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Abstract

Purpose: This review updates recent findings about E. coli O157:H7 virulence factors and its 

bovine reservoir. This Shiga toxin (Stx)-producing E. coli belongs to the Enterohemorrhagic 

E. coli (EHEC) pathotype causing hemorrhagic colitis. Its low infectious dose makes it an 

efficient, severe, foodborne pathogen. Although EHEC remains in the intestine, Stx can translocate 

systemically and is cytotoxic to microvascular endothelial cells, especially in the kidney and 

brain. Disease can progress to life-threatening hemolytic uremic syndrome (HUS) with hemolytic 

anemia, acute kidney failure, and thrombocytopenia. Young children, the immunocompromised, 

and the elderly are at the highest risk for HUS. Healthy ruminants are the major reservoir of EHEC 

and cattle are the primary source of human exposure.

Recent findings: Advances in understanding E. coli O157:H7 pathogenesis include molecular 

mechanisms of virulence, bacterial adherence, type three secretion effectors, intestinal 

microbiome, inflammation, and reservoir maintenance.

Summary: Many aspects of E. coli O157:H7 disease remain unclear and include the role of the 

human and bovine intestinal microbiomes in infection. Therapeutic strategies involve controlling 

inflammatory responses and/or intestinal barrier function. Finally, elimination/reduction of E. 
coli O157:H7 in cattle using CRISPR-engineered conjugative bacterial plasmids and/or on-farm 

management likely hold solutions to reduce infections and increase food safety/security.
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INTRODUCTION

Shiga toxin (Stx)-producing Escherichia coli (STEC, also referred to as verotoxin-

producing, VTEC) belong to one of six E. coli pathotypes associated with diarrhea (1). 

Enterohemorrhagic E. coli (EHEC) form a subset of STEC that cause hemorrhagic colitis. 
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Motile, non-sorbitol-fermenting E. coli O157:H7 is the major EHEC serotype associated 

with severe food- and waterborne illness and has a low infectious dose (<700 CFU) (2–4). 

Healthy cattle are the main reservoir of E. coli O157:H7, but the bacterium is also found 

in fecal samples of many asymptomatic animals including goats, deer, sheep, pigs, turkeys, 

and other fowl (5). Undercooked or unpasteurized foods of bovine origin are the main source 

of human infection. Other important sources of transmissions are fresh fruits and vegetables 

contaminated with feces through irrigation or other agricultural practices, contaminated 

potable or swimming waters, or direct contact with animals or infected people (5, 6).

After ingestion, E. coli O157:H7 colonizes the lower intestine (7). Limited oxygen 

levels, low levels of magnesium, and nutrient availability, particularly of ammonia and 

ethanolamine, are host cues that enhance colonization and virulence of the pathogen (8–

11). E. coli O157:H7 attaches to intestinal mucosal cells through attaching and effacing 

lesions (A/E) characterized with effacement of microvilli (12). Once an infection is 

established, Stx damages intestinal epithelia causing hemorrhagic colitis with abdominal 

tenderness and pain (6). If the disease progresses, Stx gains systemic access and is 

cytotoxic to microvascular endothelial cells of other organs, especially the kidney and 

brain. (3). Life-threatening hemolytic uremic syndrome (HUS) with hemolytic anemia, acute 

kidney failure, and thrombocytopenia may develop (6). Young children (<5 years old), the 

immunocompromised, and the elderly (>65 years old) are at the highest risk for HUS. 

Certain lineages, especially clade 8, of the O157:H7 serotype correlate with an increased 

probability of HUS development in children (13). Initial data suggest that lineage correlation 

with HUS may also exists for less vulnerable populations but are not yet fully identified 

(14). This review updates recent findings about E. coli O157:H7 virulence factors and its 

healthy bovine reservoir.

SHIGA TOXIN

Stx is the main determinant of STEC virulence. Two clinically important Stx variants, 

Stx1 and Stx2, and their subtypes are identified (4). Severe infection correlates with Stx2, 

particularly Stx2a, and levels of toxin expression (15). Stxs are encoded on lambdoid 

phages integrated into the chromosome and their expression is coregulated with prophage 

induction (16). Phage subtype determines the amount of toxin expressed. The hypervirulent 

clade 8, associated with the highest HUS risk, carries the phage subtype with the highest 

Stx2 production (15–17). Antibiotic therapy or bacteriocins produced by other members of 

the intestine microbiota may initiate prophage induction and worsen the clinical outcome. 

Similarly, phage-susceptible commensal intestinal E. coli can indirectly amplify toxin 

production (18).

Stxs are cytotoxic enzymes with RNA N-glycosidase activity. Albeit antigenically distinct, 

Stx1 and Stx2 share enzymic action and are AB5 toxins (a catalytically active subunit A 

and a homopentamer of B subunits). The B subunits mediate binding to the target cell 

receptor, glycolipid globotriaosylceramide (Gb3 or CD77), engulfment of the holotoxin, 

and its sequestration in extracellular vesicles (EVs) (19, 20). The catalytic A subunit 

recruits ribosomes by binding to the conserved elongation factor binding C-terminal domain 

of ribosomal P stalk proteins (21). Next, it depurinates a specific adenine base on 28S 
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rRNA, inactivating 60S ribosomal subunits, and halting protein translation (22). Stx1/Stx2 

structural differences in both subunits changes toxin affinity to the cellular receptor or 

the ribosomes and may partially explain the increased potency of Stx2-producing E. coli 
O157:H7 to induce HUS (23, 24).

Mechanisms of Stx secretion, delivery to host cells, and distribution to extra-intestinal 

tissues remain unclear. Stx is released during bacterial cell lysis (17). In vitro studies 

also suggest that Stx is secreted in association with outer membrane vesicles (OMVs) 

and delivered to host cells by dynamin-dependent endocytosis (3). Neutrophil-assisted 

paracellular transmigration, transcellullar nonspecific macropinocytosis, and specific 

transcytosis, translocate Stx across the gastrointestinal epithelial barrier into underlying 

tissues (25–27). Translocated Stx interacts with blood cells, activates them, and induces 

release of EVs that contain sequestered Stx that can disseminate to distant tissues through 

the bloodstream (19, 28–30). Susceptibility of tissues and cells to Stx damage depends on 

the cell surface levels of the Gb3 receptor (31). Prominent levels of Gb3 on endothelial cells 

correlates with the amount of damage of renal and cerebral endothelial tissue during HUS 

(32).

Upon binding to Gb3, Stx induces membrane compression, long-membrane reorganization 

of lipid packing, and engulfment (33). Stx uptake utilizes both clathrin-dependent and 

-independent mechanisms (34, 35). Stx-containing endosomes are directed to the Golgi by 

retrograde intracellular transport bypassing late endosomal and lysosomal degradation. From 

there, Stx reaches the endoplasmic reticulum and the A subunit is released into the cytosol 

to target the ribosomes (35). Inhibition of Stx-Gb3 interactions and intracellular trafficking 

of the enzyme is the focus in ongoing development of therapies against Stx-mediated kidney 

failure (36–39).

ADHERENCE to HOST CELLS

Adherence to host cells is a pivotal step for E. coli O157:H7 colonization. A chromosomal 

pathogenicity island, called the locus of enterocyte effacement (LEE), encodes the most 

significant bacterial adhesion factors, including the structural components of the type 3 

secretory system (T3SS) and the effector proteins delivered by this system. These include 

intimin, regulators, and chaperons. Chemical (intestine metabolites, nutrient availability) and 

physical (adhesive force generated from bacterial adherence to epithelial cells and fluid 

shear generated by intestinal motility and transit) cues activate LEE-encoded virulence genes 

(8, 40, 41). This allows for colonic localization and relocation of the pathogen from the 

intestinal lumen to the surface of intestinal epithelial cells during colonization (41, 42). 

LEE-dependent interaction is specific and requires two bacterial proteins: intimin, present in 

the bacterial outer membrane, and Tir (translocated intimin receptor). Tir is delivered into 

the host cell via T3SS and inserts into the host cell plasma membrane. Upon Tir-intimin 

binding, another T3SS effector, EspFu, remodels actin to form a characteristic pedestal 

beneath the bacterium (43, 44). Distinctive A/E lesions result by destruction of nearby 

microvilli (effacement). Interestingly, this process is modified by intestinal commensals 

such as Bacteriodes thetaiotamicron and Lactobacillus strains. Bacteriodes strains modify 

the metabolic landscape by releasing proteases (45, 46) and Lactobacillus strains generate 
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a localized reduced environment (45–48). Hence, host-specific microbiota differences may 

contribute to distinct infection susceptibilities and disease outcome.

The initial contact of E. coli O157:H7 with enterocytes involves non-intimin adhesion 

factors acting in accordance with temporal suppression of flagella expression. Curli 

fimbriae-associated amyloid fibers, assembled on the bacterial surface, congribute to E. coli 
O157:H7 biofilm formation and attachment to both human and bovine cells (49–52). Curli 

expression and motility are conversely regulated by the PchE transcriptional factor. This 

suggests an important role of curli in the transition from motile cells to the cells associated 

and attached to the intestinal surface (51, 53, 54). The roles of other proteinaceous and 

non-proteinaceous molecular determinants of adhesion and colonization have been well 

characterized and reviewed (53, 55–58).

The requirement of intimin for both human infections and cattle colonization makes it a 

potential target for in vivo antimicrobial control using engineered CRISPR-cas9 (clustered 

regularly interspaced short palindromic repeats) expressing an intimin guide RNA (gRNA). 

Such systems introduce sequence-specific lethal double-strand breaks in the bacterial 

chromosome (59). Our laboratory and others engineered a broad host-range conjugative 

plasmid using a highly conserved 20 nucleotide region of intimin found in all EHEC 

and enteropathogenic E. coli. The rationale uses a bovine commensal E. coli carrying 

this plasmid to be fed to cattle as a probiotic. This strain will amplify the CRISPR-cas9 

conjugative plasmid by lateral transfer broadly to the Gram-negative gastrointestinal tract 

(GIT) microbiome. In theory, all intimin-bearing strains will be specifically killed upon 

acquisition of this engineered conjugative plasmid. Mating E. coli CRISPR-cas9 kills EHEC 

wild-type strains in vitro, but not EHEC deleted for intimin, showing the system is specific. 

More interesting is that wild-type strains that survive exposure to the conjugative plasmid 

have mutations in the 20-nucleotide intimin target sequence. Because the sequence chosen 

for the gRNA is so highly conserved, mutations in this sequence, while conferring resistance 

to the antimicrobial CRISPR system, will likely result in attenuation or loss of intimin 

function in vivo [unpublished observations and (59)].

TYPE THREE SECRETION SYSTEM

T3SS are molecular syringes used by Gram-negative bacteria to deliver effector proteins into 

host cells and hijack functions (45, 60). Detailed structural descriptions of EHEC T3SS and 

associated regulatory components are well described (4, 61, 62). T3SS needle complexes 

deliver eight LEE-encoded and numerous prophage encoded effector proteins into the host 

cell to promote intimate adhesion, cytoskeleton rearrangement, inhibition of phagocytosis, 

modulation of innate immunity and apoptosis (63, 64). T3SS functionality is defined by the 

ability of the bacterium to sense and respond to cues, host cell physiology, and cohabitating 

microbiota. Interestingly, the genes required for production of the Stx receptor Gb3 and 

other sphingolipids are also necessary for translocation of T3SS effectors into host cells 

(63). Efficient translocation via E. coli O157:H7 T3SS also depends on the host microbiota. 

Symbiotic Bacteroides thetaiotamicron secretes proteases that cleave the T3SS translocon. 

The cleavage enhances effector translocation and formation of A/E lesions on epithelial cells 

(45). This finding is a novel paradigm that provides a molecular mechanism to describe how 
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commensal species affect pathogenic processes. Table 1 summarizes the functions of major 

T3SS effector proteins in E. coli O157:H7.

INFLAMMATION

The primary site of human E. coli O157:H7 infection is the epithelial lining of the 

terminal ileum and colon (114). Upon infection, epithelial cells secrete antimicrobial factors 

including proinflammatory cytokines: TNF-α, IL-1, and chemoattractants: IL-8, MIP1-α, 

MCP-1 (115). E. coli O157:H7 flagellin and LPS are the most potent in vitro inducers of 

inflammation acting via TLR5 and TLR4, respectively (116–118). Other factors inducing 

weaker responses are Stx and hemorrhagic coli pilus (119, 120). Activation of these 

pathways triggers inflammatory cell infiltration in the lamina propria and transmigration 

of inflammatory cells across the intestinal epithelium into the lumen. Uncontrolled liberation 

of pro-inflammatory factors results in tissue damage and impairment of the epithelial barrier, 

escalating inflammation. Inflammation response is controlled by NF-κB and mitogen-

activated protein kinases (MAPKs) at both transcriptional and post-transcriptional levels. 

Molecular mechanisms of activation and signaling cascades are well described (115).

The outcome of robust inflammation, especially during early stages of infection, is pathogen 

clearance. E. coli O157:H7 has T3SS-dependent and -independent mechanisms to inhibit 

innate signaling pathways and downregulate inflammation (115). Highly specific and diverse 

roles of T3SS effectors in these processes are summarized in Table 1. Deacetylation of 

lipid A is a T3SS-independent mechanism to reduce TLR4 activation (121, 122). lpxR, 

encoding 3′-O-deacylase, is positively regulated by Pch and Ler, necessary for expression of 

LEE genes and timely co-activation during colonization. Hexaacylation to tetraacylation of 

lipid A reduces TLR4 stimulation, activation of p38 MAPK, phagocytosis, and phagosome 

maturation (122). In addition, Havira et.al recently suggests that Stx suppresses the cytosolic 

LPS sensing pathway in macrophages and reduces pyroptosis (120). This is in contrast to 

previous finding by Platnich et. al (123). Ambiguity on the role of Stx in cross talk between 

canonical and noncanonical proinflammatory responses warrants more investigation.

HUS-associated kidney and brain tissue damage is induced by Stx cytotoxicity and 

acute systemic inflammatory responses. Elevated biomarkers: lipocalin 2, IL-8, IL-10, and 

neopterin are observed in HUS; however, mechanisms of activation are not fully understood 

(124–126). E. coli O157:H7 infection activates tissue-resident macrophages that mediate 

CXCR2-dependent neutrophil recruitment and kidney injury (127). A recent study by Lee 

et. al shows that Stx-containing exosomes derived from peripheral blood mononuclear cells 

and macrophages have significantly increased proinflammatory effects on proximal tubular 

cells (29). Finally, activation of platelets by Stx and platelet-bound LPS via TLR-4 may 

contribute to thrombotic microangiopathy in target organs (118).

Several synthetic and natural compounds that alleviate E. coli O157:H7-induced 

inflammatory responses and/or intestinal barrier dysfunction are studied in animal models 

(128–131). In addition, DHEA, a critical metabolite in cholesterol metabolism, reduces 

inflammatory responses by blocking the activation of p38 MAPK and NF-κB pathways 

(132, 133). Proadrenomedullin N-terminal 20 peptide (PAMP), a potent hypotensive peptide 
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expressed in GIT epithelium, reduces damage of intestine mucosa and serum inflammatory 

cytokines in challenged mice (134, 135). Finally, the effect of selected microbiota species on 

tight junction maintenance to reduce/prevent GIT damage by E. coli O157:H7 are reported 

(136, 137).

RUMINANT RESERVOIR

E. coli O157:H7 carriage in cattle

Healthy ruminants are the major reservoir of EHEC and cattle are the primary source of 

human exposure. E. coli O157:H7 colonizes individual animals spordaically and traniently 

with varying durations. The bacteria predominately inhabit the colon and recto-anal junction 

mucosa (RAJ) (138, 139). RAJ colonization is highly associated with E. coli O157:H7 

in bovine feces and fecal concentration correlates with herd prevalence and long term 

carriage (140–142). Strategies to control bovine E. coli O157:H7 shedding to prevent and 

reduce transmission in a herd includes: (i) vaccination with E. coli O157:H7 variants (LEE- 

and Stx-negative strains), (ii) protein supplements in feed, (iii), bacteriophage thearapies, 

(iv) pre- and probiotic treatments, (v) farm managment practices, and (vi) feed containing 

CRISPR-cas9-engineered phage or conjugative plasmids (59, 143–148).

Shedding of E. coli O157:H7 is widespread and transient (149). Conditions that enhance 

acquisition and subsequent clearance of this bacterium from the ruminant GIT are complex 

and poorly understood, involving the host, the microbe, and the environment. Among the 

environmental conditions, temperature appears to be an important factor. Cattle carriage 

is seasonal with elevated colonization during the summertime. This is epidemiologically 

import because E. coli O157:H7 human infections also increase during this period (150). 

Similarly, positive fecal samples increase during wintertime warm vs. cold periods (151). 

Interestingly, seasonal prevalence in cattle is not dependent on seasonal changes in intrinsic 

determinants such as hormone or intestinal microbiota fluctuations, but rather increased 

seasonal oral exposure to E. coli O157:H7 (152).

Transmission and persistence of E. coli O157:H7 in cattle herds depends on a small 

percentage of cattle called ‘supershedders’. These animals shed 100 to 1000 times more 

E. coli O157:H7 than average shedders (142, 153). Composition of GIT commensals 

differs between supershedders and nonshedders, suggesting that the RAJ microbiota may be 

influenced by or affect by E. coli O157:H7 (138, 154–157). E. coli O157:H7 regulates gene 

expression for assimilation of carbon and nitrogen, the stress response, and respiration to 

survive various GIT conditions (158, 159). This regulation allows succesful passage through 

the GIT, competiton for nutrients, and colonization (160). Understanding the complex 

interactions involving gene regulation, microbial competition, host response, and the RAJ 

environment requires further investigation (161).

Colonization factors

EHEC in ruminants are commensals and do not cause disease. In contrast to humans, 

Stx is not cytotoxic in cattle because the GIT lacks the toxin receptor, Gb3. Stx is not 

required for colonization in cattle challenged by rectal application (162). However, Stx2a 

Kolodziejek et al. Page 6

Curr Opin Infect Dis. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may increase the efficiency of animal-to-animal E. coli O157:H7 transmission among orally 

challenged cattle (163). Clearance of E. coli O157:H7 from cattle correlates with cecal and 

distal colonic cell proliferation (164). Stx2 restricts regeneration and turnover of the GIT 

epithelium which may maintain E. coli O157:H7 in a herd (163). In addition, the role of 

complex molecular and cellular interplay of Stx, epithelial, and immune cells in bovine 

colonization needs more investigation (143).

RAJ colonization is mediated by LEE-dependent and LEE-independent adherence factors 

(142, 165–167). Expression of nearly all LEE genes is induced by rectal digesta and 

intimin-Tir interactions promotes E. coli O157:H7 colonization in cattle (158, 162, 168). 

LEE-independent adherence factors include genes located on plasmid pO157, (169), the 

O-antigen, the flagellar regulatory system (not functional flagella), fimbriae, and pili (49, 

142, 169–174).

E. coli O157:H7 is generally considered a non-invasive, extracellular human pathogen 

colonizing mucosal surfaces. However, cellular internalization of some E. coli O157:H7 

strains is observed in cattle and correlates with biofilm formation and bovine colonization 

persistence (175). This invasive phenotype (~5% of E. coli O157:H7 strains) is conferred by 

curli fimbriae that form extracellular amyloid structures and are induced by the bovine RAJ 

environment (49, 158).

Strain diversity and their persistence promote horizontal transfer of elements like Stx 

bacteriophage. This may lead to the emergence of new, potentially more pathogenic strains 

colonizing cattle (176). Combinatorial strategies using culture, serology, and PCR methods 

to identify STEC that pose a greater food safety threat are necessary (177).

CONCLUSIONS

This review compiles the current understanding of the most prominent EHEC serotype, 

O157:H7. Stx type, expression levels, and systemic translocation are key predictors of 

disease severity. The intricate interplay of Stx, T3SS effectors, and the microbiome are key 

to understanding regulation of the host inflammatory response. Finally, the role of adherence 

factors such as curli, intimin and Tir in both the host and the cattle reservoir and their 

potential as an intervention target are discussed.
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Key Points

• E. coli O157:H7 is a virulent foodborne pathogen that is especially dangerous 

to those in the age extremes and the immunocompromised.

• Virulence factors include Stx, adherence molecules, T3SS and its effectors 

that cause A/E lesions in the GIT and systemic cytotoxicity.

• Control of inflammation is key to bacterial growth and host survival.

• Understanding the relationship between E. coli O157:H7 and cattle has and 

will continue to improve food safety.
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Table 1.

Pathogenesis-related functions of T3SS effectors in E. coli O157:H7

Effector LEE-encoded Pathogenesis-related function Reference

Tir + Receptor for intimin; mediates adhesion to host cells and formation of A/E lesions; inhibits 
TAK1 activation and proinflammatory cytokine production

(65, 66)

Map + RhoGEF mimic; induces actin reorganization and formation of filopodia; promotes 
colonization of the small intestine

(67, 68)

EspF + Promotes apoptosis; inhibits cis-phagocytosis; disrupts tight junction; inhibits internalization 
into epithelial cells; coordinates membrane remodeling; suppresses inflammation; promotes 
colonization of the intestinal tract

(68–74)

EspG + Inhibits phagocytosis; disrupts protein secretion; promotes pedestal formation and 
colonization of the small intestine

(68, 75–77)

EspH + RhoGEF inhibitor; facilitates elongation of actin pedestals; promotes colonization of the 
intestinal tract

(68, 78, 79)

EspZ + Regulates T3SS secretion; reduces infection-associated cytotoxicity; regulates formation of 
actin pedestals

(80)

EspB* + Reorganizes actin filaments (81)

NleA/EspI - Inhibits cellular protein secretion; reduces formation of NLRP3 inflammasome (82, 100)

NleB - Glysosyltransferase; inhibits NF-κB-dependent host innate immune responses (83–85)

NleE - Methyltransferase; inhibits NF-κB activation (86)

NleF - Inhibits apoptosis; affects intracellular trafficking (87–89)

NleH1 - Serine/threonine kinase; suppresses expression of a subset of NF-κB target genes (90–92)

NleH2 - Serine/threonine kinase; mildly stimulates NF-κB and MAPK activity (64, 92)

NleC - Zinc metalloprotease; suppresses NF-κB and MAPK activation and inhibits proinflammatory 
cytokine production

(86, 93, 94)

NleD - Zinc metalloprotease; inactivates MAPK (95)

NleL - E3 ubiquitin ligase; disrupts JNK pathway and NF-κB signaling; modulates pedestal 
formation

(96–98)

NleGs - E3 ubiquitin ligases (99)

EspJ - ADP ribosyltransferase; inhibits trans-phagocytosis (101–103)

EspL2 - Modifies host cell membrane; supports efficient colonization (104)

EspK - Increases persistence of O157:H7 in the intestines of orally inoculated calves (105)

EspM1
EspM2

- Guanine exchange factors; induce formation of stress fibers and repress formation of actin 
pedestals

(106–108)

EspFu/TccP - Facilitates actin polymerization, pedestal formation, and cell-to-cell transmission (44, 109–111)

YspY1 - Interacts with proteins involved in apoptosis and cell cycle regulation (101)

YspY3 - Localizes to and extends pedestal region (112)

Cif - Induces cell cycle arrest (113)

(+)
LEE-encoded effector

(−)
non-LEE-encoded effector

(*)
EspB is classified as a translocator and effector
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