecules have been revealed as sub-
strates of ADAM17 by in vivo or in vitro studies (Table 1). 
After shedding, cleaved substrates can bind to the receptors 
on the same cell (autocrine), local cells (paracrine), or non-
local cells by transport through blood (endocrine) [10, 11]. 
In this manner, ADAM17-mediated shedding of cytokines 
such as TNF-α precursor to produce soluble TNF-α orches-
trates immune system or inflammatory cascades.

The shedding of epidermal growth factor receptor 
(EGFR) ligands is an important process since EGFR is 
an essential tyrosine kinase receptor in the development 
of various diseases. The role of EGFR in cancer is widely 
studied; however, recent evidence has demonstrated the 
importance of EGFR on cardiovascular physiology and 
pathophysiology. More specifically, G protein-coupled 
receptors (GPCRs)-mediated EGFR transactivation has 
been recognized as a key point of control governing car-
diovascular outcomes [12]. GPCR activation causes initial 
heterotrimeric G protein dissociation. Subsequently, ligand-
specific intermediates including intracellular  Ca2+ and reac-
tive oxygen species (ROS) are elevated and non-receptor 
tyrosine kinases are activated, followed by metalloprotease 
activation and shedding of EGFR ligands [13–15]. Among 

Fig. 1  The general structure of ADAMs. A disintegrin and metallo-
proteases (ADAMs) consist of several domains. The prodomain keeps 
ADAMs inactive, and protein convertases such as furin cleave this 
prodomain in Golgi apparatus to activate ADAM17. The metallopro-
tease domain is a key domain that is involved in catalytic activity and 
ligand shedding. The disintegrin domain interacts with integrins and 
supports adhesion. This domain also serves to maintain the structure 
of extracellular region. The membrane proximal domain regulates 
substrate binding and shedding activity. ADAM10 and ADAM17 
have membrane proximal domain and other ADAMs have EGF-like 
repeats, which regulate substrate binding and shedding activity. Cyto-
plasmic tail of ADAMs interacts with signaling molecules. Phospho-
rylation of cytoplasmic tail regulates the activation, trafficking and 
subcellular localization of ADAMs

Table 1  Substrates of ADAM17 Cytokines Receptors Adhesion molecules

CD44 [117]
CX3CL1 [252, 253]
FLT-3L [254]
Jagged 1 [38]
Kit-ligand 1 and 2 [255]
LAG-3 [256]
MICA [257]
MICB [258]
RANKL [259]
TNF-α [20, 260, 190, 261, 4, 11]
TNF beta [262]

ACE2 [263-265]
APOER [266]
CD30 [267]
CD40 [268]
CD89 [269]
EMMPRIN [135]
EPCR [83]
Ephrin B4 [135]
ErbB4 [270, 271]
GHR [272, 273]
GPIba [274]
GPV [275]
GPVI [276]
IL-1R II [21]
IL6R [277, 278]
Integrin beta-1 [150]
Leptin receptor [279]
LOX-1 [280]
M6P/IGF2R [281]
Notch1 [282, 283]
NPR [284]
p55 TNF alpha RI [20, 21]
P75 TNF receptor [113]
p75NTR [285, 21]
Ptprz [286]
syndecan 1 and 4 [287]
Toll-like receptor 4 [288]
TrkA [289]
VEGFR [31]
VPS10p [290]

ALCAM [291]
CD44 [198, 117]
CD62L [292]
collagen XVII [293]
desmoglein-2 [291]
EpCAM [294]
ICAM-1 [111]
JAM-A [123]
L-selectin [113]
L1-CAM [295]
PTP-LAR [296]
NCAM [297]
nectin-4 [298]
PECAM-1 [135]
VCAM-1 [109, 299]

Growth factors Others
Amphiregulin [300, 190, 301]
CSF-1 [138]
Epigen [302]
Epiregulin [190]
HB-EGF [135, 300, 190, 303]
IGFR1 [135]
Neuregulin-1 [199]
Pref-1 [282, 304]
SEMA4D [305, 306]
TGF alpha [113, 300]
Tomoegulin-2 [307]

APP [308, 309]
CD163 [310]
KIM-1 [311]
Klotho [312]
MerTK [313]
PMEL17 [314]
PrPc [315]
Tim-3 [316]
VASN [317]
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these metalloproteases, ADAM17 has been recognized as 
an essential mediator of EGFR ligand shedding and subse-
quent EGFR transactivation [13, 15, 16]. Upon activation, 
ADAM17 cleaves EGFR ligands such as heparin binding 
EGF-like growth factor precursor (HB-EGF) to produce 
mature soluble HB-EGF which then binds and activates 
EGFR. In addition, upon shedding, the cytoplasmic tail of 
EGFR ligands is recognized as a site of protein interactions 
which mediates several intra- and intercellular phenomena 
including ligand trafficking or migration to the cell surface, 
signal transduction, and gene expression via interaction 
with a transcriptional repressor [17–19]. Therefore, ectodo-
main shedding of EGFR ligands by ADAM17 can initiate 
a bidirectional signaling event with released growth factor 
and free shed remnant. Both TNF receptor 1 (TNFR1) and 
TNFR2 are also ADAM17 substrates [20, 21]; thus, creation 
of soluble TNFRs modulates soluble TNF-α availability as 
well as TNFR activities. In addition to TNF-α precursor and 
TNFR, interleukin-6 receptor (IL6R) is a critical substrate 
to mediate ADAM17 function. IL6 primarily binds to IL6R, 
which is specifically expressed in certain cell types such as 
leukocyte and hepatocyte. The IL6 IL6R complex then binds 
to ubiquitously expressed signaling receptor gp130 lead-
ing to activation of STAT1, STAT3 and the ERK cascade 
to mediate inflammatory responses. Cells only expressing 
gp130 cannot respond to IL6. However during trans-signal-
ing, gp130 can be activated with IL6 complexed with soluble 
IL6R generated by ADAM17 shedding of the receptor [22]. 
Taken together, ADAM17-mediated shedding of growth 
factors and cytokines causes cell growth and inflammation, 
respectively (Fig. 2).

There are numerous regulators of ADAM17-dependent 
ectodomain EGFR ligand shedding including various extra-
cellular stimuli, cellular protein modulators, phosphorylation 
in the cytosolic domain and its own disulfide switch [23, 
24]. Certain regulators modulate ADAM17 activity via sta-
bilization. Band 4.1 protein, ezrin, radixin, moesin (FERM) 
domain-containing protein 8 (FRMD8) stabilizes ADAM17 
at the cell surface and supports ADAM17-mediated ligand 
shedding [25]. The sorting protein phosphofurin acidic clus-
ter sorting protein 2 (PACS-2) co-localizes with ADAM17 
on early endosomes, and loss of PACS-2 results in decreased 
ADAM17 recycling, stability upon internalization, cell sur-
face expression, and EGFR ligand shedding [26].

Notably, TNF-α induces ADAM17 and Src-dependent 
EGFR activation, and initiates the extracellular signal-
regulated kinase (ERK)-dependent guanine nucleotide 
exchange factors (GEF)-H1 and RhoA signaling path-
way, suggesting a mechanistic link between inflammatory 
and proliferative pathophysiology [27]. Platelet-derived 
growth factor (PDGF) receptor β stimulation activates 
ADAM17 shedding of TNF-α or transforming growth fac-
tor (TGF)-α and subsequently initiates EGFR signaling 

pathways [28]. p38 mitogen-activated protein (MAP) 
kinase and Src are reported to activate ADAM17 via inter-
action with the cytoplasmic domain of ADAM17, increase 
ADAM17-mediated shedding of TGF-α family ligands and 
activate EGFR signaling [29–31].

A protein kinase C (PKC) activator, phorbol 
12-myristate 13-acetate (PMA), induces ADAM17-medi-
ated HB-EGF shedding and EGFR transactivation. PKC 
and ADAM17-dependent HB-EGF shedding is triggered 
by apically localized A1 adenosine receptor stimulation 
[32]. Notably, in EGFR ligands shedding, regulatory pro-
teins such as PKCα, PKC-regulated protein phosphatase 
1 inhibitor 14D (PPP1R14D), and PKCδ affect the shed-
ding of some ADAM17 substrates without significant 
effect on protease activity [33]. In addition, PKCα and 
PPP1R14D act on ADAM17-mediated shedding of TGF-β, 
HB-EGF and amphiregulin, whereas PKCδ is required for 
ADAM17-mediated shedding of neuregulin [33], suggest-
ing a complex regulation of EGFR ligand shedding.

Fig. 2  ADAM17 mediates cardiovascular diseases via ectodomain 
shedding. A variety of substrates including growth factors, cytokines, 
receptors, adhesion molecules are cleaved by ADAM17 and initiate 
or modulate intracellular signaling. The ectodomain sedding events 
can be occurred in cis (on the same cell) or trans (between two cells), 
and act in autocrine (on the same cell types), paracrine (on distinct 
resident cells) and/or endocrine (on distinct organs through circula-
tion) manner. Therefore, these events involve single cell membrane 
(cis cleavage and autocrine signaling), two (cis and paracrine/endo-
crine or trans and paracrine) or three distinct cell-type membranes 
(trans and endocrine) expressing ADAM17, substrates and the recep-
tors. Prototypical examples of ADAM17 substrate relationship are 
illustrated. Right: upon ADAM17 activation, cleaved EGFR ligands 
transactivate EGFR and initiate EGFR-mediated intracellular signal-
ing including activation of ERK, Akt, mTOR and p70 S6K, resulting 
in cell proliferation or hypertrophy in an autocrine manner. In addi-
tion, the cytoplasmic tail of EGFR ligands is recognized as a site of 
protein interaction or translocate to nucleus which acts as a transcrip-
tional modulator. Left: activated ADAM17 also regulate inflamma-
tion via the cleavages of inflammatory cytokines and their receptors. 
The examples shown are pro-NF-α shedding and TNFR activation as 
well as soluble IL6R (sIL6) generation to lead to the IL6-sIL6 com-
plex, which can activate their receptor, GP130 in the absence of IL6R 
in a paracrine or endocrine manner
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Several phosphorylation sites such as Thr735 phospho-
rylation by ERK or p38 MAP kinase appear to be involved 
in ADAM17 activation [23, 34]. Polo-like kinase 2 (PLK2) 
interacts with and phosphorylates ADAM17 at Ser794 
resulting in shedding of pro-TNF-α and TNF receptors, and 
PLK2 expression is up-regulated in inflammatory conditions 
[35]. ADAM17 Tyr702 is another important phosphoryla-
tion site for EGFR transactivation induced by G protein-
coupled receptor (GPCR) agonist such as angiotensin II [13]. 
However, phosphorylation of the intracellular domain of 
ADAM17 may not always be essential for activation. Stud-
ies with ADAM17 chimeric construct showed that PMA-
induced ADAM17 activation did not require the intracellu-
lar domain, but it required the transmembrane domain [36, 
37]. While detailed mechanistic dissection of the mode of 
modulations is beyond the scope of this review article, these 
conflicting findings indicate that ADAM17 regulation by the 
modulations and the modulators are likely cell/tissue type 
and context-specific.

It is well established that mature ADAM17 is associated 
with lipid rafts, although some substrates such as Jagged-1 
are cleaved by ADAM17 in lipid raft-independent pathways 
[38]. Many signaling proteins which involve ADAM17-
mediated EGFR transactivation including EGFR, GPCRs 
such as AT1R, G proteins, Src family kinases and ADAM17 
are localized to caveolae, a subset of lipid rafts [39–41]. 
Angiotensin II-induced transactivation of EGFR relies on 
ADAM17 compartmentalization in caveolae [41]. Caveo-
lin-1, a major structural protein of caveolae, is required for 
TGF-β-mediated ADAM17 activation via phosphorylation 
of Src and NADPH Oxidase 1 (NOX1)-mediated ROS pro-
duction [42]. Silencing of caveolin-1 in cultured VSMCs can 
prevent angiotensin II (AngII)-induced ADAM17 induction 
and activation [43]. However, inhibition of EGFR transac-
tivation by over-expressing caveolin-1 was also observed 
in VSMCs stimulated by AngII [41]. Therefore, further 
investigation is needed to explore the contradictory data 
observed regarding the signaling relationship of ADAM17 
and caveolin-1.

The conformational change in ADAM17 also affects 
ADAM17 activity. Changes in the redox environment like 
PMA-dependent induction of mitochondrial ROS enhance 
ADAM17 activity, and the inactivation of thiol isomerases, 
specifically protein disulfide isomerase (PDI), is reported 
as a key player. PDI regulates ADAM17 activity by con-
formational change in ADAM17 from an active “open 
form” to an inactive “closed form” [44]. In addition, thiore-
doxin-1 is reported to interact with the cytoplasmic domain 
of ADAM17 and negatively regulate ADAM17 activity 
[45, 46]. The noncatalytic domains of ADAM17 are also 
reported to regulate the ADAM17 activity via steric hin-
drance [47]. Conserved ADAM-seventeeN Dynamic Inter-
action Sequence (CANDIS) encoded by ADAM17 is a 

short juxtamembrane segment of 17 amino acid residues. 
CANDIS appears critical in substrate recognition, and also 
regulates the shedding activity of ADAM17 by interacting 
with lipid bilayers [48]. It has also been reported that the 
membrane proximal domain of ADAM17 provides a phos-
phatidylserine binding motif. ADAM17 is activated upon 
phosphatidylserine binding in several cell types including 
endothelial cells. Cells undergoing apoptosis will enhance 
phosphatidylserine in outer membrane. Thus, CANDIS and 
the membrane proximal domain likely provide a means to 
stimulate ADAM17 activity upon extracellular stress, such 
as those causing apoptosis [49]. In addition, site-specific 
O-glycosylation in juxtamembrane segment of several 
ADAM17 substrates mediated by distinct polypeptide 
N-acetylgalactosamine (GalNAc)-transferase (GalNAc-T) 
isoforms is also reported to widely modulate ADAM17-
mediated shedding in a substrate-specific manner [50].

Catalytically inactive rhomboid protein (iRhom) 2 was 
identified as a key protein which controls the maturation 
and function of ADAM17 [51–53], regulating cytokine 
and growth factor signaling [54]. Due to its preferential 
expression in leukocytes, iRhom2 –/– mice are defective in 
myeloid-specific TNF-α shedding [53]. However, iRhom2 
–/– mice showed decreased myeloid cell repopulation under 
stress due to defect in myeloid colony-stimulating factor 
receptor-1 (CSFR1) shedding. Moreover, in iRhom2 and 
related iRhom1 double knockout mouse tissues, there is a 
lack of ADAM17 maturation and reduced EGFR activa-
tion [55]. FERM domain-containing 8 (FRMD8) [25]/iTAP 
(iRhom Tail-Associated Protein[56] has been discovered 
which enhances stability of ADAM17 and iRhoms. It has 
also been shown that ERK-dependent phosphorylation of 
iRhom2 recruits 14-3-3 proteins which leads to iRhom2 dis-
sociation from ADAM17 leading to ADAM17 activation 
[57]. It is interesting to note that iRom1 is preferentially 
and constitutively expressed in endothelial cells with tran-
scriptional regulation by shear stress, whereas inflammatory 
cytokines can induce iRhom2 but not iRom1 [58]. There-
fore, iRhoms appear to be the main focus of research into 
ADAM17 regulation.

Increased ADAM17-mediated shedding contributes to 
the progression of various cardiovascular diseases such as 
atherosclerosis or ischemia via both EGFR transactivation 
and inflammation. Thus, ADAM17 is a potential therapeutic 
target in these diseases. The role of ADAM17 in cancer and 
autoimmune diseases has been well documented [59–61]; 
here, we focus on the role of ADAM17 in cardiovascular 
pathophysiology and cardiovascular diseases. This review 
also includes a discussion of other ADAM family proteins 
which share cell-specific distribution, the HExGHxxGxxHD 
motif that is required for proteolytic activity, and, therefore, 
function with ADAM17. Notably, most substrates can be 
cleaved by a variety of ADAM family members, and this 
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seemingly nonspecific relationship between substrates and 
ADAMs makes the physiology of ADAMs more compli-
cated and interesting. The main aim of this review is to reju-
venate interest in ADAM research by highlighting remark-
able evidence.

Adam17 and cardiovascular 
pathophysiology

ADAM17 is expressed in various cells including endothelial 
cells, vascular smooth muscle cells (VSMCs), fibroblasts, 
and monocytes. In cultured VSMCs, angiotensin II stimu-
lation increases ADAM17 phosphorylation [13], protein 
expression, mRNA expression, and promoter activity [62]. 
Activation of ADAM17 via tyrosine phosphorylation con-
tributes to HB-EGF shedding, EGFR transactivation [63], 
and subsequent growth promoting signals induced by angio-
tensin II [13].

Previous investigations of ADAM17 in cardiovascular 
pathophysiology have revealed ADAM17 to be a highly 
regulated controller of disease progression. The expression 
and activity of ADAM17 are regulated in a multi-layered 
and highly complicated manner as reviewed previously [64], 
and the regulation of ADAM17 in cardiovascular pathophys-
iology has also been investigated. Notably, the meaning of 
increased ADAM17 expression should be carefully inter-
preted. Systemically, ADAM17 overexpression mice show 
no enhancement in TNF-α shedding activity, suggesting that 
ADAM17 activity can be independent of transcriptional 
regulation and that excess ADAM17 does not necessarily 
result in enhanced shedding activity in vivo [65]. In this 
section, we highlight in vivo and in vitro findings regard-
ing the role of ADAM17 and the regulation of ADAM17 in 
cardiovascular pathophysiology. Moreover, we review the 
clinical studies investigating the role of ADAM17 in human 
cardiovascular diseases.

ADAM17 and hypertension

In a mouse model of angiotensin II-induced hypertension 
with smooth muscle ADAM17 deletion or systemic pharma-
cological inhibition of ADAM17, vascular medial hypertro-
phy and perivascular fibrosis were attenuated [66]. This is 
because ADAM17 mediates angiotensin II-induced EGFR 
transactivation in vascular smooth muscle cells (VSMCs) 
causing growth promoting signal transduction [12]. Thus, 
inhibition of EGFR also mitigated hypertensive vascu-
lar remodeling in mice infused with angiotensin II [67]. 
Interestingly, blood pressure remains high in these mod-
els with ADAM17/EGFR inhibition at 2-week time point; 
whereas, less hypertension was reported at 1-week point 
[68], suggesting unique roles of ADAM17 in hypertensive 

vascular pathology. How does the acute signaling events 
via the ADAM17/EGFR system mediate chronic vascular 
pathology? This seems to involve feed-forward induction of 
ADAM17 transcript via ER stress and subsequent unfolded 
protein response (UPR). Upon AngII stimulation, chronic 
UPR markers were induced in vitro in VSMCs and in vivo 
in the vasculature. Suppression of ER stress and UPR via 
chemical chaperoning, thus, attenuated vascular ADAM17 
induction and associated vascular pathology [67]. At the cel-
lular level, AngII-induced UPR seems insufficient to attenu-
ate protein misfolding leading to protein aggregate forma-
tion in VSMCs. The sustained proteotoxicity prolongs UPR, 
enhances inflammatory response and senescence [69, 70]. 
Accordingly, chronic activation of the vascular ADAM17/
EGFR system seems to contribute to premature inflamm-
aging via protein aggregation [71, 72]. Interestingly, vas-
cular ADAM17 promoter can also be activated via hypoxia 
inducible factor 1α upon AngII stimulation in VSMCs. Thus, 
vascular ADAM17 activation may be exaggerated under 
ischemic conditions [62]. This novel concept of ADAM17 
in mediating hypertension and chronic vascular pathology 
is illustrated in Fig. 3.

ADAM17 also influences blood pressure via a brain-
dependent mechanism. Deoxycorticosterone acetate 
(DOCA)-salt treatment enhanced ADAM17 expression 
and activity in the hypothalamus, significantly reduced 
an ADAM17 substrate, angiotensin-converting enzyme 
2 (ACE2) expression and activity in brain, resulting in 
increased blood pressure, inflammation, hypothalamic 
angiotensin II levels, and causing autonomic dysfunction. 

Fig. 3  The potential molecular mechanism by which Angioten-
sin II signaling via ADAM17 mediates chronic vascular pathology 
in hypertension. Angiotensin II rapidly activates ADAM17 via its 
Tyr702 phosphorylation through the GPCR, AT1 receptor  (AT1R) in 
VSMCs. This leads to proHB-EGF shedding and subsequent EGFR 
transactivation. Enhanced protein synthesis results in protein misfold-
ing causing protein aggregate formation. Protein aggregates enhance 
ER stress and UPR which transcriptionally upregulate ADAM17 thus 
create the feed-forward loop of sustained signaling leading to hyper-
tensive vascular remodeling
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Accordingly, knockdown of ADAM17 in the brain can blunt 
the development of hypertension and restore ACE2 activity 
and baroreflex function, indicating that ADAM17-mediated 
shedding of ACE2 contributes to the development of neu-
rogenic hypertension [73]. With neuron selective ADAM17 
knockout mice, the mechanism appears to involve ADAM17-
dependent ACE2 inactivation in pre-sympathetic neurons 
within the paraventricular nucleus [74]. Moreover, in the 
brain of hypertensive patients ADAM17-mediated ACE2 
shedding seems to be promoted by angiotensin II suggest-
ing the involvement of ADAM17 in neurogenic hypertension 
in human [75].

ADAM17, atherosclerosis and neointima formation

ADAM17 is highly expressed in aortic lesions in athero-
sclerosis-prone sites in high-fat diet-fed apolipoprotein E 
knockout mice, and ADAM17 may contribute to the elevated 
levels of circulating soluble TNF-α receptors [76]. In addi-
tion, ADAM17 is recognized as a candidate gene of athero-
sclerosis susceptibility since ADAM17 mRNA expression 
and activity is increased in association with atherosclerosis 
resistance in low density lipoprotein (LDL) receptor deficient 
mice [77]. ADAM17 gene silencing by injecting shRNA into 
the abdominal aortic plaque enhances plaque stability and 
improves vascular positive remodeling via attenuation of 
local inflammation, neovascularization and matrix metallo-
proteinase (MMP) activation, and enhancement of collagen 
production [78]. In addition, genetical or pharmacological 
inhibition of ADAM17 prevents neointimal hyperplasia after 
vascular injury [79]. Since ADAM17–/– mice are not viable, 
ADAM17 hypomorphic mice have been generated, which 
have barely detectable levels of ADAM17 in all tissues 
[80]. Contrary to results with ADAM17 inhibition, a study 
using ADAM17 hypomorphic mice revealed that ADAM17 
deficiency enhances atherosclerosis via TNF receptor 2 
(TNFR2) signaling [81], suggesting that moderate activation 
of ADAM17 had atheroprotective effects by preventing the 
endogenous TNFR2 overactivation. The cell-type-specific 
difference in the role of ADAM17 could be one reason for 
these controversial findings. Indeed, it has been reported 
that myeloid ADAM17 deletion is detrimental; whereas, 
endothelial ADAM17 deletion appears protective against 
atherosclerosis development [82].

ADAM17 expression is reported in human atherosclerotic 
plaques [76]. Microparticles isolated from human athero-
sclerotic plaques are shown to carry active ADAM17 on 
their surface. These microparticles enhance the shedding of 
TNF-α, TNF receptor 1 (TNFR1), and endothelial protein C 
receptor (EPCR) at endothelial cells, indicating ADAM17-
positive microparticles could regulate the inflammatory 
balance in culprit lesions [83]. Moreover, the ADAM17 at 
advanced human atherosclerotic lesions is in its catalytically 

active form and ADAM17-expressing cells are co-localized 
with CD68-positive cells of monocytic origin [84]. These 
results suggest the contribution of ADAM17 in monocyte 
homing, migration, and proliferation in human atheroscle-
rotic lesions.

ADAM17 and aortic aneurysms

ADAM17 is identified as a central gene associated with 
angiotensin II-induced abdominal aortic aneurysm (AAA) 
in genome-wide transcriptional profiling [85]. ADAM17 
expression is enhanced in experimental models of AAA, 
and temporal and systemic deletion of ADAM17 prevents 
AAA development in association with attenuating inflam-
mation elicited by TNF-α [86]. AAA as well as enhanced 
ADAM17 expression and EGFR phosphorylation in experi-
mental AAA are markedly attenuated in caveolin-1 knockout 
mice, supporting ADAM17 compartmentalization in cave-
olae in VSMCs [43]. Consistent with these findings, VSMC 
ADAM17 silencing or systemic pharmacological ADAM17 
inhibition attenuated AAA in mice with angiotensin II infu-
sion [87]. Cleavage of an EGFR ligand appears critical 
since inhibition of EGFR is sufficient to prevent angioten-
sin II-dependent AAA in mice [88]. How does ADAM17-
dependent EGFR transactivation lead to chronic vascular 
cell dysfunction to contribute to AAA? As recognized in 
hypertension, ER stress and UPR seem key drivers for the 
VSMC phenotype involved in AAA [89].

It is also interesting to note the role mitochondrial mor-
phology plays in AAA. Mitochondrial fission fusion events 
are critical for mitochondrial homeostasis. However, under 
several stressed conditions such as those with cardiovascu-
lar diseases, the balance shifts toward more fission leading 
to mitochondrial dysfunction and mitochondrial oxidative 
stress. Thus, mitochondrial fission sustains inflamma-
tory responses [71]. A GTPase Drp1 is a master regula-
tor of mitochondrial fission. In human AAA as well as 
AngII-dependent model of AAA, Drp1 expression appears 
enhanced. Moreover, in abdominal aortic VSMC, the critical 
ADAM17/EGFR downstream effector ERK phosphorylates 
and activates Drp1 leading to mitochondrial fission. AngII 
stimulated mitochondrial oxygen consumption which was 
attenuated with a Drp1 inhibitor. In addition, inhibition of 
mitochondrial fission attenuated AngII-dependent AAA, 
which was associated with prevention of aortic ER stress/
UPR and senescence. Inflammatory leukocyte infiltration 
was also attenuated [90]. There is additional evidence link-
ing ADAM17 and mitochondrial fission in the cardiovascu-
lar system. In cultured aortic endothelial cells, TNF-α stim-
ulated Drp1-dependent mitochondrial fission and nuclear 
factor-κB-dependent inflammatory responses. Genetic inhi-
bition of Drp1 attenuated nuclear factor-κB activation and 
subsequent inflammatory responses in endothelial cells with 
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TNF-α exposure. Thus, in endothelial Drp1-deleted mice, 
leukocyte adhesion to endothelium in response to TNF-α 
injection was attenuated [91]. In addition, Drp1 appears to 
be indispensable for AngII-induced senescence in endothe-
lial cells [92]. Potential overall contributions of ADAM17 
in AAA and associated inflammation via Drp1-dependent 
mitochondrial fission are illustrated in Fig. 4.

Similar to AAA, experimental thoracic aortic aneurysm 
(TAA) model showed significant elevation of expression 
of ADAM17 in the vasculature [93]. Interestingly, VSMC-
specific ADAM17 deletion attenuates TAA formation via 
fibrosis, inflammation, and adverse aortic remodeling, 
whereas EC-specific ADAM17 deletion also attenuates TAA 
progression by protecting the integrity of adherens junction 
and tight junctions in an adventitial elastase exposure model 
[94].

In human AAA sample obtained during surgical opera-
tion, ADAM17 is overexpressed in the aortic wall [86] 
compared to normal aortae. Enzymatically active ADAM10 
and ADAM17 are carried on membrane microvesicles in 
the intraluminal thrombus of human AAA [95]. ADAM17 
expression is higher in the transition zone than in the mid-
portion of aneurysm, and ADAM17 is expressed in CD68-
positive macrophages in the media and adventitia obtained 
from the transition zone in AAA [96]. In addition, ADAM17 
promoter polymorphism rs12692386 is reported to associate 
with AAA, enhanced ADAM17 expression and circulated 
TNF-α [97]. Taken together, these data indicate ADAM17 
is important in the pathogenesis of AAA in humans.

ADAM17 in mediating vascular inflammation

Atherosclerosis is accelerated by chronic inflammation. 
Macrophages and monocytes are recognized as contribu-
tors to the inflammatory component of atherogenesis [98]. 
TIMP-3 overexpression in macrophage attenuates athero-
sclerosis in LDL receptor knockout mice [99]. ADAM17-
mediated shedding of colony-stimulating factor 1 (CSF-1) 
on the cell surface of neutrophils and macrophages enhances 
macrophage proliferation in state of acute and chronic 
inflammation [100]. Accordingly, monocyte ADAM17, not 
endothelial ADAM17, facilitates the completion of trans-
endothelial migration by accelerating the rate of diapede-
sis [101]. ADAM17 induced shedding of CSF [102] and 
functional suppression of macrophage via CSFR1 has been 
reported [103]. However, participation of CSFR1 in athero-
sclerosis has also been reported [104]. Thus, further clari-
fication seems needed regarding the overall contribution of 
the ligand as well as the receptor shedding by ADAM17 in 
atherosclerosis and associated inflammation.

Adhesion molecules such as vascular cell adhesion pro-
tein 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-
1), and L-selectin expressed in endothelium are other key 
players in atherosclerosis development by regulating leu-
kocyte recruitment [105–108]. ADAM17 cleaves these 
molecules and regulates inflammation. ADAM17-mediated 
shedding of VCAM-1 produces soluble form of VCAM-1 
[109]. This process is supported by the findings suggesting 
that circulating VCAM-1 can be a marker of atherosclerotic 
lesions in diabetes patients with atherosclerosis [110]. Ecto-
domain shedding of ICAM-1 is also ADAM17 dependent, 
and pharmacological or genetic inhibition of ADAM17 can 
block the ICAM-1 shedding, resulting in up-regulation of 
cell adhesive function [111]. Similar to soluble VCAM-1, 
circulating ICAM-1 is also reported to serve as a molecular 
marker for atherosclerosis [112]. L-selectin constitutively 
expressed by most circulating leucocytes including neutro-
phils is critical in directing these cells to the sites of inflam-
mation. ADAM17-deficient cells are impaired in L-selectin 
shedding, showing that L-selectin is cleaved by ADAM17 
[113], even though there is ADAM17-independent shedding 
of L-selectin [114]. Rapid ADAM17-mediated L-selectin 
shedding increases rolling velocity and enhances leukocyte 
accumulation on the vascular wall [115]. Constitutive shed-
ding by ADAM17 also regulates soluble L-selectin that 
affects interactions between leukocyte and endothelium 
[116]. CD44, a glycoprotein which promotes cell adhesion 
and migration, recruits inflammatory cells to vessel wall and 
activates vascular cells in atherogenic conditions, and CD44 
undergoes ADAM17-dependent cleavage [117].

Stimulation of the thromboxane A2 receptor induces 
rapid ADAM17-mediated shedding of cell surface CX3CL1, 
a key factor in recruiting monocytes. Shedding of CX3CL1 

Fig. 4  Vascular ADAM17 activation mediates smooth muscle cell 
senescence and endothelial inflammation thus changes vascular 
cell phenotypes leading to AAA. In VSMCs, ADAM17-dependent 
EGFR activation causes mitochondrial fission via Drp1 which leads 
to enhanced oxygen consumption and senescence. In EC, ADAM17-
dependent  TNF-α  production  stimulates Drp1-dependent mito-
chondrial fission and subsequent mitochondrial ROS production and 
NF-κB activation thus sustains EC inflammation. The vascular phe-
notype changes caused by ADAM17 activation, thus, contribute to 
AAA development
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results in recruitment of leukocytes to vascular inflammatory 
sites and enhanced adhesion once recruited [118]. ADAM17 
also affects vascular permeability by shedding of adhesion 
molecules in cell junction. JAM-A is another molecule 
known to facilitate vascular inflammation by promoting the 
migration of endothelial cells [119, 120] and monocytes 
[121, 122], as well as angiogenesis. ADAM17-mediated 
shedding of JAM-A is caused at vascular inflammation sites, 
and this shedding of JAM-A down-regulates transmigration 
of monocytes and increases endothelial permeability within 
the endothelial junctions [123]. There seem to be certain 
players that affect vascular inflammation via ADAM17 
activity modulation. Neutrophil activation upon E-selectin 
binding or endothelial adhesion promotes redistribution and 
co-clustering of ADAM17 and L-selectin, modulating the 
process of rolling, activation, arrest, and transmigration of 
neutrophils [124]. Oxidative conditions such as  H2O2 treat-
ment induce L-selectin shedding and thiol-disulfide con-
version occurring in extracellular region of ADAM17 are 
involved in this reaction [125]. Taken together, ADAM17 
regulates vascular inflammation in various manner including 
inflammatory activation, regulation of vascular permeability, 
rolling, adhesion, and transmigration of leukocytes.

ADAM17 mechanism of angiogenesis 
and neovascularization

Accumulating evidence suggests that ADAM17 promotes 
angiogenesis through stimulation of endothelial cell prolif-
eration, invasion, network formation, and MMP-2 activation 
[126, 127]. Vascular endothelial growth factor (VEGF)-A 
and the receptor vascular endothelial growth factor receptor 
2 (VEGFR2) are essential for angiogenesis, and VEGFR2 
is known to coordinate endothelial cell migration, capillary 
formation, and vascular permeability [128]. VEGF-A acti-
vates ADAM17 via ERK pathway, resulting in shedding of 
VEGFR2 and other substrates, and ADAM17 selective inhi-
bition attenuates VEGFR2-induced ERK phosphorylation 
[31]. VEGF-A/VEGFR2 causes migration of human umbili-
cal vein endothelial cells (HUVECs), and fibroblast growth 
factor 7 (FGF7)/FGF receptor 2-IIIb (FGFR2b) causes cell 
migration in epithelial cells. These migrations depend on 
EGFR/ERK signaling and ADAM17-mediated HB-EGF 
shedding [37]. In addition, a study using HUVECs showed 
that IL6 and interferon-γ caused ADAM17-dependent shed-
ding of neuregulin. Based on several cytokine measure-
ments, this neuregulin shedding is speculated to contribute 
to inflammation-associated angiogenesis [129]. ADAM17-
mediated HB-EGF shedding and subsequent EGFR transac-
tivation in retinal endothelial cells are also reported as key 
components in ocular neovascularization [130]. Genetic var-
iation at Tgfbm3 or pharmacological inhibition of ADAM17 
modulates postnatal circulating endothelial progenitor cell 

(CEPC) numbers through TGF-β receptor 1 activity, sug-
gesting that variant ADAM17 is an innate modifier of adult 
angiogenesis since CEPC numbers correlate with angiogenic 
potential [131]. Finally, ADAM17 inhibition enhances the 
expression of thrombospondin -1 (TSP1), an anti-angiogenic 
factor, and overexpression of ADAM17 down-regulates 
TSP1 in endothelial cells, suggesting that ADAM17 posi-
tively regulates angiogenesis by its negative feedback of 
TSP1 [132].

Cdc42, a Ras-related GTPase, has an important role in 
cell migration, proliferation, and survival. Contrary to the 
positive regulatory roles of ADAM17 as described, the 
deletion of Cdc42 increases ADAM17-dependent VEGFR2 
shedding, thus impairing angiogenesis in mice [133]. Flt, 
one of the VEGF receptors at the cell surface, consists of a 
homodimer or heterodimer with VEGFR2. ADAM17-medi-
ated ectodomain shedding of Flt antagonizes VEGF when 
Flt is co-expressed with VEGFR [134]. The regulatory roles 
of ADAM17 in angiogenesis could be varied by the given 
pathology and require further investigation.

Mice with conditionally inactivated ADAM17 in smooth 
muscle cells (Adam17/flox/flox/sm22α-Cre mice) show 
no clear effects on angiogenesis [135]. On the other hand, 
mice with conditionally inactivated ADAM17 in endothelial 
cells (Adam17/flox/flox/Tie2-Cre mice) show significantly 
reduced pathological neovascularization, although they have 
no obvious defects in developmental angiogenesis [135]. 
Similarly, endothelial ADAM17 knockdown with both con-
stitutive and inducible VE-cadherin Cre mice is reported 
to reduce collateral circulation formation [136]. These 
results indicate the essential role of endothelial ADAM17 
in neovascularization. Study showing that retinal neovas-
cularization is attenuated by ADAM17 inhibition with 
in vivo angiogenesis model supports this finding [137]. The 
distinct finding regarding the developmental angiogenesis 
likely involves different endothelial Cre driver-expression 
in distinct stage of the development. It is also important to 
determine the detailed substrate(s) and the activation mech-
anisms by which ADAM17 mediates angiogenesis under 
physiological (developmental), pathophysiological (retinal 
angiogenesis) or anti-pathological (collateral angiogenesis 
upon hypoxia) conditions.

ADAM17, cardiac development and diseases

ADAM17−/− mice die shortly after birth, with defects in 
the aortic, pulmonic, and tricuspid valves of their heart 
[138]. Similarly, mice lacking the  Zn2+ binding domain of 
ADAM17 (ADAM17 Δzn/Δzn), which inactivates metal-
loproteinase activity, die shortly after birth [113]. ADAM17 
Δzn/Δzn embryos present defective cardiac valvulogenesis 
[139], abnormal vascular beds and internal hemorrhages 
[140]. The waved with open eyes (woe) mouse is a model 
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of syntenic human ocular disorders. Woe is a hypomorphic 
mutation in ADAM17 where a small amount of functional 
ADAM17 is produced in woe animals, and they show 
enlarged heart and defects in the semilunar cardiac valves 
[141]. In addition, endothelial cell-specific ADAM17-
deleted mice show cardiac valve enlargement during embry-
ogenesis and progressive cardiomegaly and pronounced 
systolic dysfunction as adults, showing that endothelial 
ADAM17 may be necessary in normal cardiac development 
and homeostasis [142]. These results demonstrate the role of 
ADAM17 in the development of cardiac system and valves.

Expression of ADAM17 in the left ventricle is up-reg-
ulated in an abdominal artery coarctation-induced model 
of myocardial hypertrophy with increased expression of a 
NADPH oxidase, Nox4, showing that ADAM17 activation 
is required in pathological cardiac hypertrophy [143]. And 
cardiac protective effects of some drugs such as peroxisome 
proliferator-activated receptors (PPAR)-α agonists or Nox1/4 
inhibitor are involved in a reduction of ADAM17 expres-
sion [144, 145]. Furthermore, treatment with ADAM17 
small-interfering RNA can prevent angiotensin II-induced 
cardiac hypertrophy and fibrosis, with inhibition of angio-
tensin II-induced overexpression of markers of myocardial 
hypertrophy and fibrosis such as brain natriuretic peptide 
(BNP), α-skeletal actin, β myosin heavy chain (β-MHC), 
type I collagen, type II collagen, and fibronectin [146] or 
MMP-2 [147]. Interestingly, angiotensin II-induced cardiac 
hypertrophy is attenuated by VSMC-specific ADAM17 
silencing [66, 68], showing that angiotensin II-induced vas-
cular EGFR activation may be a specific requirement for the 
cardiac phenotype.

In addition to these findings, cardiomyocyte-specific 
ADAM17 knockdown mice showed lower mortality rate 
and less cardiac dysfunction caused by myocardial infarc-
tion with reduced activation and expression of VEGFR2 
in infarcted myocardium, highlighting the detrimental role 
of cardiomyocyte ADAM17 in recovery after myocar-
dial infarction via suppression of angiogenesis [148]. The 
myocardial infarction experimental model also showed 
that enhanced ADAM17 expression, along with decreased 
TIMP-3 and increased TNF-α expression within one week 
after acute myocardial infarction, is associated with cardiac 
remodeling [149]. These data indicate the potential benefit 
of ADAM17 inhibition in cardiac diseases.

On the contrary, myocardial hypertrophy and dysfunc-
tion induced by transverse aortic constriction are enhanced 
in cardiomyocyte-specific ADAM17 knockdown mice, and 
upregulation of integrin β1 induced by this pressure overload 
is also enhanced in ADAM17 knockdown animal. However, 
hypertrophy induced by a sub-pressor dose of angiotensin II 
is not affected by cardiac ADAM17 knockdown, suggesting 
that ADAM17 has a protective function in pressure-over-
load cardiomyopathy [150]. In addition, iRhom2–/– mice 

showed defective inflammatory responses at both acute M1 
and chronic M2 phases resulting in impaired cardiac repair 
upon myocardial infarction. This phenotype is explained by 
defective control of myeloid TNF-α/TNFR signaling.

Regarding the role of ADAM17 in human heart, the coro-
nary arteries obtained from aged or obese patients showed 
increased vascular endothelial ADAM17 activity suggest-
ing the development of remote coronary microvascular dys-
function [151]. Systemic levels of ADAM17 and TNF-α are 
higher in acute myocardial infarction (AMI) patients com-
pared to patients with stable angina. ADAM17 is highly 
expressed at the site of ruptured plaques in AMI patients, 
and this local ADAM17 expression level is independently 
and significantly correlated with adverse cardiac events dur-
ing follow-up period [152]. Both spontaneous and ADAM17 
activator-stimulated levels of ADAM17 and TNF-α are 
higher in peripheral blood mononuclear cells obtained from 
AMI patients compared to normal subjects, and these levels 
are correlated with in-hospital complications [153]. Moreo-
ver, a score evaluated from ADAM17 circulating substrates 
(soluble ICAM-1, soluble VCAM-1, soluble IL6 recep-
tor, and soluble TNFR1) is reported to be able to predict 
recurring cardiovascular events [154]. Collectively, clinical 
studies further support the detrimental roles of ADAM17 in 
human myocardial diseases.

ADAM17 and kidney diseases

Mice infused with angiotensin II for 2 months suffer from 
ADAM17-mediated shedding of TGF-α and subsequent 
EGFR transactivation-dependent renal lesions such as glo-
merulosclerosis, tubular atrophy, and interstitial fibrosis 
[155]. In addition, ADAM17 is induced and redistributed in 
angiotensin II-damaged kidneys and inhibition of ADAM17 
can blunt angiotensin II-induced renal lesions [155]. Simi-
larly, fibrosis after ischemia–reperfusion injury or unilateral 
ureteral obstruction is attenuated in ADAM17 hypomorphic 
mice or mice with inducible silencing of ADAM17 in proxi-
mal tubule [156]. The non-receptor tyrosine kinase, focal 
adhesion kinase (FAK), is suggested as a key regulator of 
Src-mediated ADAM17 Tyr702 phosphorylation and sub-
sequent profibrotic responses in mesangial cells under high 
glucose condition [157]. In streptozotocin-induced diabetic 
mice, Src inhibitors also attenuate ADAM17 activation in 
the kidney cortex, albuminuria, glomerular collagen accu-
mulation, that are associated with attenuation of ERK and 
EGFR phosphorylation [158]. These data suggest the critical 
role of ADAM17 in renal fibrosis.

In lupus nephritis, iRom2/ADAM17-mediated TNF-α and 
EGFR signaling pathways also cause renal damage [159]. 
Polycystic kidney disease (PKD) is a genetic disorder lead-
ing to the formation of multiple cysts in kidneys. The study 
of animal models of autosomal recessive PKD has revealed 
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that ADAM17 expression is increased in the collecting duct 
epithelial cells in the cystic kidneys. Activation of ADAM17 
induces constitutive shedding of HB-EGF, amphiregulin and 
TGF-α, resulting in EGFR/ERK pathway activation and 
maintains higher cell proliferation in PKD cells [160].

Clinical studies further suggest that ADAM17 plays 
important roles in human renal diseases. Patients with acute 
kidney injury or chronic kidney disease (CKD) have high 
soluble amphiregulin in their urine and both ADAM17 and 
amphiregulin expression are strongly correlated with mark-
ers of fibrosis in kidney biopsies [156]. In various human 
renal diseases, ADAM17 is strongly induced in podocytes, 
proximal tubules, and peritubular capillaries, and renal 
ADAM17 expression is significantly associated with glo-
merular and interstitial injury or renal function [161]. Uri-
nary ADAM17 is increased in type 2 diabetes patients and 
could be used as an early biomarker to detect CKD [162]. 
Moreover, large clinical studies showed that high ADAMs 
activity level is independently correlated with CKD progres-
sion and onset of cardiovascular events in CKD patients 
[163, 164].

ADAM17 and metabolic disorders

ADAM17 activation is considered as one of the major driv-
ers causing insulin resistance associated with metabolic dis-
orders. In insulin receptor haplo-insufficient (Insr ±) diabetic 
mice, pharmacological inhibition of ADAM17 by TAPI-1 
can reduce blood glucose level and vascular inflammation 
[165]. In addition, knock down of tissue inhibitor of met-
alloproteinases-3 (TIMP-3), an inhibitor for ADAM17 and 
MMPs, in Insr ± mice aggravates blood glucose level and 
vascular inflammation [165]. On the contrary, TIMP-3 over-
expression in macrophage can protect mice from increasing 
insulin resistance, adipose tissue inflammation, and non-
alcoholic fatty liver [166].

There is additional evidence to support these findings. 
High-fat diet causes increased body weight, liver weight, 
epididymal adipose tissue weight, systolic blood pressure, fast-
ing blood glucose and lipid levels, and decreased adiponectin 
level, and these changes are attenuated in temporal systemic 
ADAM17 deletion (TaceMx1) mice. In addition, increased 
macrophage infiltration and the expression of TNF-α and 
monocyte chemoattractant protein-1 (MCP-1) in epididymal 
adipose tissue induced by high-fat diet are also attenuated in 
TaceMx1, suggesting that ADAM17 is an important media-
tor in the development of obesity-induced metabolic disorders 
[167]. ADAM17 ± mice are partially protected from obesity 
and insulin resistance compared with wild type mice [168], 
and ADAM17 inhibitor can improve insulin sensitivity in 
fructose-fed rats [169] or high-fat diet-fed mice [170]. Dele-
tion of iRom2 also protects against diet-induced obesity [171]. 
In addition, macrophage metabolic reprogramming has been 

suggested to enhance aortic dissection via hypoxia-inducible 
factor 1α (HIF-1α)-dependent ADAM17 induction [172]. In 
line with the requirement of iRhom2 in myeloid TNF-α pro-
duction, iRhom2–/– mice are protected against high-fat diet-
induced adipose tissue inflammation, weight gain and insu-
lin resistance [173]. Taken together, ADAM17 and iRhom2 
should be recognized to play an important role in metabolic 
disorders and diabetes.

ADAM17 SNPs and loss‑of‑function mutations

ADAM17 SNPs (rs10495565, rs12474540, and rs17524594) 
associate with the presence of pulmonary arteriovenous mal-
formations in hereditary hemorrhagic telangiectasia 1 (HHT1), 
indicating genetic variation in ADAM17 can promote a TGF-
β-regulated vascular diseases [131]. In addition, ADAM17 
SNPs (rs6705408, rs10495563, and rs6432017) are associ-
ated with incidence of Kawasaki disease and interaction with 
TGF-β signaling is suggested [174]. Two ADAM17 SNPs 
(m1254A > G and i33708A > G) also contribute to obesity 
risk [175]. However. the relation of these SNPs and ADAM17 
expression or activity remains unstudied. ADAM17 SNP 
Ser746Leu and -154A allele have been reported to increase 
soluble TNF-α plasma levels and the risk of cardiovascular 
death [176]. In addition, further studies may enable us to use 
a tailor-made approach for cardiovascular diseases based on 
information from ADAM17 SNPs.

Regarding the loss-of-function mutation, a late-onset famil-
ial Alzheimer disease was identified to co-segregate with rare 
heterozygous ADAM17 single nucleotide variant rs142946965 
[177]. This causes ADAM17 mutation R215I directly adja-
cent to pro-protein convertase cleavage motif 210–214 and 
severely impairs ADAM17 maturation leading to amyloid β 
formation. In addition, heterozygous mutation of ADAM17 
Y42D and L659P are associated with incidence of Fallot tetral-
ogy and loss of HB-EGF shedding [178]. Finally, two distinct 
homozygous loss-of-function mutations of human ADAM17 
have been reported (c.603-606delCAGA and c.308dupA). The 
siblings with 603-606delCAGA demonstrated skin lesions and 
diarrhea. While one of the siblings (a girl) died at age of 12, 
the affected boy has survived with loss of ADAM17 expres-
sion, diminished TNF-α production and left ventricular dilata-
tion [179]. The c.308dupA patient demonstrated skin lesions, 
diarrhea and severely diminished levels of plasma TNF-α and 
IL2. Interestingly, this patient developed unexpected hyper-
tension. Recurrent sepsis was the cause of death at 10 months 
[180].
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Other ADAMs in cardiovascular 
pathophysiology

In addition to ADAM17, ADAM8, 9, 10, 12, 15, 19, 28 
and 33 are expressed on various cells including endothe-
lial cells, smooth muscle cells, and leukocytes, and they 
also have proteolytic activity. Accumulating data suggest 
that other ADAMs play notable roles in cardiovascular 
pathophysiology by mediating inflammation, angiogenesis, 
cell proliferation, and cell migration (Fig. 5 and Table 2). 
Among these ADAM families, ADAM10 is most broadly 
expressed and is closely related to ADAM17 in its structure 
and function. Therefore, ADAM10 is recognized as another 
important shedding proteinase which mediates various sig-
nal transduction. Important for cardiovascular pathophysiol-
ogy, ADAM10 can affect inflammation by cleaving CD44 
[117], CX3CL1 [181], C-X-C motif chemokine ligand 16 
(CXCL16) [182], IL6 receptor [183], receptor for advanced 
glycation end products (RAGE) [184], and TNF-α [185]. It 
also affects angiogenesis by cleaving JAM-A [123], Notch 

[186], neuropilin 1 (NRP-1) [31, 187], VEGFR2 [188] and 
vascular endothelial (VE)-cadherin [189]. It affects cell pro-
liferation or migration by cleaving betacellulin [190, 191] 
and HB-EGF [192], affects collagen turnover by cleaving 
discordin domain receptor family, member 1 (DDR1) [193], 
affects apoptosis by cleaving receptor activator of nuclear 
factor κ-B ligand (RANKL) [194], and affects blood pressure 
by cleaving corin [195]. Furthermore, ADAM10 can affect 
acute kidney injury by cleaving meprin A, a membrane-asso-
ciated metalloproteinase in proximal tubules, since meprin 
A is one of the key players in acute kidney injury [196]. 
However, as mentioned previously, most substrates can be 
cleaved by multiple ADAMs. The interaction between each 
ADAM and its substrates depends on pathophysiologic con-
dition. Furthermore, some substrates are cleaved by their 
respective ADAMs in different manner and in different cell 
component. ADAM10-mediated Notch shedding is ligand 
dependent; whereas, ADAM17-mediated Notch shedding is 
ligand-independent [197]. Neural cell adhesion molecule L1/
CD171 and CD44 are cleaved by ADAM17 at cell surface 
and soluble forms are released into the extracellular space; 
whereas, they are cleaved by ADAM10 in endosomes and 
soluble forms are released from cell as exosomes [198]. Neu-
regulin, cleaved by ADAM17 at cell surface, is cleaved in 
the Golgi apparatus by ADAM19 [199]. There are highly 
complicated relations between ADAMs and substrates that 
should be elucidated further. Because of this complexity, 
the approach to consider ADAMs as therapeutic targets is 
challenging.

ADAMs can also serve in non-proteolytic manner. 
ADAM15 regulates endothelial permeability and neutrophil 
migration by promoting Src/ERK signaling in a protease 
activity-independent manner [200], and subsequently con-
tributes to atherosclerosis [201]. ADAM28 is reported to 
bind to C1q and attenuates C1q-induced cell death [202]. It 
binds to P-selectin glycoprotein ligand-1 (PSGL-1) to pro-
mote leukocyte rolling, adhesion to endothelial cells and 
subsequent inflammation [203]. It also binds to integrin α4 
β1 and enhances cell adhesion to VCAM-1 and regulates 
spatial and temporal trans-endothelial migration of lympho-
cytes [204]. In the following section, we highlight the role of 
these ADAMs in cardiovascular pathophysiology.

Lessons from genetically modified animal models

ADAM8 –/– mice [205], ADAM9 –/– mice [206], ADAM15 
–/– mice [207], and ADAM33 –/– mice [208] are viable 
and do not show an obvious phenotype under normal condi-
tions. However, there are reduced retinal neovascularization 
in an experimental retinopathy model in ADAM8 –/– mice 
[209], ADAM9 –/– mice [210] and ADAM15 –/– mice 
[207]. ADAM10 –/– mice die before birth with defects in 
cardiovascular system [211]. ADAM19 –/– mice also die 

Fig. 5  Cell-type-specific role of non-ADAM17 ADAMs in cardiovas-
cular diseases. Non-ADAM17 ADAMs are expressed in various cell 
types and regulate cellular signaling within and between these cells. 
Non-ADAM17 ADAMs thereby mediate cardiovascular pathophysi-
ology including hypertension, atherosclerosis and cardiovascular 
inflammation. The figures are created based on the references used in 
the other ADAMs section
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perinatally, likely as a result of cardiac valve and vasculature 
defects [212, 213]. In addition, knockdown of MMP-7 atten-
uates angiotensin II-induced myocardial ADAM12 overex-
pression, hypertension and cardiac hypertrophy, showing the 
importance of MMP-7/ADAM12 signaling axis in hyperten-
sive cardiac disorders [214].

Mice lacking the ADAM10 gene primarily in endothelial 
cells show multiple cardiac and vascular defects similar to 
Notch1 mutants [186, 215], suggesting that Notch signal-
ing pathway is a key player in ADAM10-mediated cardio-
vascular development. ADAM10-mediated Notch signal-
ing also promotes the development and maturation of the 

glomerular vasculature [216]. Using a similar model, Notch1 
and Notch4 were shown to control the development of sev-
eral organ-specific vascular beds in an ADAM10-dependent 
manner [217]. Moreover, collecting duct-specific ADAM10 
knockout mice show defects in urine concentration, polyuria, 
and hydronephrosis, along with reduction of Notch activ-
ity in the collecting duct epithelium [218]. Transplantation 
of bone marrow from myeloid-specific ADAM10 knockout 
mice to atherogenic model mice does not affect the plaque 
size, but increases plaque collagen content, indicating that 
myeloid ADAM10 modulates atherosclerotic plaque sta-
bility. ADAM10-deficient macrophages further showed 

Table 2  Cardiovascular-related substrates of ADAMs

Inflammation Angiogenesis Proliferation/migration Others

ADAM8 CD16 [318]
CD23 [319]
CX3CL1 [318]
L-selectin [320]
TNF alpha [318]
TNFR1 [321]
VCAM-1 [322]

TGF alpha [318]

ADAM9 CD40 [210]
VCAM-1 [210]

Notch [282]
Tie-2 [210]
VE-cadherin [210]
VEGFRII [210]

HB-EGF [323] ADAM10 [324, 325]
EphB4 [210]

ADAM10 CD44 [117]
CX3CL1 [181]
CXCL16 [182]
IL6R [183]
RAGE [184]
TNF alpha [185]

E-cadherin [326]
JAM-A [123]
N-cadoherin [221]
Notch1 [186, 282]
Notch2 [327]
NRP-1 [31]
VEGFRII [188]
VE-cadherin [189]

Betacellulin [190, 191]
HB-EGF [63]

CD84 [328]
Corin [195]
DDR1 [193]
Klotho [109]
Meprin A [196]
Neuregulin [329]
RANKL [194]

ADAM12 E-cadherin [330]
IFGBP3 [331]
IFGBP5 [331]
Notch1 [282]

Betacellulin [332]
HB-EGF [333]

ADAM15 E-caderin [334]
VEGFR [335]

FGFR2iiib [331] ADAM10 [325]

ADAM17 CD40 [268]
CD44 [117]
CD163 [310]
CX3CL1 [252, 253]
ICAM-1 [111]
IL-1R II [21]
IL6R [277, 278]
L-selectin [113]
L1-CAM [295]
p55 TNF alpha RI [20, 21]
P75 TNF receptor [21, 113]
PECAM-1 [135]
TNF alpha [4, 11, 20, 190, 260, 261]
VCAM-1 [109, 299]

JAM-A [123]
Notch1 [282, 283]
VEGFR [31]

HB-EGF [135, 190, 300, 303]
IGFR1 [135]
Pref-1 [282, 304]
SEMA4D [305]
syndecan 1 and 4 [287]
TGF alpha [113, 300]

ACE2 [263–265]
EPCR [83]
Ephrin B4 [135]
Jagged 1 [38]
Klotho [312]
RANKL [259]

ADAM19 Alpha 2 macroglobulin [336]
TNF alpha [20, 337]

Neuregulin [231, 338] (pro)renin receptor [339]
RANKL [337]

ADAM28 TNF alpha [234] IGFBP3 [340] CTGF [341] vWF [342]
ADAM33 RANKL [343]
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anti-inflammatory phenotype with increased IL-10 and 
decreased pro-inflammatory factors such as IL-12 [219]. 
In addition, AngII-induced AAA in mice is exaggerated in 
ADAM15–/– mice. This is due to defect in thrombospon-
din-1 processing by ADAM15 causing thrombospondin-
1-dependent apoptosis of VSMCs [220].

Other ADAMs in cardiovascular disease, human 
findings

In human atherosclerotic lesions, ADAM10 is expressed 
and its expression is associated with plaque progression 
and neovascularization [188]. Increased ADAM10 expres-
sion in human atherosclerotic lesions is associated with 
decreased N-cadherin when apoptosis increases [221]. 
This association between ADAM10 and vascular remod-
eling is further supported by some animal models. A study 
with  CaCl2-induced TAA model showed that ADAM10 
expression was significantly increased in intima and media 
of TAA [93]. A study using diabetic minipigs showed that 
ADAM10 expression was increased in vascular segments 
obtained from coronary artery restenosis, implicating the 
role of ADAM10 in neointimal formation [222]. ADAM9 
and ADAM15 also express in human atherosclerotic lesions 
[223], co-localized with CD68-positive cells of monocytic 
origin in the plaques [84]. ADAM8 and ADAM15 are highly 
expressed in the media layer in patients with ascending aor-
tic dissection compared to that in patients with dilatation 
of the ascending aorta [224]. Although ADAM8 is up-reg-
ulated in atherosclerotic lesions and expressed in circulat-
ing neutrophils and macrophages in humans, whole body 
and hematopoietic ADAM8 deletion did not alter athero-
sclerotic plaque development [225]. In high-graded carotid 
artery lesions, macrophages and smooth muscle cells are 
positive for ADAM8, ADAM10, ADAM12, ADAM15, and 
ADAM17. The luminal surface of endothelial cells is posi-
tive for ADAM15, and neo-vessels are positive for ADAM12 
[226]. ADAM33 is expressed in smooth muscle cells and 
inflammatory cells within human atherosclerotic lesions 
[227]. Moreover, ADAM33 SNPs are reported to correlate 
with the extent of atherosclerosis in coronary artery disease 
patients [227] and cardiovascular mortality [228]. The risk 
alleles of ADAM8 SNPs are associated with elevated serum 
soluble ADAM8 and the risk of myocardial infarction in 
two independent cohorts [229]. This result is supported by 
animal study showing that myocardial infarction increased 
remote ADAM8 expression in rat heart [230]. In line with 
ADAM15–/– mice enhancing AAA, ADAM15 expression 
appears decreased in human AAA samples as well as AngII 
model of mouse AAA [220]. Collectively, several ADAMs 
seem to contribute to arterial physiology, progression of ath-
erosclerosis and ischemic heart diseases in humans.

In human kidneys, mesangial ADAM19 expression is 
associated with glomerular damage, and ADAM19 in proxi-
mal tubules and in peritubular capillaries is associated with 
interstitial fibrosis, and tubular ADAM19 is associated with 
declining renal function [231]. These data indicate the role 
of ADAM19 in renal profibrotic and proinflammatory pro-
cesses [231]. In addition, study with renal transplant patients 
showed that ADAM19 mRNA was significantly higher in 
chronic allograft nephropathy, and ADAM19 expression in 
renal endothelium was significantly higher in acute rejec-
tion [232].

RAGE is widely recognized to have an important role 
in the pathogenesis of diabetic complications, and Type 1 
diabetes patients have significantly higher serum soluble 
RAGE, along with an increase in serum ADAM10 [233]. 
Finally, ADAM28 expression in blood mononuclear cells 
significantly correlates with parameters of metabolic syn-
drome including body mass index and relative fat, suggest-
ing the role of ADAM28 in human metabolic conditions 
[234].

Therapeutic potential

As reviewed elsewhere, various ADAM17 inhibitors have 
been synthesized which selectively inhibit ADAM17 and 
do not inhibit other metalloproteinases [235, 236]. Using 
animal models, the efficacy of ADAM17 inhibition is 
reported in not only inflammatory diseases such as rheuma-
toid arthritis [237] but also cardiovascular disorders such as 
renal fibrosis [155, 238], intestinal reperfusion injury [239], 
or polycystic kidney disease [240, 241]. Similarly, mice 
with genetically modulated ADAM17 indicate the positive 
potential of ADAM17 inhibition in inflammation such as 
septic shock [80, 138, 242]. A9B8 is a human/mouse cross-
reactive inhibitory antibody against ADAM17. A9B8 treat-
ment attenuated EGFR transactivation in cultured VSMCs. 
Moreover, it attenuated cardiovascular pathology in mice 
infused with angiotensin II [66]. A9B8 also effectively pre-
vented AAA development and rupture in a mouse model 
[87]. In addition, the auto-inhibitory ADAM17 prodomain 
which inhibits ADAM17, but not ADAM10, can attenuate 
TNF-α secretion. This peptide inhibitor appears effective 
in ADAM17-dependent models of inflammatory diseases 
including rheumatoid arthritis [243]. In spite of these prom-
ising in vivo results, pre-clinical trials and clinical trials 
using ADAM17 inhibitors had to be discontinued due to 
hepatotoxicity [237] or lack of efficacy [244]. One of the 
reasons can be that ADAM17 inhibition affects normal phys-
iological conditions. ADAM17 –/– mice die shortly after 
birth because of a variety of defects [138] but mice with 
reduced ADAM17 level in all tissues (ADAM17 ex/ex) show 
substantially increased susceptibility to inflammation [80], 
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indicating that adequate therapy window should be set for 
ADAM17 inhibitors. Since ADAM17 inhibitors have dem-
onstrated adverse side effects clinically, certain regulators 
of ADAM17 can also be considered as therapeutic targets. 
One such regulator, iRhom2, is an essential determinant of 
ADAM17-dependent shedding in leukocytes by mediat-
ing ADAM17 maturation, and iRhom2 is potential target 
for selective inactivation of the pro-inflammatory roles of 
ADAM17 activation [245].

Another approach is to analyze and utilize ADAMs-mod-
ulating aspects of existing drugs. Aspirin is widely used for 
the prevention of thrombosis of coronary artery and cer-
ebral artery. Aspirin at high concentrations is reported to 
induce ADAM17-mediated shedding of glycoprotein (GP)
Ib α and GPV [246]. Non-steroidal anti-inflammatory drugs 
(NSAIDs) with diphenylamine structure causes a reduction 
in the neutrophil intracellular ATP concentration, and this 
reduction is related with ADAM17-dependent L-selectin 
shedding at leukocyte surface [247]. 1,25-dihydroxyvitamin 
D, the hormonal form of vitamin D, has a potential anti-
inflammatory and anti-atherosclerotic effect, and is widely 
used for chronic kidney disease patients, because 1,25-dihy-
droxyvitamin D is proven to significantly improve not only 
secondary hyperparathyroidism but patients’ survival via 
renal and cardiovascular protective effects [248]. 1,25-dihy-
droxyvitamin D inhibits ADAM17 expression through the 
induction of C/EBP beta [249], and prevents ADAM17/
TNF-α-mediated secondary hyperparathyroidism, fibrotic 
and inflammatory lesions to the renal parenchyma, and sys-
temic inflammation [250]. 1,25-dihydroxyvitamin D also 
causes ADAM10-dependent TNFR1 shedding, thus block-
ing TNF-α function in VSMC [251]. These agents regulating 
ADAMs activity could be considered as a novel therapeutic 
approach if the mechanisms are clarified further.

Concluding remarks

Since ADAMs are ubiquitously expressed in somatic cells 
and they cleave various substrates, ADAMs, especially 
ADAM17, have important and highly intricate roles in cell 
signaling. The accumulation of research in this area stead-
ily shed light on the role of ADAM17 and other ADAMs in 
cardiovascular diseases. Although ADAM17 and some of 
the other ADAMs are essential for normal development or 
cardiovascular homeostasis, excess of these ADAMs activa-
tion aggravates inflammatory response and cardiovascular 
pathophysiology, and ADAM17 inhibition is thought to be 
promising therapeutic target for cardiovascular and renal dis-
eases. We hope further research based on existing evidence 
highlighted in this review will elucidate ADAMs-mediated 
signal transduction and pathophysiology of cardiovascular 

diseases, and embody the therapeutic potential with phar-
macological targeting.
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