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1 | INTRODUCTION within constituent cells (Gupta, Tsai, & Wynshaw-Boris, 2002; Nord,

Pattabiraman, Visel, & Rubenstein, 2015; Rakic & Caviness, 1995).
The human cerebral cortex represents the essential cellular sub- These molecular pathways guide the production of appropriate num-
strate through which we evoke thoughts, express emotions, and bers of neural cells and coordinate their assembly into functional cir-
conceptualise the environment within which we exist. Its formation cuits that underpin our mental actions, from cognition to emotion
involves an exquisite coordination of gene expression pathways to learning. Failures in these neurodevelopmental processes can
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lead to disorders of brain tissue homeostasis (such as microceph-

Neurochemistry

aly and macrocephaly), circuit formation (such as intellectual dis-
ability), as well as neuronal signalling (such as epilepsy) (Barkovich,
Guerrini, Kuzniecky, Jackson, & Dobyns, 2012; Leventer, Guerrini,
& Dobyns, 2008).

The activities of DNA-binding transcription factors (TFs)
are essential to the cell-intrinsic gene regulatory programs that
operate within immature cells of the foetal brain, as these cells
mature to become functional neural circuits (Butt et al., 2007;
Nord et al., 2015). The importance of TFs for brain develop-
ment is reflected in the finding that mutations to such genes
cause a spectrum of human neurological disorders (Deciphering
Developmental Disorders, 2017). Yet, while recent studies have
documented significant genetic variation in the coding sequence
of brain-related TF genes that are relevant to human health
(Karczewski et al., 2020) and disease (Landrum et al., 2018), the
functional impacts of such variants, particularly missense vari-
ants, remain poorly characterised. Indeed, missense variation to
brain genes, including TFs, drives a spectrum of biological impacts
so as to guide the trajectory of human brain development and, in
some cases, causes brain disorder. We provide an illustrative sum-
mary for the development of mammalian cerebral cortex neurons,
within which we highlight studies exploring the functional impact
of missense variation on brain-related TF genes, such as ZBTB18.
Furthermore, we provide a molecular mechanistic overview of
how missense variants disrupt the transcriptional regulatory roles
for such proteins. As such, quantitative knowledge of the tran-
scriptional regulatory impact of functional missense variants for
TF genes will improve the molecular diagnostic interpretation of
such variants in health and disease. Finally, we present a method-
ological approach to quantify the functional impact of missense
variation for TF genes essential to brain development, tissue ho-

meostasis and brain ageing.

1.1 | Roles for transcription factors in the
development of cerebral cortex neurons during foetal
development

During the development of the embryonic cerebral cortex, neural
stem cells generate neurons, glial cells and oligodendrocytes that
differentiate to form functional neural circuits (Arlotta et al., 2005;
Gupta et al., 2002). The development of glia and oligodendro-
cytes, as well as the neurovasculature, are not covered here, but
have been discussed in depth elsewhere (Rowitch, Lu, Kessaris, &
Richardson, 2002; Sauvageot & Stiles, 2002; Segarra et al., 2018). In
both the human and mouse cerebral cortex, the majority of neurons
falls into two categories, identified by their neuroanatomical prop-
erties and chemical composition. Excitatory projection neurons of
the cerebral cortex constitute the majority (over 80%) and are mor-
phologically distinguished by their large, pyramidal cell bodies and
utilisation of glutamate as their neurotransmitter. Inhibitory cortical
interneurons, in contrast, represent the minority population, have

smaller cell bodies and extensive local cell-to-cell contact, as well as
utilise y-aminobutyric acid (GABA) as their neurotransmitter. In both
categories of cortical neurons, their subtype specification is shaped
by unique gene expression programmes through the actions of TFs
(Butt et al., 2007; Nord et al., 2015; Telley et al., 2016), as outlined
below.

In the case of glutamatergic cortical projection neurons of
the mouse cerebral cortex, their development and specification
is underpinned by the activities of DNA-binding TFs, such as the
paired box transcription factor PAX6 (Asami et al., 2011; Heins
et al., 2002; Walcher et al., 2013), the T-box protein TBR2 (Englund
et al., 2005; Sessa et al., 2017; Sessa, Mao, Hadjantonakis, Klein,
& Broccoli, 2008), the winged helix protein FOXG1 (also known as
BF-1) (Tao & Lai, 1992; Xuan et al., 1995) and the zinc finger protein
ZBTB18 (Heng et al., 2013; Hirai et al., 2012; Xiang et al., 2011).
The gene regulatory activities of these TFs govern the production
of appropriate numbers of neural stem cells and neuronal progeny
within the embryonic cerebral cortex. Also, several TFs, includ-
ing the basic Helix-Loop-Helix (bHLH) proteins Neurogenin-1
(NEUROG1) and Neurogenin-2 (NEUROG?2), drive the fate of post-
mitotic cortical projection neurons and stimulate the expression
of downstream target genes to control their radial migration from
the germinal ventricular zones of the dorsal telencephalon to the
nascent cortical plate (CP) (Heng & Guillemot, 2013; Schuurmans
etal.,, 2004). Subsequently, gene expression programs orchestrated
by bHLH TFs, such as NEUROD1, NEUROD2, as well as the zinc
finger proteins FEZF2 (also known as ZNF312) and CTIP2 (also
known as ZNF856B) guide their differentiation as distinct corti-
cal projection neuron subtypes (Molyneaux, Arlotta, Menezes, &
Macklis, 2007). As cerebral cortex development proceeds, suc-
cessive temporal waves of projection neurons progressively oc-
cupy the expanding CP, with later-born neurons migrating beyond
earlier-born ones, thus resulting in an “inside-out” layer assembly of
cortical neurons, characterised by their birthdates and cell-intrinsic
gene expression patterns as distinct subtypes (Molyneaux, Arlotta,
& Macklis, 2007; Molyneaux, Arlotta, Menezes, & Macklis, 2007).
Once settled into their appropriate laminar positions, these post-
migratory cortical projection neurons terminally differentiate and
form appropriate connections with local dendritic networks, as
well as with distinct axonal targets within the cerebral cortex and
beyond (Figure 1a, b).

In contrast to cortical projection neurons, newborn corti-
cal interneurons delaminate from the germinal ventricular zone
of the ventral telencephalon and arrive within the dorsal telen-
cephalon by tangential migration along distinct paths, guided by
cell-intrinsic transcriptional regulatory mechanisms as well as by
attractive and repulsive molecular cues within the tissue environ-
ment (Hu, Vogt, Sandberg, & Rubenstein, 2017; Lim, Mi, Llorca, &
Marin, 2018; Southwell et al., 2014; Wonders & Anderson, 2006).
The activities of several TFs, such as MASH1, SATB1, LHX6 and
DLX1/2 are essential to drive their development as GABAergic
interneurons (Lindtner, Catta-Preta, Tian, et al., 2019; Nord
et al., 2015), as well as their capacity to undergo tangential
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FIGURE 1 Diagrammatic representation of the development of excitatory projection neurons within the developing mammalian
cerebral cortex. (a) Cortical progenitor (radialglia) cells within the germinal ventricular zone (VZ) proliferate and express TFs, including
PAX6. These neural stem cells are influenced by FOXG1 and ZBTB18 signalling. Postmitotic cells are committed towards a neuronal
fate through the expression of proneural proteins, such as NEUROG2. In parallel, PAX6-expressing progenitors can also express TBR2
and proliferate as intermediate progenitors; these produce postmitotic neurons through a terminal step of symmetric division. The
expression of NEUROG2 in newborn postmitotic cortical plate (CP) neurons is influenced by ZBTB18 transcriptional regulation, as well
as post-translational stabilisation through p27kip1. As CP neurons undergo radial migration, the expression of genes (including Rnd2)
promotes their multipolar migration through the subventricular zone (SVZ) and into the intermediate zone (1Z). The transcriptional

regulatory functions of NEUROD1 and NEUROD?2 stimulate the expression of Rnd2 as cells migrate into the CP, however their multipolar-
to-bipolar transition is mediated by ZBTB18 expression. Recently, FOXG1 was found to signal as a co-factor with ZBTB18 to temper the
expression of migration-related genes (such as Rnd2), as well as axon guidance genes (such as Robo, slit and reelin) essential to the terminal
differentiation of postmigratory neurons. (b) The actions of TF proteins FEZF2 and CTIP2 are essential for the differentiation and axonal
pathfinding of corticofugal and callosal axons, of deep layer neurons (light purple), respectively. As development proceeds, later-born
neurons that express CUX1 and CUX2 (pink) migrate over their earlier-born counterparts, leading to an “inside-out” assembly of cortical

projection neuron in distinct layers.

migration through the regulation of downstream genes including
PAK3 (Cobos, Borello, & Rubenstein, 2007) and RND3 (Pacary,
Azzarelli, & Guillemot, 2013). As they arrive within the dorsal tel-
encephalon, cortical interneurons disperse and finally establish
functional contacts with their cellular counterparts (Silva, Peyre,
& Nguyen, 2019). The molecular and cellular mechanisms for in-
terneuron development are comprehensively detailed in several
reviews (Gupta et al., 2002; Marin & Rubenstein, 2001; Marin &
Rubenstein, 2003; Silva et al., 2019).

1.2 | Generegulatory control of radial migration
during neurodevelopment: Transcription factor
co-operation, competition and combination

As projection neurons undergo radial positioning, distinct TF regula-
tory programs drive their appropriate migratory behaviour. Notably,
newborn postmitotic cortical projection neurons delaminate from
the dorsal ventricular zone (VZ) and adopt a bipolar cell shape as
they migrate radially towards the subventricular zone (SVZ) and in-
termediate zone (1Z). Upon their arrival within the SVZ and lower 1Z,

these cells adopt a multipolar shape and undergo somal translocation
to arrive at the lower cortical plate (CP) (Kriegstein & Noctor, 2004;
Noctor, Martinez-Cerdeno, Ivic, & Kriegstein, 2004; Silva et al., 2019).
As they transit into the CP, cells adopt a bipolar shape, engage a ra-
dialglial fibre and migrate to the upper CP by radialglial-guided loco-
motion (Nadarajah, Alifragis, Wong, & Parnavelas, 2002; Nadarajah
& Parnavelas, 2002; Noctor et al., 2004). To date, an extensive series
of migration-related genes have been found to influence the radial
positioning of cortical projection neurons, with distinct actions on
the capacity for migrating neurons to remodel their microtubule
and actin cytoskeleton to undergo directional movement (Heng,
Chariot, & Nguyen, 2010; Kriegstein & Noctor, 2004; Nadarajah &
Parnavelas, 2002; Silva et al., 2019; Wu et al., 2014). Furthermore,
TFs that orchestrate the fine-tuned expression of migration-
promoting genes signal in a variety of ways.

Here, we draw on studies on the transcriptional regulation of
a migration-related gene, known as Rnd2, so as to highlight three
critical signalling roles for TFs through which they orchestrate
neurodevelopmental gene expression, namely (i) co-operation;
(i) competition; and (iii) combination. Given that the study
of TF interactions is of great interest to understanding gene
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& Stark, 2017), it is important to clarify our terminology, as follows.
Firstly, we refer to “co-operation” as the capacity for closely-related
TF family members to regulate the transcription of a downstream
target gene through binding a common consensus DNA motif
within the genome, but with family members signalling at differ-
ent times as a neuron matures. In this way, related TF family mem-
bers can each transduce gene regulatory functions through a single
site within the genome, in a temporally defined manner and across
different intracellular contexts based on their presence at a given
developmental stage of the immature neuron. Transcription factor
proteins of the DLX genes (Merlo et al., 2000), HMG box family
(Huilgol, Venkataramani, Nandi, & Bhattacharjee, 2019), Forkhead
family (Genin, Caron, Vandenbosch, Nguyen, & Malgrange, 2014)
and bHLH family (Bertrand, Castro, & Guillemot, 2002) demon-
strate co-operative activity between family members as they are
expressed within a given cell at different maturation states, such
that their temporally restricted presence sustains gene regulatory
actions over binding sites shared across members of a given fam-
ily. Secondly, we describe “competition” as the behaviour between
unrelated TFs for a common regulatory element, such as between
the zinc finger DNA-binding TF family member ZNF143 and the un-
related Suppressor of hairless (Su[H]) family member RBPJ (Ngondo-
Mbongo, Myslinski, Aster, & Carbon, 2013), both of which have
overlapping binding sites within promoters of the same downstream
target genes. Finally, we define “combination” as the activity of two
unrelated TFs that act synergistically on a regulatory enhancer re-
gion to modulate gene expression, such as between Proneurogenic
bHLH TFs and POU TFs (Castro et al., 2006).

The RhoA-like GTPase RND2 is essential to remodel the actin
cytoskeleton of migrating neurons by suppressing RhoA signalling
(Pacary etal., 2013). Furthermore, too much or too little Rnd2 expres-
sion impairs the development of cortical projection neurons (Alfano,
Viola, Heng, et al.,, 2011; Heng et al., 2013; Ohtaka-Maruyama
etal., 2013; Pacary et al., 2013). In newborn mouse cortical neurons,
there are at least five DNA-binding transcription factors (Neurog2,
NeuroD1, Neurod2, Foxgl and Zbtb18) that regulate Rnd2 expres-
sion over the course of their migration and differentiation. Each of
these TFs is expressed at different levels within the immature cere-
bral cortex neuron. As shown in Figure 2a, Neurog2 is prominently
expressed in cells within the VZ, including progenitors and newborn
neurons, while NeuroD1 is more prominently expressed in cells as
they arrive within the IZ. In contrast, NeuroD2, Foxgl and Zbtb18
are expressed weakly in VZ and IZ cells, but more strongly in neu-
rons as they arrive within the CP. Notably, the graded expression
of Rnd2 in cortical neurons, which is weak in newborn postmitotic
neurons of the VZ, but prominent in cells within the IZ before its
significant reduction in cells as they arrive in the CP (Figure 2b), is
programmed by these five TFs, as follows.

The proneural bHLH TF Neurog2 is expressed in newborn
neurons of the VZ and stimulates the expression of genes, includ-
ing Rnd2, to promote their radial migration (Heng, Nguyen, Castro,
et al.,, 2008). Persistent expression of Rnd2 in migrating neurons

within the SVZ and IZ is augmented by the closely related bHLH
TFs Neurodl, Neurod2 (Heng et al., 2008; Heng et al., 2013)
(Alfano et al., 2011) and other TFs that are expressed at intermedi-
ary stages as the neuron matures (Figure 2c). As cells move within
the upper 1Z and arrive at the lower CP, the zinc finger TF Zbtb18
functions as a transcriptional repressor that is essential for tem-
pering the expression of appropriate Rnd2 levels so as to facilitate
the multipolar-to-bipolar transition of migrating neurons (Hemming,
Clement, Gladwyn-Ng, et al.,, 2019; Heng et al.,, 2013; Ohtaka-
Maruyama et al., 2013). Consistent with this model, functional ex-
periments suppressing Rnd2 by RNAI, or that drive overexpression
by exogenous delivery of a mammalian expression construct, lead
to impaired radial migration (Heng et al., 2008; Heng et al., 2013).
Furthermore, the transcriptional activators Neurog2, Neurod1 and
Neurod2 compete with Zbtb18 repressor function to control Rnd2
expression via distinct regulatory DNA-binding sites located down-
stream of the protein-coding region for this gene (Heng et al., 2008;
Heng et al., 2013). This mechanism of action is underpinned by the
capacity for bHLH transcription factors (such as Neurogenins and
NeuroDs) to bind to a core binding motif, referred to as the ‘Rnd2 3’
enhancer’ that is also bound by Zbtb18 (Hemming et al., 2019; Heng
et al., 2013) (Figure 2d). Hence, expression levels for Rnd2 are influ-
enced by the relative abundance of these DNA-binding TFs within
cortical cells as they mature and migrate from the VZ to the CP, as
well as by the level of competitive occupancy for activator and re-
pressor TFs within common sites, such as those described in this
enhancer (Figure 2c). This ‘rheostat’ model of gene expression reg-
ulation for genes such as Rnd2, underpinned by threshold levels of
activator (Neurog2, Neurod1, Neurod?2) and repressor (Zbtb18) TF
proteins (Heng et al., 2013; Ohtaka-Maruyama et al., 2013), is critical
for neurodevelopment. The biological relevance of these findings is
further substantiated by two studies that have documented bonafide
genome-wide binding by Zbtb18 (Cargnin et al., 2018) and Neurog2
(Noack, Vangelisti, Carido, Chong, & Bonev, 2020) in embryonic cor-
tical cells, including to the ‘Rnd2 3'enhancer’. Remarkably, Cargnin
and colleagues performed chromatin immunoprecipitation (ChIP)
experiments in embryonic cortical cells to discover that Zbtb18 and
Foxgl bind as a transcriptional co-factor through a Foxgl binding
site adjacent to the E1 motif within the Rnd2 3’ regulatory enhancer
to influence the expression of this common downstream gene
(Cargnin et al., 2018) (Figure 2d). Indeed, loss of Foxgl expression
or Zbtb18 expression leads to a significant increase in Rnd2 levels in
the developing cortex (Cargnin et al., 2018; Heng et al., 2013), while
forced expression of Foxgl and Zbtb18 in embryonic cortical cells
led to suppression of Rnd2 (Cargnin et al., 2018).

These abovementioned studies on the regulation of Rnd2 expres-
sion through a 3’ regulatory enhancer locus collectively demonstrate
TF co-operation, competition and combination for the cell intrinsic reg-
ulation of cerebral cortex neuron development, as follows. Firstly, TF
co-operation is observed as the sequential activation of Rnd2 expres-
sion through binding of the common E1 motif by Neurog2, Neurod1
then Neurod2, respectively as projection neurons migrate from the
VZ to the CP and express these bHLH TFs in a temporal sequence
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FIGURE 2 Gene expression regulation by ZBTB18, FOXG1 and bHLH factors influence the expression of a migration-related gene, Rnd2.
(a) Within the apicobasal extent of the E14.5 mouse embryonic cerebral cortex, the timing and relative expression levels for transactivators
(NEUROG?2 (red), NEUROD1 (orange) and NEURODZ2 (yellow)) and transcriptional repressors (FOXG1 (dark grey) and ZBTB18 (light grey))
prefigure Rnd2 expression for the proper radial migration of cortical projection neurons. (b) In situ hybridisation image of Rnd2 expression
across the apicobasal extent of the embryonic E14.5 cerebral cortex alongside a summary of an embryonic cortical projection neuron
undergoing radial migration to reach the CP. Cells show weak expression in cells within VZ and SVZ, followed by peak expression in cells

as they traverse the 1Z before expression levels are significantly reduced in cells as they arrive within the CP. (c) TF co-operation: the

bHLH TFs NEUROG?2 and its related family members NEUROD1 and NEUROD?2 bind a common regulatory site, known as E1, within an
Rnd2 3’enhancer locus. NEUROG?2 protein is expressed in newborn neurons of the VZ, while NEUROD1 and NEUROD?2 are expressed

at intermediary stages of neuronal maturation. (d) TF competition: ZBTB18 mediates Rnd2 transcriptional repression by competing with
transactivators NEUROG2, NEUROD1 and NEUROD?2 for binding to E1. (e) TF competition: ZBTB18 protein binds to FOXG1 to mediate
transcriptional repression through an integrated motif comprising a FOXG1 binding site adjacent to E1. Also, ZBTB18 can recruit DNMT3A
to mediate site-specific transcriptional repression. Thickness of the arrows in (c) and (d) indicate strength of Rnd2 expression mediated by
combinatorial TF signalling.

(Figure 2c). Secondly, competition between Zbtb18 and bHLH TFs
(Neurog2, Neurodi, Neurod2) for binding to the E1 motif tempers
Rnd2 expression levels, such that high Zbtb18 levels in cells when
they reach the CP underlies low Rnd2 expression levels through a
transcriptional regulatory rheostat-like mechanism. Indeed, rheostat
mechanisms can lead to on/off transcriptional regulatory outcomes
when activators and repressors compete for the same DNA regu-
latory element (Rossi, Kringstein, Spicher, Guicherit, & Blau, 2000)
(Figure 2d). Thirdly, the combination of Zbtb18 and Foxg1 is essential
for gene expression regulation, with proteins binding as a transcrip-
tional cofactor so as to synergistically dial down gene expression for

projection neuron migration and differentiation (Cargnin et al., 2018)
(Figure 2e). Given these TF binding relationships, studies of genome-
wide binding sites for Zbtb18, Neurog2 and Foxgl hold significant
promise for (i) the identification of gene regulatory loci for co-operative
signalling (in the case of Neurog2 binding sites that are also bound by
NeuroD proteins); (i) the identification of sites that show competitive
binding by both Neurog2 and Zbtb18 that temper gene expression
levels; and (iii) the identification of genomic loci for a subset of down-
stream, target genes that are regulated by a combination of Zbtb18
and Foxg1l as obligate co-factors. Understanding such behaviours for
TFs in neurodevelopment is crucial to understanding how functional
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missense mutations disrupt their intracellular signalling behaviours to

cause brain disorder.

1.3 | The impact of missense mutations on TF
co-operation, competition, combination by ZBTB18

The importance of FOXG1, NEUROG2 and ZBTB18 to human foetal
development s reflected in the finding that mutations to these genes
cause brain developmental disorder (Avansini et al., 2018; Barkovich
etal., 2012; Depienne, Nava, Keren, et al., 2017). In humans, ZBTB18
mutations are associated with microcephaly, intellectual disability,
epilepsy and macrocephaly (Cohen et al., 2017; de Munnik, Garcia-
Minaur, Hoischen, et al., 2014; Depienne et al., 2017; Hemming
et al., 2016; van der Schoot et al., 2018). Genetic association stud-
ies draw a significant link between disease-associated, chromosomal
abnormalities resulting in copy number loss or gain in ZBTB18 gene
dosage (located within Chromosome 1g43-q44) and human brain
disorders (Cohen et al., 2017; de Munnik et al., 2014; Deciphering
Developmental Disorders, 2017; Depienne et al.,, 2017; van der
Schoot et al., 2018). Furthermore, regulation of RND2 by NEUROG2
has been implicated in focal cortical dysplasia (FCD), a brain de-
velopmental disorder of cortical lamination in humans (Avansini
et al., 2018), while mutations to FOXG1 cause a severe, syndromic
brain developmental disorder with defective neuronal migration as
a prominent clinical trait (Barkovich et al., 2012; Han et al., 2019).
As a corollary, loss-of-function studies in nullizygous mice further
demonstrate the requirement for Zbtb18 (Hirai et al., 2012; Xiang
etal.,2011), Neurog2 (Hand et al., 2005; Heng et al., 2008) and Foxg1
(Cargnin et al., 2018) in neuronal migration and mammalian brain
development. In contrast to our understanding of how inactivating
mutations cause neurodevelopmental abnormalities, the mecha-
nism of action through which missense variants cause disease is less
well understood. Indeed, missense mutations to FOXG1 represent
the majority of disease-associated single nucleotide variants (Han
et al., 2019; Landrum et al., 2018), which underscores the critical
importance of polypeptide sequence fidelity in its function as a TF
gene. In the case of NEUROG2, there are no clinically documented
missense variants (Landrum et al., 2018), which may be explained
by survivorship bias, such that damaging missense variants to this
gene may be incompatible with life. In the case of ZBTB18, many
disease-causing variants are predicted to be truncating, suggesting
that loss-of-function (LOF) mutations represent a general pathologi-
cal mechanism for disease (Depienne et al., 2017). Yet, a significant
proportion of disease-associated, single-nucleotide variants for
ZBTB18 are missense variants (55% (31/56) missense variants ver-
sus 45% (21/56) nonsense, frameshift and UTR variants (Landrum
et al., 2018)). Remarkably, the overwhelming majority (>80%; 15 out
of 18) of disease-associated ZBTB18 missense variants lie within the
C-terminal zinc finger DNA-binding region, essential to its role in
transcriptional regulation (Aoki et al., 1998; Hemming et al., 2019).
How might we study disease-causing missense variants and their
TF functions that likely underlie neural cell dysfunction and brain

developmental disorder? In the case of ZBTB18, we recently com-
bined several approaches to establish the biomolecular, biochemi-
cal, and neurobiological impacts of two such variants, namely
NP_991331.1:p.Asn461Ser (N461S) ([Farwell, Shahmirzadi, EI-
Khechen, et al., 2015]; rs797044885) detected in an individual with
microcephaly, as well as NP_991331.1:p.Arg495Gly (R495G) (Rauch
et al., 2012) detected in an individual with macrocephaly.

Firstly, to address the biomolecular consequences to DNA-
binding by ZBTB18, we developed in silico models of wildtype
ZBTB18 bound to enhancer DNA motifs within the Rnd2 locus
(Hemming et al., 2019). These experiments demonstrated that
Asn461 contributes significant binding energy to the core DNA
motif [CANNTG], while Arg495 does not directly interact with DNA.
Yet, we found that each missense variant disrupted the sequence-
specific DNA binding of ZBTB18 in different ways. Particularly, each
variant demonstrated a capacity to bind a mutated form of the E1
consensus motif within the Rnd2 3' enhancer, which we termed
E1™t suggesting that disease-associated missense mutations could
influence sequence-specific binding (Hemming et al., 2019). To fur-
ther support this finding, we conducted molecular modelling studies
between ZBTB18 and several bona fide regulatory enhancer motifs
(named Id2-bs1 and Id2-bs2) within the Id2 gene (Blake, Hemming,
Heng, & Agostino, 2021), an essential Zbtb18 downstream target
gene for neurodevelopment and skeletal muscle formation (Cargnin
etal., 2018; Hirai et al., 2012; Yokoyama et al., 2009). Consistent with
studies of the Rnd2 3’ enhancer, we found that wildtype ZBTB18
bound native sequences Id2-bs1 and Id2-bs2 with high affinity, while
the N461S variant bound more strongly than wildtype ZBTB18 yet it
does not form stable complexes with Id2-bs2 (Blake et al., 2021). On
the other hand, the R495G variant does not form stable complexes
with Id2-bs1 and binds Id2-bs2 weakly (Blake et al., 2021). Therefore,
disease-associated ZBTB18 missense variants N461S and R495G
disrupt sequence-specific DNA binding that is essential for regulat-
ing the expression of downstream target genes Rnd2 and Id2.

Next, we investigated the effects of missense variants N461S
and R495G using a series of biochemical assays. In the case of the
N461S variant, we found that steady-state levels of exogenously-
derived N461S variant were consistently low, suggesting that
the protein might be unstable within cells (Hemming et al., 2019).
Consistent with this notion, exposure to the proteasome inhibitor
MG132 restored the levels of N461S protein in lysates of treated
cells. Further to this pathological impact, we also found that the
N461S variant lost its capacity to repress gene transcription in vitro,
altogether suggesting that it operates as a loss-of-function and a
loss-of-repression variant. Furthermore, we found that the N461S
variant bound DNA promiscuously, and could influence gene expres-
sion beyond native ZBTB18 binding sites. In the case of the R495G
variant, we found that while such a mutation did not influence pro-
tein stability, this variant displayed evidence of promiscuous DNA
binding, as well as potentiation of gene transcription in vitro.

Finally, we investigated the neurobiological impact of both of
these disease-causing ZBTB18 missense mutations to directly influ-
ence neuronal migration during foetal brain development. To achieve
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this, we first carried out a series of in utero electroporation assays
(Hemming et al., 2019) with mouse embryos to show that suppression
of Zbtb18 through the delivery of targeting shRNA constructs led to
impaired migration by embryonic cerebral cortex neurons, and that
this phenotype could be rescued by co-delivery of wildtype ZBTB18
(Clement et al., 2017; Hemming et al., 2019; Heng et al., 2013).
Within this context, strikingly, co-delivery of a N461S variant led to
enhanced migration of Zbtb18 shRNA-treated cells, while co-delivery
of the R495G variant exacerbated the migration defect (Hemming
et al.,, 2019). Altogether, our studies demonstrate that both missense
variants disrupted the biomolecular, biochemical and neurobiological
functions of ZBTB18. Such molecular pathological traits may in part
explain the direct and damaging effects of such ZBTB18 missense

variants on human brain development and disease.

1.4 | Biomolecular, biochemical and
neurobiological findings for ZBTB18 facilitate our
understanding of its roles in transcription factor
combination, competition and co-operation

How might we interpret our studies on the pathological actions of
the N461S and R495G missense ZBTB18 variants to disrupt tran-
scription factor signalling during neurodevelopmental? In the case
of the N461S variant, its pathogenic mechanism of action is two-
fold, such that it manifests as a loss-of-function variant owing to
reduced steady-state levels, consistent with the observation that
ZBTB18 is a haploinsufficent gene (Depienne et al., 2017; Hemming
etal.,, 2016). Reduced ZBTB18 signalling directly influences Neurog2
levels (Ohtaka-Maruyama et al., 2013), thereby destabilising TF
combination by altering relative levels of bHLH factors Neurog2,
NeuroD1 and NeuroD2 (which are stimulated by Neurog2 [Gohlke
et al., 2008]). Moreover, this variant exhibits curtailed repressor
activity, at least in the context of signalling through the Rnd2 3’
enhancer sequence in vitro, thereby dysregulating TF combination
through its disrupted capacity for signalling transcriptional repres-
sion of downstream target genes such as Rnd2. Further to TF bind-
ing, our evidence suggests that the N461S variant may bind DNA

motifs that resemble the E1™

motif to influence gene expression
in such non-native sites in vivo. In the case of the R495G variant,
its gain-of-transactivation phenotype could result in aberrantly en-
hanced expression levels of migration-related genes, such as Rnd2,
as well as non-native target genes mediated through promiscuous
DNA-binding at non-native regulatory sites that resemble the E1™
sequence across the genome. Furthermore, related to potential con-
sequences on TF co-operation by ZBTB18 in the context of N461S
and R495G variants, protein-protein interactions with DNMT3A
(Fuks, Burgers, Godin, Kasai, & Kouzarides, 2001) and FOXG1 could
be affected, with attendant consequences on signalling, including
the possibility that such variants recruit FOXG1 to non-native co-
factor binding sites. Indeed, characterisation of the biomolecular,
biochemical and neurobiological findings for the spectrum of mis-

sense variants for TFs such as ZBTB18 will be crucial to our ability to

Neurochemistry

quantify their functional impact on TF combination, competition and

co-operation in neurodevelopment and disease.

1.5 | Exploring the impact of missense
variation on transcription factor function in
neurodevelopment and human disease

Mutations to genes encoding many of the 12 TFs described in our
cortical neuron working model (Figure 1) disrupt neural circuit de-
velopment or functional homeostasis, or both, leading to micro-
cephaly, intellectual disability, epilepsy and autism (summarised in
Table 1). Even within this small subset of TFs, we find that copy num-
ber variation, LoF mutations, missense (coding) mutations, and non-
coding mutations to these genes underlie diseased states in humans
(ClinVar) (Landrum et al., 2018). Equally, we find that a spectrum of
genetic variants are documented for these TF genes in the general
population, as reported in gnomAD (Karczewski et al., 2020). It is
noteworthy that the incidence of the majority of general popula-
tion missense variants is rare (that is, detected in fewer than 1 in
100000 individuals), yet the functional impact of such variants is
poorly understood.

By reconciling the landscape of missense variation from the
disease and non-disease settings, we make the following four ob-
servations. Firstly, we find that all 12 TF genes in our investigation
are sensitive to loss-of-function mutations (defined as pLI = yellow
or red, Table 1), underscoring the importance of their appropriate
dosage for neurodevelopment. The second observation is that, het-
erozygous disease-associated missense mutations in the majority of
these TF genes (8 out of 12) - while individually rare in occurrence
- are associated with human disease, indicating that such mutations
endow functional impact in a dominant fashion to reduce human
lifespan, but are not incompatible with life. The third observation is
that many “variants of uncertain significance” (VUS) are documented
for each these genes in the clinical setting (Landrum et al., 2018),
based upon the application of current approaches and diagnos-
tic guidelines set out by the American College of Medical Genetics
(Richards et al., 2015). This highlights an urgent need for the devel-
opment of improved molecular diagnostic tools that can aid the clin-
ical evaluation and functional characterisation of VUSs. The fourth
observation is that, while disease-associated missense mutations are
documented in 8 out of 12 TF genes, we find general population mis-
sense variants are constrained in fewer (6 out of 12) TF genes, namely
FOXG1, ZBTB18, TBR1, BCL11B/CTIP2, CUX1 and CUX2 (Table 1)
(Karczewski et al., 2020). This could indicate that missense variation
to such TF genes is relevant to a broad spectrum of neurodevelop-
mental outcomes in health and in disease, albeit in different ways. Yet,
when we survey the landscape of both general population as well as
disease-associated missense variants for these TF genes (Figure 3),
we find that disease-associated variants are clustered to particular
regions, typically to evolutionarily conserved domains for DNA bind-
ing and transcriptional regulation, while general population missense
variants are sparsely documented within such domains. Given that
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Human disease associations

Pathogenic missense variants unless

specified (ClinVar)

associated CNVs

Disease-
metric (gnomAD) (yes/no)?

Missense variant
constraint metric LOF constraint
(gnomAD)

(Continued)

TABLE 1
Gene name
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disease-associated variants to conserved domains for TF genes such

T = as to FOXG1 (Han et al., 2019) and ZBTB18 (Hemming et al., 2019)
?\, *E E can disrupt protein function, does it follow that general population
i:b é g missense variants to such domains are functionally benign? In the case
% ;21 TQ of ZBTB18, where the majority of disease-associated missense vari-
E § § p ants map to the C-terminal, zinc finger-containing DNA-binding region
:E '-§ g g (Hemming, Blake, Agostino, & Heng, 2020), we recently investigated
'§ 52 a subset of general population ZBTB18 missense variants within this
a region to find that the majority of these (8 out of 12) influence DNA-

Mouse phenotypes

binding, transcriptional regulation, or both (Hemming et al., 2020).
Given such evidence for functional impact, it would be noteworthy to
determine to what extent functional general population ZBTB18 mis-
sense variants influence TF combination, competition and co-operation.
More broadly, it is tempting to speculate that general population mis-
sense variants within conserved domains function as modifier alleles
to influence TF signalling within cells. Nevertheless, it is relevant to
consider that the weak yet measurable functional impact of general
population missense ZBTB18 variants stands in stark contrast to

encephalopathy-67: seizures
(absence, myoclonicatypical
absence, focal), severe intellectual
disability, absence of speech, autistic
features, motor disorder(s) including
dyskinesia and hand flapping,
cerebellar atrophy, hippocampal
asymmetry, thin CC)

disease-associated variants, the latter of which are endowed with

Infantile developmental and epileptic

strong effects on transcriptional regulation (Hemming et al., 2020).
Furthermore, we recently conducted a series of molecular modelling
studies of ZBTB18 and four native DNA binding sequences to find that
disease-associated (clinical) missense variants and general population
missense variants could be delineated on the basis of their capacity to
disrupt DNA binding (Blake et al., 2021). Such investigations underpin
our capacity to clarify the functional impact of clinical VUSs, as well as
prognosticate on functional missense variants that drive a spectrum

of outcomes in neurodevelopment, homeostasis and disease.

E590K

2 | Conclusions and perspectives

Currently, our understanding of the functional impact of disease-
associated as well as general population missense variants to TFs
remains to be improved. Nevertheless, computational approaches
have been instrumental to evaluate the functional impact of missense

Yes

variants. For example, tools such as SIFT and PhastCons incorporate
knowledge on the evolutionary conservation of amino acid sequence
and the nucleotide position of a given missense variation, respectively,
while PolyPhen-2 and MutPred incorporate data on the structural pa-
rameters and physicochemical properties of polypeptide strands to

predict how substitutions might influence protein stability. The impor-
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tance of these tools is reflected in their application to identify causal
variants in human diseased states (Richards et al., 2015), with success.

Yet, with current approaches, many disease-associated as well as
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general population missense variants are still classified as a VUS. This

z

highlights a need for improved functional assays and molecular di-

’

agnostic tools that describe how such variants could disrupt protein
folding, ligand interaction (such as binding to protein or DNA part-

ners), or both, to cause cellular dysfunction and disease. Relevant to
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TF genes, we propose the following evidence framework to systemat-

ically evaluate causative, clinically relevant missense variants as well
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Note: General population variants are summarised from data reported in the genome aggregation database (gnomAD v2.1.1) (Karczewski et al., 2020). For missense and LOF constraint metrics, yellow
and red shaded entries indicate increasing severity of impact, respectively. Disease-associated variants are documented in ClinVar (Landrum et al., 2018). In the case of NEUROGZ2, in which there are no

CUX2 NM_015267.4

as modifier alleles based on their capacity to disrupt TF co-operation,
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FIGURE 3 Summary plots documenting the landscape of missense variation for brain related TF genes. For each TF gene sequence (in
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version 82.1. Amino acid positions for general population missense variants (gnomAD, v2.1.1) are represented on the upper aspect of

each polypeptide plot in blue lines and are not annotated for their predicted functional impact, while disease-associated missense variants
(documented as pathogenic in ClinVar) are represented in red lines. R studio version 1.3.1056 was used in conjunction with the rmarkdown

(v2.7) and dplyr (v1.0.4) libraries to generate polypeptide plots.

competition and combination signalling, or any combination of all three
functions (see Table 2). We have adopted a hierarchical organization
for the severity of phenotypes reminiscent of approaches to classify
clinical variants (Richards et al., 2015), such that missense variants
that disrupt any one of three aforementioned TF signalling attributes
are classified to endow mild-moderate functional impact (Category
1), while those with combinations of two attributes (Category 2), or
all three (Category 3) endow moderate to severe impacts, respec-
tively. This approach could be incorporated into improved prognostic
tools that predict neurodevelopmental outcome and relative risk of
functional variants. For example, within Category 1 functional vari-
ants, those that impair binding to native DNA binding sites (Category
1a) can be assessed for changes in expression of in vivo downstream

target genes, through which strategies for therapeutic intervention

are directed towards curtailing mis-expression of endogenous down-
stream genes, as well as disruptions to key signalling pathways for
such genes. On the other hand, variants that bind non-native sites
could drive neurodevelopmental dysfunction through the transcrip-
tion regulation of non-native downstream target genes (Category
1b), such that potential therapeutic interventions for such variants
would involve the correction of endogenous and “non-endogenous”
downstream gene expression pathways. Equally, missense variants
that disrupt binding to co-factors or inappropriately recruit non-
native transcriptional co-regulators could be assayed for transactiva-
tion or repression effects that temper downstream target gene levels
(Category 1c). Finally, for TF missense variants that exhibit com-
pound pathological traits represented in Category 2 and 3, that is,
variants that exhibit two or more functional effects (Table 2), genome
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TABLE 2 An evidence framework to classify functional missense variants to TF genes.

TF co-operation TF competition

Category 2c Impaired binding
(moderate-severe to native sites
impact)

Category 2b Binding and
(moderate-severe transcriptional
impact) regulation of non-

native sites

Category 2a Impaired binding Binding and
(moderate-severe to native sites transcriptional
impact) regulation of non-

native sites

Category 1c (mild-
moderate impact)

Category 1b (mild- Binding and

transcriptional
regulation of non-
native sites

moderate impact)

Impaired binding
to native sites

Category 1a (mild-
moderate impact)

Category O (negligible
impact)

TF combination

Potential therapeutic avenue

Genome editing of causal missense
variant in neural cells

Impaired binding to native
cofactors and/or
binding to non-native
cofactors

Target dysregulated, native gene
expression pathways potentiated by
co-activator/co-repressor signalling
in neural cells for intervention

Impaired binding to native
cofactors and/or
binding to non-native
cofactors

Ameliorate co-actviator/co-repressor
signalling to native and/or non-native
gene expression pathways in neural
cells for targeted intervention

Target dysregulated, native and/or non-
native gene expression pathways in
neural cells for targeted intervention

Ameliorate co-actviator/co-repressor
signalling to native gene expression
pathways in neural cells for targeted
intervention

Impaired binding to native
cofactors and/or
binding to non-native
cofactors

Define native and/or non-native gene
expression pathways in neural cells
to identify key signalling pathways
for targeted intervention

Target native gene expression pathways
in neural cells for intervention

N/A

Note: The severity of functional missense variants are defined by their impact on TF proteins to signal via co-operation, competition as well as combination.
Category 0 variants show negligible functional impact, based upon these three mechanistic criteria. Category 1 variants are classified as those that
endow functional impact of one of the three TF signalling properties and are deemed as mild-moderate variants along a conceptualized severity scale, as
shown. In contrast, category 2 and 3 variants are deemed moderate to severe owing to their capacity to disrupt multiple TF behaviours. Entries shaded
light yellow to yellow to red indicate increasing severity of impact, respectively. According to this classification scheme, both ZBTB18 missense variants
p.N461S and p.R495G (Hemming et al., 2019) are classified as category 2.1 variants, although their capacity to bind FOXG1 protein is currently unknown.

editing may be a viable option to restore normal TF gene function to
cells most affected by such variants (for example, genome editing of
ZBTB18 within muscle cells and neural cells harbouring a disease-
causing missense variant). Based on such an approach, we predict
that the overwhelming majority of functional, general population
missense variants will fall within Categories O and 1a-c. In contrast,
clinical variants and disease modifier alleles would encompass all
represented categories in Table 2, with causal disease variants likely
falling within categories 2 and 3.

To characterise variants along the proposed evidence frame-
work, we recommend implementation of a variety of established
assays (e.g. luciferase reporter assays, chromatin immunoprecip-
itation (ChlP), electrophoretic mobility shift assays (EMSAs), in
utero electroporation (IUE) studies; as well as as well as more re-
cently reported screening methods (e.g. multi-plex reporter assays
(MPRASs) (Mulvey, Lagunas, & Dougherty, 2021), mammalian tar-
geted damlID (MaTaDa) (Cheetham et al., 2018), Cut&Run (Meers,
Bryson, Henikoff, & Henikoff, 2019)) and, where feasible, binding
free energy calculations (Blake et al., 2021; Hemming et al., 2019;
Hemming et al., 2020)) in order to study the DNA-binding,

protein-protein interaction and transcriptional regulatory signal-
ling properties of TFs as well as their query variants (Table 3). It is
noteworthy that MPRAs, MaTaDa and Cut&Run leverage advances
of recent years in massively parallel sequencing technologies and
robotic screening platforms to make them exciting new functional
screening approaches to map causal missense TF variants in health
and disease.

We recommend saturation screening for all possible iterations
of missense variants within conserved domains for FOXG1, PAXé,
ZBTB18, NEUROD1, NEUROD2, TBR1, CUX2 and BCL11B/CTIP2
to define functional variants that influence their biomolecular, bio-
chemical and neurobiological functions. Furthermore, close scru-
tiny of disease-causing variants that map to polypeptide sequences
demarcated by a paucity of general population domains (such as for
PAX6 missense variants T405A and G409R) (Figure 3) might lead to
the identification of critical segments that underpin protein function
that are mutated in disease. Reciprocally, where general population
missense variants are documented in TF regions heavily decorated
with disease-associated variants, such as within the multi zinc-finger
domain of ZBTB18, or within the Paired domain of PAX&, it is essential
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that we quantify their putative functions as modifier alleles in human
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homeostasis.

The emerging availability of GPU-capable approaches in bioin-
formatics (Taylor-Weiner et al., 2019) and molecular simulation (He
etal., 2020; Lee et al., 2018; Phillips et al., 2020; Wei, Luo, Qiu, Luo, &
Qi, 2019) software coupled with the rapid growth in GPU hardware
capability (including the increasing availability of GPU clusters) are
critical to support saturation screening investigations of missense
variants and their DNA-binding properties using in silico approaches.
Feasibility studies using calculation of relative binding free energy
against homology models of ZBTB18-DNA complexes have validated
such approaches for classification of pathogenicity of ZBTB18 mis-
sense variants (Blake et al., 2021). Combining in silico approaches
with assays to describe the landscape of DNA motif binding in vivo, in
living neurons by TFs and their missense variants will be highly infor-
mative for quantifying genotype-phenotype relationships in a tissue-
specific context. Indeed, exhaustive functional screens have indeed
been conducted to define impactful missense mutations to human
disease genes including BRCA1 (Findlay et al., 2018) and TUBA1A
(Hebebrand, Huffmeier, Trollmann, et al., 2019). Understanding the
functional impact of missense variants to essential brain TF genes
represents the first step towards the development of improved mo-
lecular diagnostic tools that prognosticate on the neurodevelopmen-
tal impact of clinically relevant variants in brain disorder. Equally, an
assessment of the functional impact of general population variants
to these TF genes will be relevant to the development of genomic
health metrics that prognosticate on variants that influence neuro-
development, homeostasis, as well as physical and mental health tra-
jectories for individuals.
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