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Language production involves a complex set of computations, from conceptualization to articulation, which are thought to
engage cascading neural events in the language network. However, recent neuromagnetic evidence suggests simultaneous
meaning-to-speech mapping in picture naming tasks, as indexed by early parallel activation of frontotemporal regions to lexi-
cal semantic, phonological, and articulatory information. Here we investigate the time course of word production, asking to
what extent such “earliness” is a distinctive property of the associated spatiotemporal dynamics. Using MEG, we recorded the
neural signals of 34 human subjects (26 males) overtly naming 134 images from four semantic object categories (animals,
foods, tools, clothes). Within each category, we covaried word length, as quantified by the number of syllables contained in a
word, and phonological neighborhood density to target lexical and post-lexical phonological/phonetic processes. Multivariate
pattern analyses searchlights in sensor space distinguished the stimulus-locked spatiotemporal responses to object categories
early on, from 150 to 250ms after picture onset, whereas word length was decoded in left frontotemporal sensors at 250-
350ms, followed by the latency of phonological neighborhood density (350-450ms). Our results suggest a progression of neu-
ral activity from posterior to anterior language regions for the semantic and phonological/phonetic computations preparing
overt speech, thus supporting serial cascading models of word production.

Key words: cascading models; conceptual preparation; language production; MEG; phonological/phonetic planning; sen-
sor-level MVPA

Significance Statement

Current psycholinguistic models make divergent predictions on how a preverbal message is mapped onto articulatory output
during the language planning. Serial models predict a cascading sequence of hierarchically organized neural computations
from conceptualization to articulation. In contrast, parallel models posit early simultaneous activation of multiple conceptual,
phonological, and articulatory information in the language system. Here we asked whether such earliness is a distinctive prop-
erty of the neural dynamics of word production. The combination of the millisecond precision of MEG with multivariate pat-
tern analyses revealed subsequent onset times for the neural events supporting semantic and phonological/phonetic
operations, progressing from posterior occipitotemporal to frontal sensor areas. The findings bring new insights for refining
current theories of language production.

Introduction
The brief time interval preceding word production involves com-
plex planning processes to transform a preverbal message into
speech. How an intended meaning is rapidly mapped onto artic-
ulatory programs is, however, still disputed.

Two competing views of language production emerged from
earlier studies. One account posits a hierarchically organized
sequence of psycholinguistic operations with distinct latencies
(Levelt, 1989, 1999; Levelt et al., 1999; Hagoort and Levelt, 2009).
As estimated by relating chronometric data to metabolic studies
of word production (Indefrey and Levelt, 2004), a target concept
(e.g., APPLE) is accessed along with related concepts, such as
PEAR, PEACH, FRUIT within the first 200ms after picture
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onset in overt naming tasks. Once lexical information is
selected, phonological codes are retrieved between 200 and 400
ms after picture onset in posterior middle/superior temporal
cortex, and abstract segmental representations required for syl-
lable planning (syllabification) are accessed at ;400-600 ms,
involving left inferior frontal activity. The target articulatory
programs are retrieved ;100ms later, as reflected in premotor
activity. Importantly, the abovementioned onset times reflect
approximations only, and are influenced by characteristics of
the to-be-pronounced words, such as word length, lexical fre-
quency, and familiarity (Hanulovà et al., 2011; Indefrey, 2011),
motivating a rescaling of the latencies on a word-by-word basis
(Roelofs and Shitova, 2017).

Neurophysiological evidence (e.g., Salmelin et al., 1994; Levelt
et al., 1998; Maess et al., 2002; Sörös et al., 2003; Vihla et al.,
2006; Hultén et al., 2009; Liljeström et al., 2009; Laaksonen et al.,
2012; for review, see Munding et al., 2016), and electrophysiolog-
ical studies testing for reliability of language production tasks
(e.g., Laganaro, 2017; Roos and Piai, 2020; Ala-Salomäki et al.,
2021), confirmed the proposed cascade of functionally and tem-
porally dissociable neural events.

In contrast, recent MEG results from picture naming sug-
gested early (130-160ms postpicture presentation), near-simulta-
neous occipital/temporal activations to visual complexity, and
left inferior frontal and temporal activations to semantics and
word form, respectively (Miozzo et al., 2015). Another MEG
study found early modulation of frontotemporal activity by word
frequency 160-240ms postpicture presentation (Strijkers et al.,
2017), and concurrent superior temporal activity reflecting dif-
ferences in the phonetic/articulatory properties of a word’s initial
speech segment (either a labial or a coronal phoneme, as in mon-
key vs donkey, respectively). Furthermore, the place of articula-
tion of the words’ initial phoneme activated the motor regions
controlling for lip and tongue movements, suggesting early artic-
ulatory planning.

In the light of these premises, here we asked to what extent
the earliness of simultaneous brain responses to multiple psycho-
linguistic functions is an intrinsically distinctive property of the
neural dynamics of word production.

To determine the spatiotemporal specificity of semantic and
phonological planning, we combined the temporal precision of
MEG with multivariate pattern analyses (MVPAs) in sensor
space. Unlike univariate approaches, MVPA uses sensitive multi-
variate statistics to measure the covariation of signals across mul-
tiple neighboring channels at the single-trial level, and thus
extracts information from distributed patterns rather than aver-
aged amplitudes across selected channels. MVPA of MEG data
also captures rich spatial information from the subtle multivari-
ate magnetic field patterns of brain activity at sensor level, which
result from small differences in orientation and angle of neigh-
boring dipoles, and may overlap, but still be statistically separable
(Stokes et al., 2015; Cichy and Pantazis, 2017). This allows for
the differentiation of the subject-specific spatial topographies
over subjects (Stokes et al., 2015).

We adopted an orthogonal design covarying word length and
phonological neighborhood density, as targeting syllabification
and phonetic encoding, across four semantic object categories
(animals, foods, tools, and clothes) to test the following: (1) the
serial/hierarchical prediction of early neural indexes of concep-
tual preparation, but later frontal activity of syllabification (350
ms) and phonetic encoding (450 ms after picture onset); and (2)
the early/parallel prediction of early simultaneous activations to
both conceptual and phonological/phonetic processes.

The present investigation aimed at probing the validity of
these proposals to inform and refine current theories of language
production.

Materials and Methods
Subjects
Thirty-four native Dutch speakers (26 male, mean age = 24 years,
SD=3.6 years) participated in the experiment after providing written
informed consent. All subjects were right-handed, had normal or cor-
rected-to-normal vision, and reported no history of neurologic, develop-
mental, or language deficits. The study was approved by the ethical
board CMO Arnhem/Nijmegen, under registration number CMO2014/
288.

Materials
Stimuli consisted of 134 images from four object categories, including
animals, foods, tools, and clothes. We used colored realistic images
from the picture database of Bank of Standardized Stimuli (Brodeur
et al., 2014), and public domain images from the Internet (e.g., www.
Freepng.ru).

Images were selected on the basis of a list of depictable target words
that are most commonly used to name the corresponding objects in
Dutch. The list of object words was generated by covarying the length of
target words and phonological neighborhood density within each
semantic category. Word length affects lexical (word form retrieval) and
postlexical (syllabification, phonetic and articulatory encoding) process-
ing stages in a straightforward quantitative way (Indefrey and Levelt,
2004; Papoutsi et al., 2009; Indefrey, 2011), that is, the more phonemes/
syllables there are, the higher the load on the processes and the longer
they take. Word form retrieval, for example, takes ;20-25ms per
phoneme (Indefrey and Levelt, 2004; Indefrey, 2011). We included
phonological neighborhood density because it affects lexical as well as
postlexical phonological processes but via different mechanisms
(Harley and Brown, 1998; Vitevitch, 2002; Dell and Gordon, 2003):
whereas the facilitative effect of phonological neighbors on word form
activation seems to be mediated by their shared phonological seg-
ments (Vitevitch, 2002), the facilitative effect of phonological neigh-
borhood density at phonetic/articulatory processing stages seems to
be because of its correlation with phonotactic probability (Vitevitch et
al., 1999). Words with many neighbors tend to contain more common
phonemes and phoneme sequences than words with fewer neighbors,
making it easier to phonetically encode and articulate them. The
effects of phonological neighborhood density on lexical retrieval and
articulation have been shown to be independent and additive (Buz
and Jaeger, 2016). A previous MEG study by Miozzo et al. (2015) has
combined word length with phonological neighborhood density into
a single predictor of neural activity related to word form access. For
our investigation of the relative time courses of processes related to
early stages of word production (conceptual preparation) and proc-
esses related to later phonological and phonetic stages, we therefore
found it important to ensure comparability with the Miozzo et al.
(2015) study by using the same variables to target phonological proc-
essing. At the same time, in view of the different nature of the effects
of word length and phonological neighborhood density mentioned
above, we reasoned that combining the two variables in one compo-
nent might underestimate their specific effects, in particular, the effect
of phonotactic probability captured by phonological neighborhood
density but not by word length. We therefore decided to examine the
two variables separately.

Word length was expressed by the number of syllables (65 short
monosyllabic words, 66 long bisyllabic words, and 3 trisyllabic words).
Phonological neighborhood density was expressed by the number of
words that differ in one phone from the target word. This was calculated
by counting all word entries in CELEX that differ in one phone symbol
from the target word, after discarding stress and syllable markers from
the phonological word representation in CELEX. Words were ranked
according to such difference and subdivided into four groups (lower,
low, high, higher) while keeping the group size as balanced as possible:
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39 lower (0-4 phones), 29 low (5-9 phones), 35 high (10-19 phones), and
31 higher (20-39 phones). The psycholinguistic properties of the 134
stimulus items are summarized in Table 1. Mean and SD, median and
range (the difference between largest and smallest value of the variable)
are reported, as calculated across items and for mosyllabic and disyllabic
words separately (Table 1).

Word length and phonological neighborhood density were nega-
tively correlated with each other (r(132) = �0.67, p, 0.001). Word fre-
quency could not be fully matched across conditions. Word frequencies
were obtained from SubtLex (Keuleers et al., 2010), which provides a stand-
ard measure of word frequency independent of corpus size: frequency per
million words with a 4-digit precision. Word frequency was negatively cor-
related with word length (r(132) =�0.37, p, 0.001) and positively correlated
with phonological neighborhood density (r(132) =0.32, p, 0.001). Because
this variable is known to affect all stages of the word production planning
(Indefrey and Levelt, 2004; Hanulovà et al., 2011), we assessed the related
statistical effect on our variables of interest, by conducting one-way repeated
measure ANOVA with object category (animals, foods, tools, clothes), and
word length (short, long), and Phonological Neighborhood density (low,
high) as independent variables. There was no effect of word frequency on
object category. As for the phonological variables, there was a main effect of
word frequency on word length (F(1,132) =23.95, p, 0.001), with short
words being more frequent (mean=12.82) than long words (mean=3.95).
There was also a main effect of word frequency on phonological neighbor-
hood density (F(1,32)=11.69, p=0.001), with low-density words being less
frequent (mean=5.07) than high-density words (mean=11.53).

Experimental design
Before starting the experiment, subjects received written and oral infor-
mation about the picture naming procedure. Subjects were instructed to
name aloud each object picture as fast and accurately as possible, and to
speak clearly.

At the beginning of each experimental trial, a fixation cross was pre-
sented at the center of the screen for 500ms, followed by a blank interval
for 500ms, and the object picture was subsequently presented for 350ms.
The 134 pictures were presented 3 times, once in each of three separate
blocks, following a random order. The experiment lasted ;30min, includ-
ing two self-paced breaks.

Behavioral recordings. Stimuli were presented using the Presentation
software (Neurobehavioral Systems; www.neurobs.com). The pictures
were displayed at the center of the screen at a size of 300 � 300 pixels
(1920 � 1080 screen resolution and a refresh rate of 120Hz, delay ,1
ms with almost instantaneous presentation of the full screen), in a light
gray background within a visual angle of 4 degrees. They were presented

using a liquid crystal display video projector and back-projected onto
the screen using two front-silvered mirrors.

Vocal responses were captured with a microphone and recorded at
44.1 kHz using the Audacity software (https://audacityteam.org/).

Vocal responses were recorded as wav files, and response laten-
cies were determined offline using the Praat software (Boersma
and Weenink, 2019).

MEG recordings. Subjects were seated in the MEG system in a mag-
netically shielded room. They were asked to sit comfortably but to keep
their body and head still during the task, and to try to avoid blinking.
They were instructed to look at the stimulus screen, located 40 cm in
front of them, focusing on the center of the screen. The MEG signals
were recorded using a high-density whole-head system (OMEGA 2000;
CTF Systems), consisting of 275 axial gradiometer channels and 29 dedi-
cated reference channels for environmental noise cancellation. The sub-
ject’s head was registered to the MEG sensor array using three coils
placed at three anatomic landmarks (nasion, and left and right ear
canals). The head position was continuously monitored during the MEG
recordings, and readjusted during breaks if it deviated.9 mm from the
initial position (Stolk et al., 2013). Head movements did not exceed
1.25 cm between blocks. Pairs of Ag/AgCl electrodes were used to record
the horizontal and vertical electro-oculograms, the electrocardiogram,
and the surface EMG from the orbicularis oris muscle (electrodes placed
above the upper lip and below the lower lip) (impedance was kept ,15
kV for all electrodes). MEG, EMG, and electro-oculogram signals were
analog low-pass filtered at 300Hz, digitized at 1200Hz, and saved to
disk for offline processing.

Data analysis
Behavioral data. Latencies of the subjects’ verbal responses were cal-

culated offline by subtracting the time of picture onset marked by a
10ms auditory signal (inaudible to the participants) from the time of
speech onset.

Praat software (http://www.praat.org) (Boersma and Weenink, 2019)
was used to analyze the recorded audio signal and to semiautomatically
identify the onset of beep and articulation. Automatic silence/nonsilence
interval boundaries were obtained by using intensity (dB) thresholds,
and the resulting onset boundaries were manually inspected and cor-
rected where needed (most often at word-initial voiceless consonants or
vowels); 83% of response trials were correctly named (identical to the
target word). Incorrectly named trials (3%) and verbal disfluencies (stut-
tering, utterance repairs, and production of nonverbal sounds) (14%)
were excluded from the analyses.

In order to assess and assure synchrony between the onsets of picture
and of the auditory beep signal for subsequent MEG data analyses, the
audio files were aligned with the picture onset triggers for the prepro-
cessing of the MEG data, and with the audio channel in the MEG. For
the alignment, the (very small) difference in clock speed of the computer
for audio recording and the MEG acquisition computer was taken into
account by estimating the delay between the presentation triggers and
the delivery of the beep.

For behavioral data analysis, the effects of the variables of interest on
naming latencies was assessed by conducting a one-way repeated-meas-
ures ANOVA on the averaged naming latencies of each subject with
semantic category, word length, and phonological neighborhood size as
independent variables.

MEG data preprocessing. Data were processed using MATLAB (ver-
sion R2021a) and the FieldTrip toolbox (Oostenveld et al., 2011). Data
were epoched into segments from �100 to 1000ms relative to picture
onset. Independent component analysis was used to remove ECG arti-
facts using the logistic infomax independent component analysis algo-
rithm (Bell and Sejnowski, 1995), using the EEGLAB implementation
(Delorme and Makeig, 2004) (http://eeglab.org). Before decomposing
the MEG signal into components, data were bandpass filtered in the 1-
30Hz range and downsampled to 300Hz. The topographies of the com-
ponents were visually inspected, along with their time course for the first
40 trials, and the effect of removing the components that were identified
as containing artifacts was checked. Samples contaminated by artifacts
because of eye movements, muscular activity, and superconducting

Table 1. Psycholinguistic properties of the 134 stimulus items

Category

SUBTLEX word
frequency No. of

syllables

No. of phonological
neighbors

Mean (SD) Median (range) Mean (SD) Mean (SD) Median (range)

All words
Animals 8 (10) 6.1 (49.9) 1.5 (0.6) 12.3 (10.1) 9 (45)
Clothes 9.8 (15.8) 4.2 (67.2) 1.5 (0.5) 11.7 (10) 8 (41)
Foods 5.7 (9.2) 2 (39.6) 1.5 (0.5) 12.2 (11) 9 (39)
Tools 9.4 (8.8) 6.8 (37.5) 1.6 (0.6) 11.9 (8.2) 11 (33)
All 8.3 (11.4) 4.8 (67.3) 1.5 (0.5) 12 (9.8) 9 (46)

Monosyllabic words
Animals 11.1 (12.8) 7.5 (49.4) 19.1 (9.6) 18 (39)
Clothes 17.6 (19.6) 11.6 (65.3) 17.9 (10.2) 17 (35)
Foods 8.7 (12.3) 2.2 (39.5) 21.3 (9.0) 21 (29)
Tools 13.7 (10.5) 10.8 (35.7) 16.9 (7.4) 15 (26)
All 12.8 (14.4) 7.8 (67.1) 18.8 (9.1) 18 (39)

Bisyllabic words
Animals 5.4 (12.8) 2.9 (18.7) 6.1 (5.5) 4.0 (21)
Clothes 2.5 (19.6) 1 (19.1) 5.8 (5.3) 3.5 (15)
Foods 2.9 (12.3) 1.9 (10.1) 3.6 (2.8) 3 (9)
Tools 5.1 (10.5) 5 (11.5) 8.0 (5.9) 7 (24)
All 3.9 (14.4) 2 (19.2) 5.8 (5.1) 4 (26)
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quantum interference device jumps were replaced by NaN (not a
number) to allow excluding those samples from further analysis.
For the sensor-level analysis, we calculated synthetic planar gra-
dients using a nearest-neighbor interpolation (Bastiaansen and
Knosche, 2000). Combining horizontal and vertical components of
the estimated planar gradients allows for easier interpretation of
the sensor-level results, as the maximal activity is typically located
above the source (Hämäläinen et al., 1993).

Classification pattern analyses. Spatiotemporal MVPA was used to
assess whether the experimentally manipulated stimulus features could
be decoded from the MEG sensor signals. The stimulus features of inter-
est were as follows: (1) object category; (2) word length as quantified by
the number of syllables; and (3) phonological neighborhood density.
The object category variable coded for the four categories of animals,
tools, foods, and clothes; the word length variable coded for short
(monosyllabic) and long (bisyllabic and trisyllabic) words; and the pho-
nological neighborhood density variable was discretized into four classes
of approximately equal size (smaller/small/large/larger). As such, decod-
ing for the variables of interest constituted 4-way and binary classifica-
tion tasks.

To control for low-level visual confounds, we decoded the object cat-
egories while accounting for low-level visual features of the object images
in the estimation of the within-subject null-distribution of the category
classification (see below). We took the following visual features into
account: contrast, as measured by the intensity contrast between a pixel
and its neighbors over the whole image (Corchs et al., 2016); visual
complexity, quantified by edge density as the percentage of pixels
that are edge pixels (Rosenholtz et al., 2007; Forsythe et al., 2008);
and colorfulness, measured using distributional properties of pixel
color values, as being strongly correlated with human judgments
(r = .83) (Hasler and Suesstrunk, 2003). These variables were dis-
cretized into two classes of approximately equal size (low/high).

Additional post hoc analyses were conducted as a sanity check
of the data to ascertain whether an uncontrolled variable, such as
lexical frequency, yielded spatiotemporal patterns of classification
that were similar to the patterns resulting from the main analysis,
thus confounding the results. Word frequency was included
because it is highly correlated with word length and neighborhood
density.

We used a Gaussian naive Bayes classifier (Mitchell, 1997), as
implemented in the MVPA-light toolbox (Treder, 2020). Despite its
assumption that features are conditionally independent of each
other given the class label (Bishop, 2006), this classifier has shown
to be remarkably successful in a wide range of classification prob-
lems. To evaluate classification performance and to control for over-
fitting, repeated stratified five-fold cross-validation was used. The
data were randomly split into five equal folds, ensuring the equal
presence of classes in each fold (stratification). The model was
trained on four folds and validated on the fifth fold. The process was
repeated 5 times, such that each fold was used for validation. The
entire cross-validation was furthermore repeated 5 times with new
randomly assigned folds, to reduce bias that might be caused
because of how data were randomly partitioned into folds, and the
final averaged results are reported. To avoid classification bias
because of class imbalance in the class labels, random undersam-
pling was applied to training and test data, by discarding randomly
selected samples from majority classes until each class was repre-
sented by an equal number of samples.

We quantified the decoding performance by means of classification
accuracy, which is the fraction of correctly predicted class labels. The
higher the classification accuracy, the better response patterns associated
with the class labels can be determined.

We applied a spatiotemporal searchlight procedure and defined
for each time point and channel a local searchlight, consisting of a
150 ms time window (45 data points at the downsampled sampling
rate of 300 Hz), and the set of first order neighboring synthetic
planar gradient channels. On average, each channel had 7.4 neigh-
bors (SD = 1.1, range 4-10); thus, the classification at each channel-
time point was based on 332 features (range 180-450). To assess

whether classifier performance was above chance performance, we
estimated the chance level empirically, using permutations at the
single-subject level. We repeated the classification testing after
shuffling the class labels, and recomputed classifier performance
on the shuffled class labels to obtain a distribution under the null
hypothesis of exchangeability of class labels (see, e.g., Cichy et al.,
2014; Isik et al., 2014; Kaiser et al., 2016). The randomization of
class labels for the number of syllables and the phonological neigh-
borhood density classification was constrained to account for the
fact that the object category was not fully orthogonal to the other
features of interest. To this end, the randomization of class labels
was performed for each object category separately.

We controlled for low-level visual confounds in the classification
of semantic object categories, by constraining the within-subject
randomization procedure (to obtain the subject-specific distribution
for object classification under the null hypothesis) to binned collec-
tions of stimuli, where the bins were defined according to the visual
features of the images. For statistical inference, we used nonpara-
metric cluster-based permutation tests across space and time (Maris
and Oostenveld, 2007), using 2000 permutations. The cluster-based
permutation procedure uses the same spatial neighborhood struc-
ture that was used in the classification searchlight procedure, clus-
tering the selected samples (sensors, time points) on the basis of
spatial and temporal adjacency. The test statistic used was a group-
level T statistic against the empirical chance level using the subject-
specific Z-standardized decoding accuracy scores. These Z scores
for each subject were obtained by subtracting the mean accuracy
obtained from 100 randomizations from the observed accuracy, and
dividing by the SD across randomizations.

Results
Behavioral results
Table 2 reports the average RT and naming accuracy per object
category, as quantified based on subjects’ actual responses during
the MEG experiment. One-way repeated-measures ANOVA on
the average naming latencies of each subject with object category,
word length, and phonological neighborhood size as independent
variables revealed a main effect of object category (F(1,32) = 12.6,
p, 0.001), with the RTs being slower for clothes (see Table 2).

The analyses also revealed a main effect of word length on the
RT (F(1,32) =7.34, p=0. 011), monosyllabic words (mean=838ms,
SD=98) showing a shorter RT than bisyllabic words (mean=
855ms, SD=092). Neighborhood density also showed a main effect
(F(1,32) =7.09, p=0.012), as words with a high number of pho-
nological neighbors showed shorter RTs (mean = 838 ms,
SD = 86) than those with a low number of phonological
neighbors (mean = 854 ms, SD = 95).

Furthermore, we inspected whether object categories inter-
acted with word frequency. As expected, high-frequency words
(mean= 821 s, SD=85) were named faster (F(1,32) = 50.43, p,
0.001) than low-frequency words (mean= 877 s, SD=102).
Importantly, though, there was no interaction of word frequency
with object category, suggesting that the semantic effects were
not linked to word frequency.

Table 2. Averaged RTs and naming accuracy values per object category

RT (ms)
Accuracy
(% correct)

Category Mean SD Mean SD

Animals 831 90 84.3 12.9
Clothes 891 100 67.3 12.2
Foods 841 100 84.7 10.2
Tools 834 80 88.2 12.3
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Results fromMVPA searchlight analysis on MEG data
Results from the spatiotemporal searchlight analyses further
revealed specific neural dynamics associated with the key seman-
tic and phonological variables of the present study. Decoding
outcomes yielded above chance raw accuracy values of 37% for
object category, 56% for word length, and 28% for phonological
neighborhood density. Although raw accuracy values were not
high, they were above chance. Figures 1 and 2, respectively, dis-
play the topographic distributions and the time course of decod-
ing accuracy for each contrast of interest. We found that the four
object categories were significantly distinguished early on, start-
ing in the time window 150-250ms, in bilateral occipital, tem-
poroparietal, central, and left frontal sensor areas, as shown in
Figure 1 (top).

In contrast, above chance decoding accuracy for word length
was first observed in a central sensor area starting in the time
window 150-250ms, and later, starting in the time window 250-
350ms, in left temporal and frontal sensors (Fig. 1, middle).
Starting in the subsequent time window (350-450ms), decoding
accuracy for phonological neighborhood density was signifi-
cantly above chance over a more focused subset of left frontal
sensors (Fig. 1, bottom).

The corresponding time courses of decoding accuracy from
selected left occipitoparietal and posterior temporal sensors for
object categories, and from left frontal and adjacent anterior
temporal sensors for word length and phonological neighbor-
hood density are displayed in Figure 2.

The searchlight results for the key study variables are sum-
marized as time courses of decoding accuracy (Z-standardized
values) across left frontal and temporal sensors in Figure 3.

For the control variable of word frequency, decoding accuracy
was above chance in central sensors in an early time window
(Fig. 4A), which was comparable to the spatiotemporal effects

observed for word length. Above chance accuracy for word fre-
quency across left frontal and temporal sensors was, however,
only seen from a later time window (450-550ms), as displayed in
Figure 4B, suggesting differences in the underlying processes.

Discussion
Using MVPAs of the MEG data, we investigated the time course
of neural activity underlying semantic and phonological access
in object naming. Conceptual preparation was cued by categori-
cal distinction of the stimulus objects, while syllabification and
phonetic encoding were, respectively, linked to the manipulation
of word length and phonological neighborhood density. Our
method revealed discriminability of object categories in occipito-
parietal and temporal sensors early on (150-250 ms). Word
length was decoded from the subsequent time window (250-350
ms) in left frontotemporal sensors, followed by phonological
neighborhood density (350-450 ms).

Regarding the competing serial/hierarchical and early/parallel
hypotheses, based on the target variables of the present study,
our results speak in favor of a cascade of neural events with se-
quential onset times for the conceptual, phonological, and pho-
netic processes that enable overt object naming.

The observed early differentiation of object categories during
conceptual preparation is consistent with established knowledge
that brain activity in the ventral visual pathway rapidly evolves
from the visual perception and recognition of object images in
posterior occipital and parietal cortex to the perceptual feature
conjunctions enabling the representation of conceptual meaning
in inferior temporal and fusiform cortex, as identified by previ-
ous MEG work (Clarke et al., 2013). In relation to the sketched
continuum from perception to conceptualization in the visual
regions, the initial activity sparking from occipital sensors to
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Figure 1. Topographic maps displaying the effect of decoding accuracy (expressed as a T statistic) for each key variable: (1) object categories (top), (2) word length (middle), and (3) phono-
logical neighborhood density (bottom). Data points exceeding the nominal cluster threshold at p, 0.05 (uncorrected) are marked with an asterisk. Object category information was decoded
early on, starting in the time window from 150 to 250 ms, across a distributed set of bilateral occipitoparietal, and left temporal sensors. From the subsequent time window (250-350 ms),
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parietal and posterior temporal sensors was expected to reflect
visual perceptual processes from which categorical object repre-
sentations emerge during the early stages of object meaning
identification (Carlson et al., 2014). Recent studies have shown
that perceptual similarity predicts object categories more
reliably than semantic category at early stages of visual object
comprehension (Proklova et al., 2019; Contini et al., 2020).
The perceptual properties of the visually presented objects
can then obviously confound the decoded activity in lan-
guage tasks (Vindiola and Wolmetz, 2011; Simanova et al.,
2014, 2015). As our data were controlled for basic visual fea-
tures during classification of object categories, we found no
decoding effects in the semantic object category condition in
the first time window (0-150ms). We interpret the results
from the second time window onward as being predomi-
nantly driven by semantic processes linked to object meaning
identification and categorization, consistent with the predic-
tion from the Indefrey and Levelt (2004) model regarding
conceptual preparation. The present study could thus effec-
tively decode semantic object category information about
objects at sensor level independently of the visual modality
(Haxby et al., 2001; Cox and Savoy, 2003; Kamitani and
Tong, 2005; Reddy and Kanwisher, 2007) with which an
object is presented, in line with previous MVPA studies from
whole-head high-density MEG signals (Simanova et al.,
2010; Chan et al., 2011; van den Nieuwenhuijzen et al.,
2016). The replicability of decoding of object categories in
the present study also corroborates earlier evidence that pat-
terns in sensor space carry information about object catego-
ries with latencies ;150-250ms after picture presentation
(for review, see Contini et al., 2017).

Our results determined the relative earliness of concep-
tually driven preparatory activity with respect to the later
latencies of phonological processes during word produc-
tion planning, confirming MVPA pattern-classification of
MEG data as being a reliable tool to investigate the time
course of the neural dynamics in language tasks, such as
overt naming.

A second result of importance of our present work concerns
the time course of neural activity associated with phonological
information, as word length was decoded from left frontotempo-
ral sensors, from 250 to 350ms, while phonological neighbor-
hood density from left frontal and temporoparietal sensors was
decoded 160ms later, from the time window 350-450ms. In
line with the Levelt and Indefrey’s model, these phonological
operations started immediately after the onset time expected
for phonological code retrieval. Also, their spatial distribu-
tion confirms consolidated evidence for a role of frontal
regions in phonological processes (Fiez et al., 1999; Fiebach
et al., 2002; Hagoort, 2005; Carreiras et al., 2006; Hauk et al.,
2006; Graves et al., 2007; Papoutsi et al., 2009; Wilson et al.,
2010), and a role of temporal regions in mapping auditory
and motor representations (Hickok et al., 2003; Hickok and
Poeppel, 2007), and in phonological/phonetic encoding (de
Zubicaray et al., 2002; Gorno-Tempini et al., 2004, 2008; Bles
and Jansma, 2008; Henry and Gorno-Tempini, 2010; Wilson
et al., 2010), both in production and in perception (e.g.,
Obleser et al., 2003; Indefrey and Levelt, 2004; Hickok and
Poeppel, 2007; Indefrey, 2011; DeWitt and Rauschecker,
2013; Mesgarani et al., 2014).

Interestingly, later left temporoparietal activity was specific to
neighborhood density (at ;550ms after picture onset), and may
be because of self-monitoring processes supported by the corre-
sponding brain regions (e.g., McGuire et al., 1996; Hirano et al.,
1997; Shergill et al., 2002; Tourville et al., 2008). Earlier neuroi-
maging studies have shown a specific modulation of ac-
tivity in superior temporal cortex by words with high
neighborhood density (Okada and Hickok, 2006). Words
with a phonological neighbor may reduce neural activation
in a network of superior temporal, inferior parietal, infe-
rior frontal, and precentral regions, reflecting a facilitatory
effect in lexical selection, phonological and articulatory
planning, because of the overlap between the phonological
representation of the target word and of its competitor
neighbor (Peramunage et al., 2011; see also Harley and
Brown, 1998).
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Overall, spatiotemporal properties of the neural activity
in our data diverge from parallel models suggesting early
concurrent activity for conceptual and phonological infor-
mation because of the ignition of cells in multiple regions
for multiple functions (Miozzo et al., 2015; Strijkers and Costa,
2016; Strijkers et al., 2017). Rather, the present results provide
evidence that conceptual preparation and phonological/pho-
netic encoding trigger activity in the language systems at subse-
quent time intervals. Our findings therefore support hierarchical
models with temporal separation of onsets at the semantic and
phonological planning stages.

In the present results, transient activity in central sensors
became manifest in the topographic distribution of neuro-
magnetic activity for word length 150-250 ms. Central sen-
sors notably pick up activity in medial frontal regions, such
as (pre-) supplementary motor area (SMA), and/or cingu-
late cortex, which earlier studies have reported for similar
tasks. For instance, the SMA plays diverse roles in lexical
selection, phonological sequencing, articulatory (Dronkers,
1996; Jurgens, 2009; Tremblay and Gracco, 2010), and self-
monitoring (e.g., Möller et al., 2007), along an anterior-to-
posterior anatomic gradient (Alario et al., 2006). However,
the existing literature provides inconsistent evidence for
the time course of activity and functions of this region in
overt naming. In a previous metabolic study, Wilson et al.
(2010) found activity modulation of SMA and premotor
regions as a function of word length, and speculatively pro-
posed it to reflect access to articulatory scores. Another picture
naming study using MEG identified a pattern of connectivity
linking medial frontal regions, supramarginal gyrus, and poste-
rior middle temporal cortex at ;300ms after picture presenta-
tion (Liljeström et al., 2015), and suggested a role of the SMA in
early control processes for articulatory planning. At similar
latencies (300ms after picture onset), electrophysiological work
reported SMA activity linked to vocal onset as an index of
motor preparation in speech (Riès et al., 2013).

With respect to these earlier studies, the effect in central sen-
sors in our data occurred even earlier, when previous studies
found early phonological (Miozzo et al., 2015) and articulatory
activations (Strijkers et al., 2017). This issue deserves further
investigation. Still, in the context of our present study, we rea-
soned that, if the central sensor activity was linked to purely pho-
nological or phonetic processes, we would observe a similar
early effect also for the other phonological variable we used
here, phonological neighborhood density, which was how-
ever not the case. Since we carefully manipulated our stimu-
lus set for our dimensions of interest, but we could not
control for lexical frequency, for which post hoc analyses
indicated early effects in central sensors, we interpret these
early dynamics as reflecting differences in intercorrelated
lexical properties, such as word length and lexical frequency
(short high-frequency words vs long low-frequency words), a
variable known to influence behavioral performance in pic-
ture naming, and related neural activity exactly in middle
frontal regions and cingulate cortex in both young and old
adults (Gertel et al., 2020).

In conclusion, using MVPA searchlights in sensor space,
the present MEG study demonstrated that MEG sensor pat-
terns carry information about both semantic object categories
and phonological processes during word production planning.
The results delineated a spatiotemporal dynamics of semantic
access, syllabification, and phonetic encoding characterized by
modulation of activity in posterior occipitoparietal and temporal

sensors by the different conceptual categories early on, and in left
frontal and temporal sensor areas by the two phonological varia-
bles at later time windows. The time course of the neural events
linked to these core word planning operations largely confirms a
progression of neural activity from posterior to anterior regions of
the language network along the axis from conceptualization to
phonological/phonetic operations. Our results support serial cas-
cading models of word production.

Our approach combining MEG and single-trial MVPA spa-
tiotemporal searchlights offers a promising method for investi-
gating the spatiotemporal properties of language planning to
evaluate and refine current models of language production.
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