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Humans differ in their capability to judge choice accuracy via confidence judgments. Popular
signal detection theoretic measures of metacognition, such as M-ratio, do not consider the
dynamics of decision making. This can be problematic if response caution is shifted to alter
the tradeoff between speed and accuracy. Such shifts could induce unaccounted-for sources
of variation in the assessment of metacognition. Instead, evidence accumulation frameworks
consider decision making, including the computation of confidence, as a dynamic process
unfolding over time. Using simulations, we show a relation between response caution and
M-ratio. We then show the same pattern in human participants explicitly instructed to focus
on speed or accuracy. Finally, this association between M-ratio and response caution is also
present across four datasets without any reference towards speed. In contrast, when data are
analyzed with a dynamic measure of metacognition, v-ratio, there is no effect of speed-

accuracy tradeoff.
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ARTICLE

hen asked to explicitly report how sure they are about

their decisions, humans often claim high confidence

for correct and low confidence for incorrect decisions.
This capacity to evaluate the accuracy of decisions is often
referred to as metacognitive accuracy. Although metacognitive
accuracy about perceptual decisions is generally high!, it varies
significantly between participants? and between conditions>. Such
differences in metacognitive accuracy are associated with
important real-life consequences, as they relate, for example, to
political extremism# and psychiatric symptoms®. Moreover, an
increasing number of researchers across different fields are
starting to investigate to what extent observers can evaluate their
own performance in different domains of cognition, such as
sensorimotor uncertainty®, motor movements and imagery’,
metric error monitoring®, value-based decisions®, group-decision
making!? and probabilistic learning! .

A debated question is how to quantify metacognitive accuracy.
One prominent issue why one cannot simply calculate the cor-
relation between confidence and choice accuracy!? is that this
confounds choice accuracy with metacognitive accuracy; i.e. it is
much easier to detect one’s own mistakes in an easy task than in a
hard task. Different solutions have been proposed in the litera-
ture, such as using coefficients from a logistic mixed-model!?,
type 2 ROC curves?, and meta-d’141°, Rather than providing an
in-depth discussion and comparison of these different measures,
we here focus on one prominent static approach, namely the
meta-d’ framework, the state-of-the-art measure of metacognitive
accuracy!®. The meta-d’ approach is embedded within signal
detection theory, and quantifies the extent to which confidence
ratings discriminate between correct and incorrect responses
(meta-d’) while controlling for first-order task performance (d’).
Because both measures are on the same scale, one can calculate
the ratio between both, meta-d’/d’, also called M-ratio, often
referred to as metacognitive efficiency. When M-ratio is 1, all
available first-order information is used in the (second-order)
confidence judgment. When M-ratio is smaller than 1, metacogni-
tive sensitivity is suboptimal, meaning that not all available infor-
mation from the first-order response is used in the metacognitive
judgment!®. This measure has been used to address a variety of
questions, such as whether metacognition is a domain-general
capacity>1718, the neural correlates of metacognition!®-22, how
bilinguals differ from monolinguals??, and how individual differ-
ences in metacognitive accuracy correlate with various constructs®°.

An important limitation is that the meta-d’ framework (just
like the other static approaches cited above), does not consider
dynamic aspects of decision making. Put simply, this measure
depends on end-of-trial confidence and choice accuracy, but not
on the response process governing the choice and its resulting
reaction time. It is well known, however, that choice accuracy
depends on response caution; i.e. choice accuracy decreases when
participants are instructed to be fast rather than to be correct?42>,
The fact that static approaches of metacognition do not consider
response caution is problematic because it confounds ability with
caution: when focusing on speed rather than accuracy, one will
produce many errors due to premature responding, and those
errors are much easier to detect compared to errors resulting
from low signal quality?®. Importantly, detecting “premature”
errors does not imply “good metacognition” per se, but instead
simply depends on one’s level of response caution.

To account for dynamic influences on metacognition, we
propose to instead quantify metacognitive accuracy in a dynamic
framework?”-28. Sequential sampling models explain human
decision making as a dynamic process of evidence
accumulation?-31. Specifically, decisions are conceptualized as
resulting from the accumulation of noisy evidence towards one of
two decision boundaries. The first boundary that is reached,

triggers its associated decision. The height of the decision
boundary controls the response caution with which a decision is
taken?42>. When lowering the boundary, decisions will be faster
but less accurate; when increasing the boundary, decisions will be
slower but more accurate. The prototypical dynamic sampling
model is the drift diffusion model (DDM). In this model, con-
fidence can be quantified as the level of evidence integrated after
additional post-decisional evidence accumulation?7-28:3233 This
formalization of confidence, visualized in Fig. 1A, can explain the
typical finding that trials with strong evidence are more likely to
be judged with high confidence than trials with weak evidence. As
mentioned, the process of evidence accumulation terminates at
the first boundary crossing. At that moment in time, given fixed
decision boundaries, the level of evidence, e, x, is constant, where
e is the level of evidence at time ¢, t is the timing of boundary
crossing and X is the choice made?”-32-34, In typical experiments,
however, confidence judgments are provided separately in time
(at time t+s, ie, in a separate judgment after the choice),
allowing post-decisional evidence accumulation. As a con-
sequence, confidence can be quantified as e, x27-2834, This
implies that a choice will be made once the integrated evidence
reaches boundary a, but confidence is only computed after
additional evidence accumulation (see Fig. 1A for illustration).

Within this formulation, good metacognitive accuracy can be
considered as the ability to distinguish correct choices versus
error choices based on e, x, i.e., based on confidence. Critically,
the difference in the quantity e, x for correct choices versus
error choices, directly depends on the strength of post-decisional
accumulation. This is visually depicted in Fig. 1B: when post-
decisional evidence accumulation is only driven by noise (i.e.,
post-decision drift rate is zero), model predicted confidence will
be identical for correct and error trials (Fig. 1B, left panel). On the
other hand, when post-decisional evidence accumulation is very
strong (i.e. post-decision drift rate is high) model predicted
confidence strongly dissociates between corrects and errors,
reflecting good metacognition (Fig. 1B, right panel). From the
above, it becomes clear that we can use the strength of post-
decisional evidence accumulation as a dynamic measure of
metacognitive accuracy. For comparison with the M-ratio fra-
mework, we quantified v-ratio as the ratio between post-decision
drift rate and (pre-decision) drift rate. Figure 1B shows post-
decision accumulation for three scenarios with varying levels of
v-ratio. As can be seen, if v-ratio is zero (left panel), additional
evidence meanders adrift for both corrects and errors, and the
model does not detect its own errors, i.e., representing a case of
poor metacognitive accuracy. If, however, v-ratio equals 1 (i.e.,
post-decision drift rate and drift rate are the same), additional
evidence confirms most of the correct choices (i.e., leading to high
confidence) and disconfirms most of the error choices (i.e.,
leading to low confidence), i.e., representing good metacognitive
accuracy. We thus propose that v-ratio can be used as a dynamic
measure of metacognitive accuracy. In the current work, we show
that decreased response caution is associated with increased
estimates of M-ratio whereas v-ratio is independent of response
caution. This is the case both in drift diffusion model simulations,
in two experiments where participants are explicitly instructed to
change the tradeoff between speed and accuracy, and in four
datasets where no reference regarding speed or accuracy is
provided.

Results

Model simulations reveal a link between response caution and
M-ratio. We simulated data from a drift diffusion model with
additional post-decisional evidence accumulation (see Fig. 1A).
Decision confidence was quantified as the level of integrated
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Fig. 1 Quantifying metacognitive accuracy within an evidence accumulation framework. A Noisy sensory evidence accumulates over time, until the
integrated evidence reaches one of two decision boundaries (a or 0). After the decision boundary is reached, evidence continues to accumulate. Model
confidence is quantified as the integrated evidence after post-decisional evidence accumulation. B Histograms of model-predicted confidence for different
levels of v-ratio (reflecting the ratio between post-decision drift rate and drift rate). Higher levels of v-ratio are associated with better dissociating corrects
from errors. € Simulations from this dynamic evidence accumulation model show that v-ratio captures variation in M-ratio (r = 0.436; left panel), and
critically, that M-ratio is also related to the differences in decision boundary (r= —0.552; middle panel). By design, decision boundary and v-ratio are
unrelated to each other (r ~ O; right panel). Data are based on N =100 simulations. Source data are provided as a Source Data file.
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Table 1 Correlation table of the parameters from the model simulation, based on N =100 simulations.

r=-0.04, p=0.696
r=-0.03, p=0.769

1. Drift rate
2. Non-decision time
3. Decision boundary

r=0.02, p=0.845

4. v-ratio r=0.02, p=0.845 r=-0.07, p=0.493 r=-0.04, p=0.695 -
5. M-ratio r=-0.24, p=0.017 r=0.01, p=0.922 r=-0.55, p<0.001 r=0.44, p<0.001 -
evidence after additional post-decisional evidence between meta-d’ and d’, increasing the probability of premature

accumulation?’32-34, We simulated data for 100 agents with 1000
observations each; for each agent, a different random value was
selected for drift rate, non-decision time, decision boundary and
post-decision drift rate. Importantly, we made sure that the simu-
lated data showed the same correlation between average choice RT's
and average confidence RTs as seen in the empirical data (see
Methods). We then used these data to compute M-ratio, after
dividing confidence ratings into four bins, separately for each
observer (which is needed to compute meta-d’). As explained before,
v-ratio was computed as the ratio between post-decision drift rate
and drift rate. The results of our simulation study showed that, first,
there was a clear positive relation between M-ratio and v-ratio,
1(98) = 0.436, p < 0.001, reflecting that M-ratio captures individual
variation in metacognition (Fig. 1C, left panel). However, we also
observed a strongly negative relation between M-ratio and decision
boundary, r(98) = —0.552, p <0.001 (Fig. 1C, central panel). This
shows that M-ratio is highly dependent on the speed-accuracy tra-
deoff that one adopts: Lower bounds are associated with higher
M-ratio. Intuitively, this occurs because lowering the decision
boundary increases the probability of premature errors due to noise
in the accumulation process. Given that M-ratio reflects a ratio
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errors can affect M-ratio in two ways: first, a lower decision
boundary decreases d’, and will therefore have the effect that it
increases M-ratio. Second, it is known that premature errors are
easier to detect?S, and therefore a lower decision boundary might
increase meta-d’, and will therefore increase M-ratio. Finally, by
design there was no relation between v-ratio and decision boundary,
r(98) = —0.044, p=0.670 (Fig. 1C, right panel). In the Supple-
mentary Information, Supplementary Note 2, we report an addi-
tional analyses into the dynamics of v-ratio using type II area under
the curve (AUC). The full correlation matrix is shown in Table 1.

Experiment 1: Explicit speed-accuracy instructions affect static
but not dynamic measures of confidence. Next, we tested these
model predictions in an experiment with human participants. We
recruited 32 human participants who performed a task that has
been widely used in the study of evidence accumulation models:
discrimination of the net motion direction in dynamic random
dot displays?®. Participants were asked to decide whether a subset
of dots was moving coherently towards the left or the right side of
the screen (See Fig. 2A). The percentage of dots that coherently
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Fig. 2 The influence of speed-accuracy instructions on metacognitive accuracy (Experiment 1). A Sequence of events in the experimental task.
Participants (N = 32) decided whether the majority of dots were moving left or right, by pressing “C" or “N” with the thumbs of both hands. Immediately
after their choice, they then indicated their level of confidence using a six-point scale. Depending on the block, instructions during the ITI were either to
focus on choice accuracy or to focus on speed. B Fitted parameters of a drift diffusion model with additional post-decision accumulation. Fitted decision
boundaries were lower in the speed vs accuracy condition, t(31) =5.59, p < 0.001, whereas drift rates did not differ, p = 0.478. Critically, M-ratio was
higher in the speed vs accuracy condition, t(31) =2.29, p = 0.029, whereas v-ratio did not differ between both instruction conditions, p = 0.647.

C Distribution of reaction times and confidence for empirical data (bars) and model fits (lines or crosses), separately for corrects (green) and errors (red).
D Participants were faster, t(31) =5.67, p<0.001, less accurate, t(31) = 2.20, p = 0.035, and less confident, t(31) = 2.41, p = 0.022, when instructed to
focus on speed rather than on accuracy. Note: grey lines show individual data points; black lines show averages; green dots show model fits; error bars
reflect SEM; ***p < 0.001, **p < 0.01, *p < 0.05. Source data are provided as a Source Data file.

moved towards the left or right side of the screen (controlling
decision difficulty) was held constant throughout the experiment
at 20%. After their choice, participants indicated their level of
confidence by pressing one of six buttons. Critically, in each block
participants either received the instruction to focus on choice
accuracy (“try to decide as accurate as possible”), or to focus on
speed (“try to decide as fast as possible”). Consistent with the
instructions, participants were faster in the speed condition than
in the accuracy condition, Mpeeq= 650 ms versus Meccuracy =
832 ms, #(31) = 5.67, p<0.001, and more accurate in the accu-
racy condition than in the speed condition, M,qcrqre = 78.8% vs
Mipeea = 76.2%, t(31) =2.20, p=0.035. To further corroborate

that indeed errors in the speed condition were mostly “fast” errors
and errors in the accuracy condition were mostly “slow” errors,
we divided each participant’s error RTs into three equal-sized
bins (fast, medium or slow; see Supplementary Fig. 1). We
observed that in the fast bin there were more errors from the
speed than from the accuracy condition (Mgpe.s = 30.3 trials vs
Maccuracy = 13.5 trials, #(31) = —6.91, p <0.001), whereas in the
slow bin the reverse was true (Mpeeq = 15.0 trials vs Moccuracy =
294 trials, #(31)=5.97, p<0.001). In the medium bin the
number of trials did not differ between both instruction condi-
tions (Mpeeq = 24.0 trials Vs Mccyurac, = 20.0 trials, p = 0.074).
Note that median confidence RTs were different between the two
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instruction conditions, Mgpeeq =348 ms versus Maccyracy = 385
ms, #(31) =2.32, p=0.027. There were no significant between-
participants correlation between median choice RTs and median
confidence RTs neither in the accuracy condition, r(30) = .217,
p =0.232, nor in the speed condition, 7(30) = —0.257, p = 0.156.
Finally, participants were more confident in the accuracy condi-
tion than in the speed condition, Mgccuracy =4.65 versus
Mpeeq=4.55, 1(31) = 2.41, p=0.022 (See Fig. 2D).

To shed further light on the underlying cognitive processes, we
fitted these data using the evidence accumulation model described
in Fig. 1A. The basic architecture of our model was a DDM, in
which noisy perceptual evidence accumulates over time until a
decision boundary is reached. Afterwards, evidence continued to
accumulate to information confidence judgments. The distribu-
tion of post-decision evidence accumulation times was directly
determined by the distribution of empirically observed confidence
RTs?’. In addition to drift rate, decision boundary and non-
decision time, our model featured a free parameter controlling the
strength of the post-decision evidence accumulation (v-ratio,
reflecting the ratio between post-decision drift rate and drift rate)
and two further parameters controlling the mapping from
integrated evidence onto the confidence scale (see Methods).
Generally, our model fitted the data well, as it captured the
distributional properties of both reaction times and decision
confidence (see Fig. 2C). As a first sanity check, we confirmed
that decision boundaries were indeed different between the two
instruction conditions, Mpeeq =129 versus Mccyracy = 1.63,
#(31) = 5.59, p < 0.001, suggesting that participants changed their
decision boundaries as instructed. Also non-decision time tended
to be a bit shorter in the speed condition compared to the
accuracy condition, Mpeea = 306 ms versus M cyracy = 349 ms,
t(31) =2.13, p=0.041. Drift rates did not differ between both
instruction conditions, p=0.478. There was a small but
significant difference between the two instruction conditions for
one of the two additional parameters controlling the idiosyncratic
mapping between integrated evidence and the confidence scale
(see Methods), reflecting that in the accuracy condition
confidence judgments were slightly higher, #(31)=3.32,
p=0.001, but not more variable, #(31)=1.72, p=0.095,
compared to the speed condition.

We next focused on metacognitive accuracy in both conditions
(see Fig. 2B). In line with the model simulations, our data showed
that M-ratio was significantly affected by the speed-accuracy
tradeoff instructions, Mgpeeq=0.74 versus Maccuracy = 0.51,
#(31) =2.29, p=0.029. Consistent with the notion that meta-
cognitive accuracy should not be affected by differences in
decision boundary, v-ratio did not differ between both instruction
conditions, p = 0.647. In the model just reported, all parameters
were allowed to vary as a function of both instruction conditions.
This allowed us to evaluate for each parameter whether or not it is
affected by the instruction condition. Note, however, that
qualitatively similar results were obtained when instead fixing
non-decision time, M and SD across both conditions. Finally, in
the Supplementary Information, Supplementary Note 1, we
report a replication of Experiment 1 using a more fine-grained
confidence scale, which yielded identical conclusions as the study
reported here.

Experiment 2A-D: Spontaneous differences in response cau-
tion relate to static but not dynamic measures of metacognitive
accuracy. Although Experiment 1 provides direct evidence that
changes in decision boundary affect M-ratio, it remains unclear to
what extent this is also an issue in experiments without speed
stress. Notably, in many metacognition experiments, participants
do not receive the instruction to respond as fast as possible.

Nevertheless, it remains possible that participants implicitly
decide on a certain level of response caution. For example, a
participant who is eager to finish the experiment quickly might
adopt a lower decision boundary compared to a participant who
is determined to perform the experiment as accurately as possible,
thus leading to natural across-participant variation in decision
boundaries. To evaluate this possibility, we examined the data of
four experiments (equaling a total N = 430) in which participants
did not receive any specific instructions concerning speed or
choice accuracy. All experiments concerned a binary perceptual
discrimination task with additional confidence ratings (see
Methods). In Experiment 2 A (N=63) and 2B (N = 96), parti-
cipants were presented with two boxes filled with dots and had to
decide which of the two boxes contained more dots by pressing
the “S” or “L” key (corresponding to left and right, respectively).
After their choice, participants used the same keys to move a
cursor on a continuous confidence scale to indicate their level of
confidence, and confirmed by pressing the enter key (Experiment
2 A); or they indicated their level of confidence by pressing one of
six buttons at the top of their keyboard (Experiment 2B). In
Experiment 2 C, participants (N = 204) were presented with two
consecutive arrays of six Gabor patches, and were asked to decide
in which of the two arrays one of the patches had a higher
contrast. The response modalities were similar to those used in
Experiment 2 A. Finally, in Experiment 2D participants (N = 67)
decided whether the average color of eight elements was red or
blue, by pressing the “C” or “N” key. Afterwards, they indicated
their choice by pressing one of six buttons at the top of their
keyboard.

The same evidence accumulation model as before was used to
fit these data, and again this model captured both reaction times
and decision confidence distributions for all datasets. We
performed hierarchical mixed effects modeling to examine
whether we could replicate the findings of Experiment 1, without
an explicit manipulation of speed and accuracy, across the four
datasets. Because two of the datasets contained very precise
measurements of confidence RTs (Experiments 2B and 2D) and
in two datasets confidence was provided by pressing cursors keys
(Experiments 2 A and 2C), we included confidence response
mode as a factor in the model.

First, we tested whether M-ratio was predicted by the decision
bound and whether this effect was independent from how
confidence judgments were provided. To achieve this, we fitted
the following hierarchical mixed effects model to the data:

M-ratio ~ decision bound * confidence response mode a
+ (1]experiment) )
where (1|experiment) reflects the hierarchical clustering of
participants within experiments and * indicates that an interac-
tion effect was estimated. Adding random slopes to the model did
not increase model fit, so these were not included in the final
model. As expected, we observed a significant negative relation
between decision boundary and M-ratio, b= —0.200,
1(424) = —2.43, p=0.015 (see Fig. 3B). Importantly, this effect
did not interact with confidence response mode, p = 0.118, nor
was there a main effect of confidence response mode, p > 0.337.
Thus, this analysis demonstrates that there was evidence across
datasets for a relation between M-ratio and decision boundary
irrespective of the way in which confidence was measured. This
analysis again suggests that M-ratio is not a pure measure of
metacognition, but is confounded with response caution.
Second, we addressed the question whether v-ratio is a good
alternative measure of metacognition. To do so, we tested
whether v-ratio relates to M-ratio, showing that both measures
capture shared variance in metacognition, and whether v-ratio is
unrelated to the decision boundary, showing that v-ratio is
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independent of response caution. Again, we tested whether these
associations depend on confidence response mode. The full
hierarchical mixed model in which we predicted v-ratio by M-
ratio, decision boundary, and response mode and all interactions
between these variables could not be estimated because the
predictors were too strongly correlated (Variance Inflation
Factors > 35). This was the case for M-ratio and its interaction
with decision boundary, so we estimated the following reduced
model:

v-ratio ~ M-ratio + decision bound * confidence response mode
: )
+ (1|experiment)

As expected, the analyses showed a strong positive relation
between M-ratio and v-ratio, b= 0.31, #(424) = 5.548, p < 0.001
(see Fig. 3A). Importantly, there was no main effect of decision
boundary, p = 0.233, no main effect of confidence response mode,
p=0.212, nor an interaction between boundary and confidence
response mode, p=0.166. Note that the absence of a relation
between v-ratio and decision boundary did not depend on the
presence of M-ratio in the model: when dropping the M-ratio
term from the model, results were virtually unchanged, all
ps>0.350. Finally, to show that the relation between v-ratio and
M-ratio does not depend on response mode, we further fitted the
following model:

v-ratio ~ M-ratio * confidence response mode + (1|experiment)  (3)

As expected, in this model we again found the relation between
M-ratio and v-ratio, p < 0.001, but no main effect of confidence
response mode, p=0.518, nor an interaction effect, p =0.186
(see Fig. 3C). Jointly, these two analyses show that v-ratio is an
appropriate measure of metacognition because it is related to
M-ratio but unrelated to the decision boundary.

For completeness, separate results of each experiment are
described below and shown in Fig. 4, together with a visualization
of model fit.

In Experiment 2 A (see Fig. 4A), we observed a positive but
non-significant between-participants correlation between M-ratio
and v-ratio, 7(61)=0.21, p=0.090, a negative correlation
between M-ratio and decision boundary, r(61)=—0.41,
P <0.001, but no relation between decision boundary and v-ratio,
r(61) = —0.03, p =0.797. The data showed a significant correla-
tion between median choice RTs and median confidence RTs,
r(61) = 0.516, p <0.001, and between estimated decision bound-
aries and median confidence RTs, r(61) = 0.440, p < 0.001.

In Experiment 2B (see Fig. 4B), we observed a positive
between-participants correlation between M-ratio and v-ratio,
r(94) = 0.63, p <0.001, no relation between M-ratio and decision
boundary, r(94) = 0.11, p = 0.282, and a positive relation between
decision boundary and v-ratio, r(94) =0.22, p=0.029. Finally,
the data showed a significant correlation between median choice
RTs and median confidence RTs, r(94) =0.490, p <0.001, and
between estimated decision boundaries and median confidence
RTs, r(94) = 0.415, p <0.001.

In Experiment 2C (see Fig. 4C), we observed a positive
between-participants correlation between M-ratio and v-ratio,
r(202) = 0.277, p <0.001, a negative correlation between M-ratio
and decision boundary, r(202) =—0.16, p=0.024, and no
relation between decision boundary and v-ratio, r(202) = 0.109,
p=0.120. Finally, the data showed a significant correlation
between median choice RTs and median confidence RTs,
r(202) = 0.277, p < 0.001, and between estimated decision bound-
aries and median confidence RTs, r(202) = 0.250, p < 0.001.

In Experiment 2D (see Fig. 4D), we observed no between-
participants correlation between M-ratio and v-ratio, 7(65) = —0.019,
p=0.878, a negative correlation between M-ratio and decision
boundary, 7(65) = —0.30, p = 0.015, but no relation between decision
boundary and v-ratio, r(65)= —0.18, p=0.139. Finally, the data
showed no significant relation between median choice RTs and
median confidence RTs, r(65) =0228, p=0.064, and between
estimated decision boundaries and median confidence RTs,
r(65) = 0.144, p = 0.244.

Relating decision boundary to d’ and meta-d’. Given that
M-ratio reflects the ratio between d’ and meta-d’ it is instructive
to further unravel the relation of both these measures with the
decision boundary. Interestingly, whereas we observed a clear
negative relation between M-ratio and decision boundary in both
the model simulations and data, the findings concerning d’ and
meta-d’ are much less straightforward. In the simulations, we
observed a significant positive correlation between d’ and decision
boundary, r(98) = 0.683, p <0.001, but not between meta-d’ and
decision boundary, r(98) = —0.141, p =0.160. In Experiment 1,
although M-ratio was modulated by instruction condition, this
was not the case for d’ (Mypeea= 147 VS Maccuracy = 1.66),
p=0083, or meta-d’ (Mgpeea=1.05 Vs Maccyrac, = 0.84),
p =0.083. Across the four datasets of Experiment 2, we observed
no significant relation between d’ and decision boundary,
b= —0.045, p = 0.444, but we did observe a clear negative effect
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Fig. 4 The influence of spontaneous variations in speed-accuracy tradeoff on metacognitive accuracy, separated by experiment. Results are shown
seperately for Experiment 2 A (panel A; N = 63), 2B (panel B; N = 96), 2 C (panel C; N = 204) and 2D (panel D; N = 67). Same convention as in Fig. 2;

error bars reflect SEM. Source data areprovided as a Source Data file.

between meta-d’ and estimated decision boundaries, b = —0.358,
1(427) = —3.527, p < 0.001.

Discussion

Researchers across several fields show an increasing interest in the
question how observers can evaluate their task performance via
confidence judgments. Crucial to study metacognition is a
method to objectively quantify the extent to which participants
are able to detect their own mistakes, regardless of decision
strategy. We here report that a commonly used static measure of
metacognitive accuracy (M-ratio) depends on the decision
boundary - reflecting response caution - that is set for decision
making. This was the case in simulation results, in two experi-
ments explicitly manipulating the tradeoff between speed and
accuracy, and across four datasets in which participants received
no specific instructions concerning speed or accuracy. We pro-
pose an alternative, dynamic, measure of metacognitive accuracy
(v-ratio) that does not depend on decision boundary.

Caution is warranted with static measures of metacognition.
The most important consequence of the current findings is that
researchers should be cautious when interpreting static measures
of metacognitive accuracy, such as M-ratio. Although the findings
reported in Experiments 2A-D are correlational and should thus

be interpreted with caution (e.g., it could be that participants with
good metacognition deem it appropriate to impose low decision
boundaries), the reported simulations and the within-participant
experimental manipulation of Experiment 1 are indicative of a
fundamental issue with M-ratio. Moreover, differences in con-
fidence between the two instruction conditions in Experiment 1
were rather subtle, suggesting that even minor influences in
decision confidence are sufficient to induce differences in M-ratio.
As the name indicates, M-ratio reflects the ratio between meta-d’
(second-order performance) and d’ (first-order performance).
Interestingly, whereas both the simulations and the experiments
showed associations between M-ratio and decision boundary, the
story was more complicated when instead directly relating meta-
d’ and d’ with variations in decision boundary. Whereas in the
simulations the relation between M-ratio and decision boundary
was largely driven by d’ but not so much by meta-d’, these results
were less clear in Experiment 1, whereas in Experiments 2A-D the
effect appeared to be driven by meta-d’. Notably, our claim that
signal-detection theoretic measures of performance are con-
founded by response caution applies to both second-order per-
formance measures (e.g., meta-d) as well as first-order
performance measures (e.g. d’). Everything else being equal, lower
decision boundaries will lead to lower values of d’, because
choices will be made with less accumulated evidence. This
knowledge, however, does not make the use of signal-detection
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theoretic measures obsolete; indeed, its usefulness depends on the
research question, experimental design, and other contextual
factors. Likewise, the choice for M-ratio versus v-ratio as a
measure of metacognitive accuracy might depend on similar
considerations. Finally, it should be noted that although the data
of Experiment 1 (and the replication reported in the Supple-
mentary Information) showed that instructions to focus on speed
vs accuracy influenced the fitted decision boundaries while leav-
ing drift rates unaffected, this theoretically predicted pattern has
not always been observed in previous work3>3%, This is impor-
tant, because if instructions to focus on speed would reduce the
drift rate this will also have an influence on v-ratio because this
measure reflects the ratio between drift rate and post-decisional
drift rate. Therefore, it is important for future studies relying on
the v-ratio framework to carefully consider the extent to which
changes in metacognition between conditions or between parti-
cipants are indeed driven by differences in post-decision drift
rate, and not by non-selective changes in the drift rate.

In the following, we will discuss several examples where our
finding might have important implications. In the last decade
there has been quite some work investigating to what extent the
metacognitive evaluation of choices is a domain-general process
or not. These studies often require participants to perform
different kinds of tasks, and then examine correlations in choice
accuracy and in metacognitive accuracy between these
tasks>»17-20:37. For example, Mazancieux and colleagues!” asked
participants to perform an episodic memory task, a semantic
memory task, a visual perception task and a working memory
task. In each task, participants rated their level of confidence after
a decision. The results showed that whereas correlations between
choice accuracy on these different tasks were limited, there was
substantial covariance in metacognitive accuracy across these
domains. Because in this study participants received no time limit
to respond, it remains unclear whether this finding can be
interpreted as evidence for a domain-general metacognitive
monitor, or instead a domain-general response caution which
caused these measures to correlate. Another popular area of
investigation has been to unravel the neural signatures supporting
metacognitive accuracy'®20-38-40, For example, McCurdy et al.
observed that both visual and memory metacognitive accuracy
correlated with precuneus volume, potentially pointing towards a
role of precuneus in both types of metacognition. It remains
unclear, however, to what extent differences in response caution
might be responsible for this association. Although differences in
response caution are usually found to be related to pre-SMA and
anterior cingulate?»2°, there is some suggestive evidence linking
precuneus to response caution*!, Therefore, it is important that
future studies on neural correlates of metacognition rule out the
possibility that their findings are caused by response caution.
Finally, our study may have consequences for investigations into
differences in metacognitive accuracy between specificgroups. For
example, Folke and colleagues?® reported that M-ratio was
reduced in a group of bilinguals compared to a matched group of
monolinguals. Interestingly, they also observed that on average
bilinguals had shorter reaction times than monolinguals, but this
effect was unrelated to the group difference in M-ratio. Because
these authors did not formally model their data using evidence
accumulation models, however, it remains unclear whether this
RT difference results from a difference in boundary, and if so to
what extent this explains the difference in M-ratio between both
groups that was observed. In a similar vein, individual differences
in M-ratio have been linked to psychiatric symptom dimensions,
and more specifically to a symptom dimension related to
depression and anxiety®. At the same time, it is also known that
individual differences in response caution are related to a
personality trait known as need for closure*?. Given that need

for closure is, in turn, related to anxiety and depression®3, it
remains a possibility that M-ratio is only indirectly related to
these psychiatric symptoms via response caution.

The potential of dynamic measures of metacognition. In order
to control for potential influences of response caution on mea-
sures of metacognitive accuracy, one approach could be to esti-
mate the decision boundary and examine whether the relation
between metacognitive accuracy and the variable of interest
remains when controlling for decision boundary (e.g., using
mediation analysis). However, a more direct approach would be
to estimate metacognitive accuracy in a dynamic framework, thus
directly taking into account differences in response caution. For
example, building on the drift diffusion model it has been pro-
posed that confidence reflects the level of integrated evidence
following post-decisional evidence accumulation?’-3234, In the
current work, we proposed v-ratio (reflecting the ratio between
post-decision drift rate and drift rate) as such a dynamic measure
of metacognitive accuracy (following the observation that post-
decision drift rate indexes how accurate confidence judgments
are?7:28), In both simulations and empirical data, we observed a
positive relation between v-ratio and M-ratio, suggesting they
capture shared variance. Critically, v-ratio was not correlated with
decision boundary, suggesting it is not affected by differences in
response caution. Thus, our dynamic measure of metacognition
holds promise as an approach to quantify metacognitive accuracy.
An important caveat is that in order to measure v-ratio as
accurately as possible, precise measurements of confidence reac-
tion times are needed. This is an important concern, because in
many metacognition experiments confidence is queried using
approaches that do not provide precise measurements of con-
fidence RTs. In fact, in several of the experiments reported in the
current manuscript confidence was queried using a mouse or by
moving a cursor along the scale using the keyboard arrows.
Although the results of Experiment 1 and Experiments 2A-D did
not depend on the mode of confidence responses, we strongly
advise researchers interested in deploying v-ratio to collect data
using a design that measures the timing of both choices and
confidence in a very precise manner.

In our approach we allowed the drift rate and the post-decision
drift rate to dissociate. This proposal is in line with the view of
metacognition as a second-order process whereby dissociations
between confidence and choice accuracy might arise because of
noise or bias at each level#4-46, However, when formulating post-
decision drift rate as a continuation of evidence accumulation, it
remains underspecified which evidence the post-decision accu-
mulation process is exactly based on. It has been suggested that
participants can accumulate evidence that was still in the
processing pipeline (e.g. in a sensory buffer) even after a choice
was made3447. However, it is not very likely that this is the only
explanation, particularly in tasks without much speed stress. One
other likely possibility, is that during the post-decision process,
participants resample the stimulus from short-term memory*S.
Because memory is subject to decay, dissociations between the
post-decision drift rate and the drift rate can arise. Other sources
of discrepancy might be contradictory information quickly
dissipating from memory*® which should decrease metacognitive
accuracy, or better assessment of encoding strength with more
time®0 which should increase metacognitive accuracy.

One important caution is that in our proposed formalization
the computation of decision confidence (and thus metacognitive
accuracy) arises by means of post-decisional evidence accumula-
tion. Put simply, an observer with post-decision drift rate of one
will be good at telling apart corrects from errors whereas an
observer with post-decision drift rate of zero will be at chance
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level. One way to evaluate the validity of post-decisional drift rate
for this purpose, is to simulate data with various levels of post-
decision drift rate, and then evaluate whether the area under the
Type-II ROC is different from chance level. Type-II ROC analysis
is a bias free measure that quantifies how well confidence tracks
accuracyl®. As discussed earlier, we indeed observed chance level
area under type-II ROC whenever post-decision drift rate equals
zero. Importantly, the choice to model decision confidence as a
function of post-decisional evidence was directly informed by this
finding. An alternative approach in the literature within the
context of evidence accumulation models has been to quantify
confidence as the probability of being correct given time, evidence
and the response made33>1->4, Although this notion of decision
confidence has been very successful in explaining empirical
patterns seen in the literature, one drawback of this approach is
that it does not predict chance-level type-II ROC performance
with post-decision drift rate equal to zero, in the case of multiple
drift rates. The reason that the probabilistic confidence model can
still dissociate corrects from errors in this situation, is because it
infers probability correct based on decision times (and both
probability correct and decision times co-vary with drift rates).
We therefore decided to quantify decision confidence as a
function of post-decisional evidence, which allows to characterize
v-ratio as a complete an unbiased measure of metacognitive
accuracy.

Finally, we note that in the modeling efforts reported here, the
duration of post-decisional evidence accumulation was decided
based on the full distribution of empirically observed confidence
RTs. Most previous modeling efforts have likewise assumed that
post-decision processing terminates once confidence is externally
queried®, and only a few studies have explicitly examined
different stopping rules for post-decision processing3%33. Given
that we still lack a clear mechanistic understanding of how post-
decisional processing is terminated, we here decided for this
implementation which is agnostic regarding the underlying
stopping criterion for confidence judgments, but nevertheless
takes the full distribution of confidence RTs into account during
fitting. By further unravelling the computational mechanisms
underlying post-decisional accumulation termination, substantial
progress can still be made by including these mechanisms in
future modeling efforts.

To sum up, we provided evidence from simulations and
empirical data that a common static measure of metacognition,
M-ratio, is confounded with response caution. We proposed an
alternative measure of metacognition based on a dynamic
framework, v-ratio, which is insensitive to variations in caution,
and may thus be suitable to study how metacognitive accuracy
varies across participants and conditions.

Methods

Computational model

Simulations. Data were simulated for 100 observers with 1000 trials each. For each
simulated observer, we randomly selected a value for the drift rate (uniform dis-
tribution between 1 and 3), for the decision boundary (uniform distribution
between .5 and 4), for the non-decision time (uniform distribution between .2 and
.6) and for the v-ratio (uniform distribution between 0 and 1.25; see below for
details). When v-ratio is above 1, this implies that observers use more information
to evaluate their choices compared to the actual choice®. To estimate meta-d’, data
is needed for both of the possible stimuli (i.e., to estimate bias); therefore, for half of
the trials we multiplied the drift rate by —1. During model fitting, we used the full
distribution of empirically observed confidence RTs to inform the duration of post-
decision processing time (see below). Given that the empirical data showed
moderate correlations between average choice RTs and average confidence RTs
(i.e., .277 and .516 for Experiment 2 and 3), for the model simulations we generated
a distribution of post-decision processing times, the mean of which was moderately
correlated with the mean of choice RTs. To achieve this, for each simulated
observer we selected a value for boundary and drift rate from a normal distribution
(sigma = 1) centered around the true boundary and true drift for that simulated
observer, respectively. Then, we simulated a confidence RT distribution using these

two values (fer was set to 0 to account for the fact that confidence RTs are usually
faster than choice RTs). During the actual simulations, post-decision processing
times were sampled from this confidence RT distribution. This procedure induced
a moderate correlation between average choice RTs and average confidence RTs,
r(98) = 0.537, p <0.001, and between average confidence RTs and decision
boundary, r(98) = 0.524, p < 0.001. Finally, we fixed the values for starting point
(z=0.5), and within-trial noise (0 = 1). Note that the simulation results were very
robust, as the same pattern of findings was obtained when increasing or decreasing
the noise for generating dummy data, when restricting post-decision processing
time to a fixed value, when only using a single drift rate for all simulations, and
when simulating more observers (500), more trials per observer (5000), or both.

Fitting procedure. We coded an extension of the drift diffusion model (DDM) that
simultaneously fitted choices, reaction times and decision confidence. The standard
DDM is a popular variant of sequential sampling models of two-choice tasks. We
used a random walk approximation, implemented in the rcpp R package to

increase speed®, in which we assumed that noisy sensory evidence started at z*a; 0
and a are the lower and upper boundaries, respectively, and z quantifies bias in the
starting point (z = 0.5 means no bias). At each time interval 7 a displacement A in
the integrated evidence occurred according to the formula shown in Eq. (4):

A =vxT+0%/TxA(0,1) (4)

Evidence accumulation strength is controlled by v, representing the drift rate,
and within-trial variability, o, was fixed to 1. Note that it is common practice in
DDM fitting to fix within-trial variability to 1, although this assumption of
constant within-trial noise is often not made explicitly. The reason for fixing this
parameter is that changes in o cannot be dissociated from changes in a. Given that
our hypothesis specifically concerns the latter, we decided to fix 0. The random
walk process continued until the accumulated evidence crossed either 0 or a. After
boundary crossing, the evidence continued to accumulate for a duration
determined by the empirically observed confidence RT distribution (i.e., the
difference in time between initial choice and confidence judgment). Specifically, the
post-decision accumulation time of each simulated trial was set to be equal to the
duration of a randomly selected trial from the confidence RT distribution of that
participant. Note that this random selection was done without replacement,
ensuring that the simulated confidence RT distribution exactly matched the
empirically observed confidence RT distribution. Because the number of simulated
trials always exceeded the number of empirical trials, sampling from the empirical
confidence RT distribution restarted after all values were selected. Note that during
the post-decisional accumulation period the integrated evidence was not limited
between the boundaries (i.e. 0 was not a hard boundary) and could land anywhere
between —eo and +ec. Importantly, consistent with the signal detection theoretical
notion that primary and secondary evidence can dissociate, we allowed for
dissociations between the drift rate governing the choice and the post-decision drift
rate. For compatibility with the M-ratio framework, we quantified metacognitive
accuracy as the ratio between post-decision drift rate and drift rate, as shown in
Eq. (5):

v post

©)]

As a consequence, when v-ratio = 1, this implies that post-decision drift and
drift are the same. When v-ratio = 0.5, the magnitude of the post-decision drift
rate is half the magnitude of the drift rate. To calculate decision confidence, we
assumed a direct mapping between post-decisional evidence and decision
confidence. To take into account idiosyncratic mappings between evidence and the
confidence scale used in the experiment, we added two extra free parameters that
controlled the mean (M) and the width (SD) of confidence estimates, as shown in
Eq. (6):

v-ratio =

eysx M
SD

In the experiments measuring confidence using a continuous scale, there was an
over-representation of confidence values at the boundaries (i.e. 1 and 6) and in the
middle of the scale (50 in Experiment R1 reported in the Supplementary
Information, 3.5 in Experiment 2 A). Most likely, this resulted from the use of
verbal labels placed at exactly these values. To account for peaks in the center of the
scale, we assumed that confidence ratings around the center were pulled towards
the center value. Specifically, we relabeled P% of trials around the midpoint as the
midpoint (e.g., in Experiment R1, P=10% implies that 10% of the data closest to
50 were (re)labeled as 50). Note that P was not a free parameter, but instead its
value was taken to be the participant-specific proportion based on the empirical
data. In the experiments measuring confidence using a six point scale, after
applying Eq. 6, predicted confidence was divided into six categories by means of
rounding. To account for frequency peaks at the endpoints of the scale, we
relabeled predicted confidence values that exceeded the endpoints of the scale as
the corresponding endpoint (e.g., in Experiment 1 a predicted confidence value of 7
was relabeled as 6), which naturally accounted for the frequency peaks at the
endpoints. Note that the main conclusions reported in this manuscript concerning
the relation between M-ratio, decision boundary and post-decision drift rate,
remain the same in a model without P, and also in a reduced model without P, M

()

confidence =
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and SD. Because these reduced models did not capture confidence distributions
very well though, we here report only the findings of the full model.

To estimate these 6 parameters (v, a, Ter, v-ratio, M, and SD) based on choices,
reaction times and decision confidence, we implemented quantile optimization.
Specifically, we computed the proportion of trials in quantiles .1, .3, .5,.7, and .9,
for both reaction times and confidence; separately for corrects and errors
(maintaining the probability mass of corrects and errors, respectively). We then
used differential evolution optimization, as implemented in the DEoptim R
package®’, to estimate these 6 parameters by minimizing the chi square error
function shown in Eq. (7):

2 _ ~(oRT; — pRT)? (oCJ; — pCJ)°
= PRT; t rCJ;

with oRT; and pRT; corresponding to the proportion of observed/predicted
responses in quantile 7, separately calculated for corrects and errors both reaction
times, and oCJ; and pCJ; reflecting their counterparts for confidence judgments.
Note that in the experiments in which confidence was queried using a 6-point scale,
we computed the proportion of datapoints per level of confidence, rather than per
quantile. In Experiment 2D, there were four levels of difficulty (by crossing 2 levels
of mean with 2 levels of variance), and so four drift rates were estimated, one per
condition. In all experiments, we set 7 to 0.001. Model fitting was done separately
for each participant. For all experiments, choice RTs faster than 100 ms and
confidence RTs slower than 5s were excluded for fitting purposes. M-ratio,
reflecting the ratio between meta-d’ and d’, was calculated using the method
described in Maniscalco and Lau!® which adjusts for unequal variances. Note that
the findings regarding M-ratio remain unchanged without this correction, except
for Experiment 1 where the difference in M-ratio between the two instruction
conditions becomes p = 0.053.

@)

Parameter recovery. To assure that our model was able to recover the parameters,
we here report parameter recovery. In order to assess parameter recovery with a
sensible set of parameter combinations, we used the fitted parameters of Experi-
ment 1, simulated data from these parameters with a varying number of trials, and
then tested whether our model could recover these initial parameters. As a sanity
check, we first simulated a large number of trials (25,000 trials per participant),
which as expected provided excellent recovery for all six parameters, rs > 0.97. We
then repeated this process with only 200 trials per participants, which was the trial
count in Experiment 2 A (note that the other experiments had higher trial counts).
Recovery for v-ratio was still very good, r = 0.85, whereas it remained excellent for
all other parameters, rs>0.98.

Experiment 1. All research reported here complies with the relevant ethical reg-
ulations, ethical approval has been obtained from the local ethics committee of the
KU Leuven. Participants in Experiment 1, Experiment 1S, and Experiment 2B all
provided informed consent before their participation. Ethical approval for these
studies was granted by the Social and Societal Ethics Committee of the KU Leuven.
The other experiments were reanalyses of previously published data.

Participants. Forty-three healthy participants (16 males) took part in Experiment 1
in return for course credit (mean age = 19.2, between 18 and 22). All reported
normal or corrected-to-normal vision. One participant was excluded because they
required more than 10 practice blocks in one of the training blocks (see below) and
eight participants were excluded because their choice accuracy was not different
from chance level performance in at least one of both instruction conditions, as
assessed using a chi square test. Finally, two participants were excluded because
they use the same confidence button in more than 95% of trials. The final sample
thus comprised thirty-two participants. All participants provided their informed
consent and all procedures adhered to the general ethical protocol of the Social and
Societal Ethics Committee of the KU Leuven.

Stimuli and apparatus. The data for Experiment 1 were collected in an online
study, due to COVID-19, using jsPysch library>®. As a consequence, caution is
warranted when interpreting between-participant differences given that we had no
control over hardware specifications. Given that Experiment 1 concerns a within-
participant experimental manipulation, however, the risk that this is problematic
for our data is small. Both choices and confidence judgments were provided with
the keyboard. Stimuli in Experiment 1 consisted of 50 randomly moving white dots
(radius: 2 pixels) drawn in a circular aperture on a black background centered on
the fixation point. Dots disappeared and reappeared every 5 frames. The speed of
dot movement (number of pixel lengths the dot will move in each frame) was a
function of the screen resolution (screen width in pixels / 650).

Task procedure. Each trial started with the presentation of a fixation cross for
1000 ms. Above and below this fixation cross specific instructions were provided
concerning the required strategy. In accuracy blocks the instruction was to respond
as accurately as possible; in speed blocks the instruction was to respond as fast as
possible. The order of this block-wise manipulation was counterbalanced across
participants. Next, randomly moving dots were shown on the screen until a
response was made or the response deadline was reached (max 5000 ms). On each

trial, 20% of the dots coherently moved towards the left or the right side of the
screen, with an equal number of leftward and rightward movement trials in each
block. Participants were instructed to decide whether the majority of dots was
moving towards the left or the right side of the screen, by pressing “C” or “N”,
respectively, with their left or right thumb, respectively. After their response, a
6-point confidence scale was presented on the screen. The numerical keys ‘1’, 2’,
3,8’,9’, and ‘0’ on top of the keyboard mapped onto ‘certainly correct, ‘probably
correct, ‘guess correct, ‘guess wrong, ‘probably wrong, and ‘certainly wrong,
respectively (mapping counterbalanced between participants). The labels of this
confidence scale, ranging from ‘certainly wrong’ to ‘certainly correct’, might appear
unusual to readers familiar with confidence scales where the lowest part of the scale
corresponds to ‘guessing’. Although the lower part of the scale (e.g. ‘certainly
wrong’) is used very infrequently, in previous research we have documented that
such confidence judgments do reflect genuine experiences and are associated with
unique compensatory behavior>®. Although a scale using a smaller range of con-
fidence judgments would make it appear as if the ratings are not that compressed
(and more spread across the scale), this comes with the risk that trials on which
participants detect themselves making an error cannot be judged with the appro-
priate level of confidence.

The main part of Experiment 1 consisted of 10 blocks of 60 trials, half of which
were from the accuracy instruction condition and half from the speed instruction
condition. The experiment started with 24 practice trials during which participants
only discriminated random dot motion at 50% coherence, no confidence
judgments were asked. This block was repeated until participants achieved 85%
accuracy (mean = 1.97 blocks). Next, participants completed again 24 practice
trials with the only difference that now the coherence was decreased to 20%
(mean = 1.09 blocks). When participants achieved 60% accuracy, they then
performed a final training block of 24 trials during which they practiced both dot
discrimination and indicated their level of confidence (mean = 1.26 blocks).

Experiment 2A. Full experimental details are described in Drescher et al.%0. Ethical
approval was obtained in the original study, and participants provided written
informed consent before participation. Participants were seated in individual
cubicles in front of a 15-in CRT monitor with a vertical refresh rate of 85 Hz. On
each trial participants were presented with two white circles (5.1° diameter) on a
black background, horizontally next to each other with a distance of 17.8° between
the midpoints. Fixation crosses were shown for 1 in each circle, followed by dots
clouds in each circle for 700 ms. The dots had a diameter of 0.4°. Dot positions in
the boxes, as well as the position of the box containing more dots were randomly
selected on each trial. The difference in number of dots between both boxes
(indexing task difficulty) was adapted online using an unequal step size staircase
procedure?’. Participants indicated which circle contained more dots by pressing
“S” or “L” on a keyboard. Then, the question “correct or false?” appeared on the
screen, with a continuous confidence rating bar, with the labels “Sure false”, “No
idea”, and “Sure correct”. Participants moved a cursor with the same keys as before,
which they could do by holding down one of both keys which moved the cursor
along the scale, and confirmed their confidence judgment with the enter key. No
time limit was imposed for both primary choice and confidence rating. Participants
received several practice trials (10 without confidence rating, 14 with confidence
rating), before they completed eight experimental blocks of 25 trials.

Experiment 2B. The data for Experiment 2B were collected in an online study, due
to COVID-19. Ethical approval was obtained from the Social and Societal Ethics
Committee at KU Leuven, and participants provided informed consent before
participation. As a consequence, caution is warranted when interpreting between-
participant differences given that we had no control over hardware specifications.
Ninety-nine participants (mean age = 18.5, range 18-21; 10 male) took part in
return for course credit. Three participants were excluded because they used the
same level of confidence for more than 90% of their choices, leaving a total of 96
participants. The experiment was similar to Experiment 2 A, except for the fol-
lowing: dots were presented for 300 ms inside two squares. Choices were indicated
by pressing “V” or “N” with the thumbs of both hands, and confidence was
indicated in the same way as in Experiment 1. Participants performed 10 blocks of
50 trials, after first completing 26 practice trials.

Experiment 2C. Data from this experiment were taken from the confidence
database®!, a collection of openly available studies on decision confidence. In this
experiment, Prieto, Reyes and Silva®2, used the same task as described in Fleming
and colleagues?. Ethical approval was obtained in the original study, and partici-
pants provided written informed consent before participation. Each participant
(N = 204, all female, aged 18-35) completed 50 practice trials, followed by 5 blocks
of 200 trials. On each trial participants were presented with an array of eight Gabor
patches for 200 ms, a blank for 300 ms and another array of 6 Gabor patches for
200 ms. Participants had to decide whether the first or the second temporal interval
contained a patch with a higher contrast. The contrast of the pop-out Gabor was
continuously adapted using an online staircase procedure to maintain 71% accu-
racy. Choices and confidence reports were collected in an identical manner as in
Experiment 2. The only difference was that there was no verbal description around
the middle point of the confidence scale.
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Experiment 2D. The data of Experiment 2D comprise four different datasets using
exactly the same design, coming from Boldt et al.%3, Boldt et al.%% and Desender et al.
Experiment 3B%?, equaling a total N = 67. Full experimental details are described in
Boldt et al.%3. Ethical approval was obtained in the original studies, and participants
provided written informed consent before participation. After a fixation point for
200 ms, the stimulus was flashed for 200 ms, followed again by the fixation point. The
experiment manipulated the average color (two levels: high vs low) of the eight
elements and the variance across the colors (two levels: high vs low). Participants were
instructed to decide whether the average color of the eight elements was blue or red,
using the same response lay-out as in Experiment 1. When participants did not
respond within 1500 ms, the trial terminated and the message ‘too slow, press any key
to continue’ was shown. When participants responded in time, a fixation point was
shown for 200 ms, followed by a confidence prompt using the same layout as
Experiment 1. The inter-trial interval lasted 1000 ms. Each block started with 12
practice trials with auditory performance feedback in which the confidence judgment
was omitted. The experiment started with one practice block (60 trials) without
confidence judgments but with auditory performance feedback and one practice
block (60 trials) with confidence judgments but without feedback.

Analysis. Whenever applicable, statistical tests were always two-tailed

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

All raw data have been deposited online and can be freely accessed (github.com/kdesende/
dynamic_influences_on_static_measures/), except for the data of Experiment 2 A which
can be found elsewhere (https://github.com/I-drescher/raw_data_MW_MC_CC) and the
data of Experiment 2 C which is part of the Confidence Database (https://osf.io/s46pr/)°L.
Note that Experiment 2 A is a reanalysis of Drescher et al.?), and Experiment 2D is a
reanalysis of Boldt et al.>%, Boldt et al.%, and Desender et al. Experiment 3B%. Source data
are provided with this paper.

Code availability
All analysis code have been deposited online and can be freely accessed (github.com/
kdesende/dynamic_influences_on_static_measures/)%5.
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