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Abstract

Disaggregated population counts are needed to calculate health, economic, and develop-

ment indicators in Low- and Middle-Income Countries (LMICs), especially in settings of

rapid urbanisation. Censuses are often outdated and inaccurate in LMIC settings, and rarely

disaggregated at fine geographic scale. Modelled gridded population datasets derived from

census data have become widely used by development researchers and practitioners; how-

ever, accuracy in these datasets are evaluated at the spatial scale of model input data which

is generally courser than the neighbourhood or cell-level scale of many applications. We

simulate a realistic synthetic 2016 population in Khomas, Namibia, a majority urban region,

and introduce several realistic levels of outdatedness (over 15 years) and inaccuracy in

slum, non-slum, and rural areas. We aggregate the synthetic populations by census and

administrative boundaries (to mimic census data), resulting in 32 gridded population data-

sets that are typical of LMIC settings using the WorldPop-Global-Unconstrained gridded

population approach. We evaluate the cell-level accuracy of these gridded population data-

sets using the original synthetic population as a reference. In our simulation, we found large

cell-level errors, particularly in slum cells. These were driven by the averaging of population

densities in large areal units before model training. Age, accuracy, and aggregation of the

input data also played a role in these errors. We suggest incorporating finer-scale training

data into gridded population models generally, and WorldPop-Global-Unconstrained in par-

ticular (e.g., from routine household surveys or slum community population counts), and use

of new building footprint datasets as a covariate to improve cell-level accuracy (as done in

some new WorldPop-Global-Constrained datasets). It is important to measure accuracy of

gridded population datasets at spatial scales more consistent with how the data are being
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applied, especially if they are to be used for monitoring key development indicators at neigh-

bourhood scales within cities.

Introduction

Small area population counts, especially in low- and middle-income countries (LMICs), pro-

vide essential denominators for health, economic, and development indicators [1]. For exam-

ple, small area population counts are used to calculate vaccination coverage rates [2],

understand health service utilisation [3], and estimate infection rates of malaria, COVID-19,

and many other health conditions [4]. Spatially-detailed and time-sensitive population counts

are also essential to monitor and understand the accelerated pace of urbanisation in LMICs

compared to HICs. Ninety percent of global population growth in the next 30 years is expected

to occur in African and Asia cities alone [5], which means it is vital to monitor population

trends across diverse LMIC cities with respect to economic development, human impacts on

biodiversity and environment, and the changing climate [6,7]. Authoritative population data

are traditionally collected via a national census. Censuses are generally collected every ten

years, though one in ten LMICs has not held a census in the last 15 years [8], and some

national censuses have poor data quality due to negligence (e.g., [9,10]) or deliberate mis-

counting of sub-populations for political purposes (e.g., [11–13]). Due to increasing rates of

mobility and urbanisation worldwide, the urban poorest–especially in LMIC cities–are

increasingly difficult to count as more people take-up residence in informal settlements or

atypical housing locations (e.g., shops) [14].

In the absence of updated, fine-scale census data, many policy-makers, urban planners,

researchers, and service providers have turned to gridded population estimates as a source of

population counts in their work. Gridded population data are viewed by data producers and

users as meeting a global development challenge to “leave no one off the map” and thus leave

no one behind [15]. However, performing accuracy assessments of gridded population datasets

at the scale at which they are applied (e.g., neighbourhood, grid cell) poses a conundrum; reli-

able fine-scale population counts are generally not available where they are needed most [16],

and users often turn to gridded population estimates when census counts are excessively out-

dated or untrustworthy [14]. Despite these challenges, it is imperative to understand if, and

how, census inaccuracies propagate through gridded population datasets, especially with

respect to vulnerable populations.

Briefly, gridded population data provide estimates of the total population in small grid cells,

and are derived with geo-statistical methods using population counts and spatial datasets [16].

“Top-down” gridded population estimates have been available for roughly 15 years and disag-

gregate census or other complete population counts from areal units (e.g., 3rd-, 4th-, or 5th-

level administrative units) to grid cells (e.g., 30x30m, 100x100m, 1x1km) [14]. The simplest

models assume a uniform distribution of population within areal units (i.e., GPW [17,18],

GHS-POP [19,20], HRSL [21]), while the most complex models use spatial covariates to

inform spatial disaggregation from the areal unit to grid cells (i.e., WorldPop [22,23], Land-

Scan [24,25], WPE [26]). To estimate gridded population figures beyond the year of the last

census; birth, migration, and death rates are used to project new population totals by areal unit

[27]. “Bottom-up” gridded population estimates are derived from micro-census population

counts in a sample of areas, or from assumptions about the average household size, and have

only recently been developed [28,29]. Read papers by Leyk and colleagues (2019) and Thom-

son and colleagues (2020) for detailed descriptions and comparisons of gridded population

datasets [14,16].
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The accuracy of “top-down” gridded population data is generally calculated at the scale of

the input population areal units because these are the finest-scale population counts available

to the data producers. A number of factors contribute to gridded population model accuracy

including: (1) the modelling algorithm itself, (2) inaccuracy of the input population data, (3)

the geographic scale of the input population data (e.g., census tracts versus districts), (4) the

age, accuracy, completeness, and type of ancillary data, (5) the nature of the relationship

between ancillary data and population density, and (6) the geographic scale of the output grid.

Of these, the two strongest predictors of accuracy (at the scale of areal units) in top-down

gridded population models are the resolution and age of the input population data [30].

Among top-down gridded population datasets, the WorldPop-Global-Unconstrained Random

Forest model was among the best documented and most accurate gridded population models

available at the time of this analysis in 2017–2019 [22,31]. Specifically, the model code [32] and

pre-processed model covariates [33,34] were publicly available enabling reproducibility and

evaluation. WorldPop-Global-Unconstrained and its preceding data products (AfriPop, Asia-

Pop, and AmeriPop) result in estimates for all land areas; however, a new WorldPop-Global-

Constrained dataset was published in 2020 limiting population estimates to cells with buildings

or built-up features [35].

To evaluate cell-level accuracy of gridded population data, actual population counts are

needed for each grid cell or in finer-scale units such as household point locations. Few cen-

suses in LMICs collect household latitude-longitude coordinates, and where these censuses

exist, the data are extremely sensitive and difficult to obtain. Furthermore, even the best census

data might be problematic because vulnerable sub-populations including homeless and

nomadic populations are supposed to be counted separately in special enumerations. Unfortu-

nately, though, under-resourced statistical offices are often not able to perform these counts

[36], and some censuses do not include certain refugee or internally displaced populations

[37]. To ensure that this analysis of cell-level accuracy did not exclude the urban poorest and

other hidden populations, we chose to simulate a realistic population in a LMIC setting. It was

important that the synthetic population was located in a real-world location so that actual

covariate datasets–with their own imperfections–could be used to generate realistic gridded

population datasets. We adapted methods outlined by Thomson and colleagues (2018) for sim-

ulating a geo-located realistic household population, and added classification of urban house-

holds by slum/non-slum area in a final step to focus this analysis on dynamic, complex LMICs

cities where inaccuracies in gridded data are likely to propagate [38].

This paper describes how we evaluated the cell-level accuracy of 32 simulated 100x100m

WorldPop-Global-Unconstrained gridded population datasets which reflect realistic levels of

census (1) outdatedness (0-, 5-, 10-, and 15-years outdated), (2) inaccuracy (none, low, middle,

and high missing population counts), and (3) two administrative-level aggregations of the pop-

ulation in an urban LMIC setting. This is among the first assessments of cell-level accuracy of

a gridded population dataset in a LMIC setting. While the methods and approach outlined

here to evaluate cell-level accuracy (developing a realistic synthetic population, and from this,

deriving several realistic versions of census data) were applied to just one gridded population

dataset, they could be applied to other gridded population data products used for development

monitoring and decision-making.

Methods

Setting

We chose to simulate a population in Khomas, Namibia–in which the vast majority of resi-

dents reside in Windhoek, the capital–because the government has produced numerous high-
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quality population datasets [39], and Windhoek’s population is incredibly dynamic (Fig 1).

Namibia, like some other countries that inherited colonial boundaries, placed restrictions on

freedom of movement until independence in 1990 [40]. After independence, vast numbers of

people migrated to Windhoek, exaggerating rural-to-urban migration patterns observed glob-

ally during this time period [41,42]. Windhoek is also a destination for immigrants from

neighbouring countries including financially unstable Zimbabwe [42,43]. The population of

the Windhoek metropolitan area grew by a staggering 37% between the 2001 and 2011 cen-

suses [39], with much of that growth in informal settlements [40].

Simulation overview

To simulate realistic gridded population datasets for Khomas, Namibia, we (a) simulated a “true”

synthetic 2016 population geo-located to realistic manually-generated household point locations;

(b) introduced realistic outdatedness by removing households in 2011, 2006, and 2001; (c) intro-

duced realistic inaccuracies among urban-slum, urban-non-slum, and rural sub-populations; and

(d) aggregated these 16 simulated population scenarios into two geographic areal units (census

EA and constituency) to generate 32 realistic census datasets. These 32 realistic census datasets

were consequently used to model 32 realistic WorldPop-Global-Unconstrained 100x100m

gridded population datasets. This workflow is summarised in Fig 2 and detailed below.

Simulating a “true” synthetic 2016 population geo-located to household

latitude-longitude points

To simulate a realistic population in Khomas, Namibia, we used all of the same population

inputs and spatial auxiliary datasets as Thomson and colleagues (2018) [38]. Broadly, this

Fig 1. Location of Khomas region in Namibia, and of constituencies in Windhoek area. Source: Constituency boundaries publically available from https://

gadm.org/.

https://doi.org/10.1371/journal.pone.0271504.g001
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involved the creation of three datasets—modelled surfaces of household types, manually digi-

tised building point locations, and synthetic (simulated) households—then linked synthetic

households to point locations based on the household type probability surfaces.

Fig 2. Summary of the population and gridded population simulation workflow. (1) Simulate a realistic population geo-located to realistic building point

locations, (2) simulate three periods of outdatedness by removing households at point locations not present on satellite imagery in earlier years, (3) simulate

low/middle/high census inaccuracy by removing points at random from rural, urban-slum, and urban-non-slum household types, (4) aggregate to 922 census

enumeration areas (EAs) and 10 constituencies (admin-2), (5) generate 100x100m gridded population datasets in raster grid format using WorldPop-Global-

Unconstrained approach and WorldPop-Global spatial covariates.

https://doi.org/10.1371/journal.pone.0271504.g002
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1. Modelled surfaces of household types. Household types were defined from Namibia 2013

Demographic and Health Survey (DHS) data using k-means analysis with variables that

were also present in the Namibia 2011 census (e.g., improved sanitation facilities, gender of

head of household). Next, probability surfaces of these household types were created using

a Random Forrest model and spatial covariates to interpolate the likelihood of a given

household type across Namibia between DHS survey locations [38]. The probability sur-

faces of “urban poor” and “urban non-poor” household types were manually adjusted due

to high misclassification. These adjustments were made by manually assigning the propor-

tion of households in each census enumeration area (EA) that appeared to be located in

areas of small disorganised buildings based on visual inspection of 30m Quickbird satellite

imagery.

2. Synthetic households. Separately, we modelled a synthetic population of individuals nested

within households across Khomas from Namibia 2011 census microdata using an iterative

proportional fitting model and conditional annealing [44].

3. Building locations. A third set of data, building point locations, were manually digitised

from 2014–2016 30cm Quickbird imagery in ArcGIS 10.

To link synthetic households with building locations, we calculated the most likely house-

hold type of each synthetic household using k-means analysis scores. Next, we iteratively

assigned synthetic households (2) to building point locations (3) based on the probability of

each household type at a given building point (1). Finally, using the manually classified EAs

(with our estimated portion of urban poor households), we classified all urban households as

being located in either a slum or non-slum area. All of these steps are detailed in Supplement 1

and the paper by Thomson and colleagues (2018) [38]. This simulated population is meant to

represent a realistic “true” synthetic reference population for 2016.

Simulating realistic outdatedness of Khomas census population. To simulate popula-

tion outdatedness in Khomas, we imported the above 2016 synthetic population household

point locations into Google Earth, and used the software’s historical Maxar and SPOT imagery

(40cm) to flag all buildings that were not present in 2011, 2006, and 2001 imagery. The oldest

imagery available at 40cm resolution in Google Earth was from 2004, so we used some judge-

ment to flag buildings that looked recently built in 2004 (e.g., bare fresh soil) and assumed they

were not present in 2001. During this exercise, we ensured that the number of household coor-

dinates in each constituency matched the number of households reported in the 2001 and

2011 Population and Housing Census final reports to ensure that both patterns and degree of

outdatedness were realistic [39] (Fig 3). The synthetic population is provided in Supplement 2

and is comparable to the Oshikoto, Namibia 2016 synthetic population created by Thomson

and colleagues [38].

Simulating realistic levels of under-count inaccuracy in censuses. To identify realistic

levels of under-counts among urban-slum, urban-non-slum, and rural populations in LMIC

censuses, we reviewed the scientific and grey literature. The review included census post enu-

meration surveys (PESs) in 108 LMICs listed by the UN Statistical Division Census Pro-

gramme website [8], and a systematic search in PubMed and Scopus of articles published

between January 1, 1990 and February 28, 2017 using the following search criteria: “census

AND (listing OR enumerat� OR count OR coverage OR miss�) AND (nomad� OR pastoral�

OR refugee OR displaced OR migrant OR slum OR poorest OR unregistered OR homeless OR

[street] sleeper OR pavement [dweller] OR floating)”. The first wave of the literature search

resulted in 459 unique articles, of which co-author DRT screened all titles and abstracts. Of 72

potentially eligible articles from LMICs, DRT reviewed the full-text, and kept five which
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reported a census under-count. In a second wave, we used Google Scholar to identify the top

20 “cited by” and top 20 “related” articles for each of the five articles identified in the first

wave. The second wave resulted in 334 unique articles, of which 49 had potentially relevant

titles or abstracts. After a full-text review of these articles, we found eight additional reported

census under-counts. Together, census under-counts in LMICs were collated from 10 PESs

[45–54], and 13 articles [10,55–66] (Fig 4). The average census under-counts were 46% in

urban-slum populations, 6% in urban-non-slum populations, and 7% in rural populations

(Table 2, see Supplement 3 for details).

Based on these findings, we simulated three levels of census inaccuracy: low inaccuracy was

considered to be missing 2% of rural and urban-non-slum households, and 10% of urban-

slum households; medium inaccuracy was considered to be missing 5% of rural and urban-

non-slum households, and 30% of urban-slum households; and finally, high inaccuracy was

classified as missing 10% of rural and urban-non-slum households, and 60% of urban-slum

households (Table 1). We applied the inaccuracy rates at random within rural, urban-slum,

and urban-non-slum households such that there was no spatial pattern inherent to the simu-

lated under-counts. This exercise resulted in one “true” and 15 outdated-inaccurate simulated

Fig 3. Household point locations in Khomas, Namibia by presence in 2016, 2011, 2006, and 2001. Sources: Constituency boundaries publically available

from https://gadm.org/. Synthetic population latitude-longitude coordinates available in Supplement 2.

https://doi.org/10.1371/journal.pone.0271504.g003
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populations which we used to generate realistic gridded population datasets that reflect typical

gridded population estimates currently available across LMICs (Table 2).

Simulating realistic gridded population datasets

To simulate realistic gridded population datasets, we aggregated each of the simulated house-

hold populations to EA or constituency (second-level administrative unit) boundaries, and

applied the WorldPop-Global-Unconstrained modelling technique (for a total of 32 datasets).

We applied the WorldPop-Global-Unconstrained model in three phases as described in

WorldPop’s method publication [22] (Fig 5, Table 3).

1. In the first phase (A), a non-parametric Random Forest ensemble machine-learning algo-

rithm grows a “forest” of decision trees for each input unit (EA or constituency) [67]. Each

Random Forest tree is a model of the potential relationships between multiple auxiliary

covariates and census population counts. In the Random Forest modelling workflow, this is

where model uncertainty is calculated–at the scale of the input population areal unit.

Table 1. Range and average percent of population missing from LMIC censuses based on literature review.

Location Literature review findings Simulated inaccuracy

Minimum Average Maximum Low Medium High

Urban-slum 5% 46% 100% 10% 30% 60%

Urban-non-slum 2% 6% 15% 2% 5% 10%

Rural 2% 7% 13% 2% 5% 10%

https://doi.org/10.1371/journal.pone.0271504.t001

Fig 4. Search terms and process used in the census under-count literature review.

https://doi.org/10.1371/journal.pone.0271504.g004
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Table 2. Number of households simulated in the "true" synthetic population and 15 realistic scenarios of census outdatedness and inaccuracy, by household type.

Year No inaccuracy Low inaccuracy Medium inaccuracy High inaccuracy

2016 (current)

Urban slum

Urban non-slum

Rural

35,001

57,843

4,823

31,500

56,677

4,735

24,500

54,942

4,590

14,000

52,073

4,326

2011 (5 years old)

Urban slum

Urban non-slum

Rural

28,583

55,680

5,175

25,724

54,566

5,071

20,008

52,895

4,917

11,433

50,122

4,647

2006 (10 years old)

Urban slum

Urban non-slum

Rural

18,018

49,742

4,146

16,216

48,747

4,063

12,612

47,258

3,935

7,207

44,769

3,730

2001 (15 years old)

Urban slum

Urban non-slum

Rural

13,149

41,700

3,731

11,834

40,866

3,656

9,204

39,612

3,547

5,259

37,514

3,373

Low inaccuracy: missing 2% rural and urban-non-slum households, and 10% urban-slum households. Medium inaccuracy: missing 5% rural and urban-non-slum

households, and 30% urban-slum households. High inaccuracy: missing 10% rural and urban-non-slum households, and 60% urban-slum households.

https://doi.org/10.1371/journal.pone.0271504.t002

Fig 5. Overview of WorldPop-Global random forest modelling workflow. (A) Each decision tree in the ensemble is built upon a random bootstrap sample of

the log-transformed population and ancillary data by administrative unit. (B) Population density prediction for each cell ycell(x) is based on an average of the

individual trees. (C) Predicted cell densities are normalized by administrative unit and used to dasymetrically disaggregate log-transformed administrative unit

population, then transformed to predict population per cell.

https://doi.org/10.1371/journal.pone.0271504.g005
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2. In the second phase (B), all of the covariates are prepared in 100x100m cells. In this phase,

the split values of each classification tree developed in phase A are used to parameterize cor-

responding regression models to predict population density within 100x100m cells [22].

For each cell, the predicted population values from all regression models are averaged to

make a single population estimate, though these population estimates are not pycnophylac-

tic, meaning that estimates in cells do not necessarily sum to the original areal unit

population.

3. Thus the WorldPop-Global-Unconstrained workflow involves a third phase (C) outside of

the Random Forest model to normalize cell-level predicted population densities to preserve

census input population counts [22].

Analysing cell-level accuracy

To empirically measure cell-level accuracy of the 32 gridded population datasets, we compared

each cell-level estimate against the “true” synthetic point-level 2016 population count in that

cell, then calculated root mean square error (RMSE), a measure of error magnitude that penal-

ises large errors. This was performed on 100x100m cells, and then estimated cell population

Table 3. Covariate data sources for Random Forest gridded population estimates.

Name Description (Year) Original scale Original source

cov_road Distance to OSM major roads (2016) Vector, <30 m OpenStreetMap [68]

cov_intsec Distance to OSM major road intersections (2016) Vector, <30 m OpenStreetMap [68]

cov_waterw Distance to OSM major waterways (2016) Vector, <30 m OpenStreetMap [68]

cov_wdpa Distance to IUCN nature reserve (2000–17) 30” (~900 m) UNEP-WCMS & IUCN [69]

cov_viirs Resampled VIIRS night-time lights (2012–2016) 30” (~900 m) NOAA [70]

cov_dmsp Resampled DMSP-OLS night-time lights (2011) 30” (~900 m) NOAA & Zhang, et al. [71,72]

cov_tt50k Resampled travel time to cities of 50,000+ (2000) 30” (~900 m) Weiss, et al. [73]

cov_001 Distance to cultivated areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_040 Distance to woody areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_130 Distance to cultivated areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_140 Distance to herbaceous areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_150 Distance to sparse vegetation areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_160 Distance to aquatic vegetation areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_190 Distance to urban areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_200 Distance to bare areas (2015) 9” (~300 m) ESA CCI–LC [74]

cov_cciwat Distance to ESA-CCI-LC inland waterbodies (2000–12) 4.5” (~150 m) ESA CCI [75]

cov_slope SRTM-based slope (2000) 3” (~90 m) de Ferranti [76,77]

cov_topo SRTM-based elevation (2000) 3” (~90 m) de Ferranti [76,77]

cov_coast Distance to open-water coastline (2000–20) 3” (~90 m) CIESIN [78]

cov_ghsl Distance to urban area (2012) 1.26” (~38 m) Pesaresi, et al. [79]

cov_guf Distance to settlement built-up areas (2012) 2.8” (~84 m) DLR EOC [80]

cov_bsgme Distance to built settlement expansion (2016) 3” (~90 m) Nieves, et al. [81]

cov_prec Average total annual precipitation (1970–2000) 30” (~900 m) Fick and Hijmans [82]

cov_temp Average annual temperature (1970–2000) 30” (~900 m) Fick and Hijmans [82]

OSM: OpenStreetMap; VIIRS: Visible Infrared Imaging Radiometer Suite; DMSP-OLS: Defence Meteorological Satellite Program Operational Linescan System;

ESA-CCI-LC: European Space Agency Climate Change Initiative Land Cover; UNEP-WSMS: UN Environment Programme World Conservation Monitoring Centre;

IUCN: International Union for Conservation of Nature; NOAA: US National Oceanic and Atmospheric Administration; CIESIN: Center for International Earth Science

Information Network; DLR EOC: German Aerospace Center Earth Observation Center.

https://doi.org/10.1371/journal.pone.0271504.t003
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counts were aggregated and assessed for accuracy at 200x200m, 300x300m, and so on up to

1x1km. This was to test a common assumption that large model errors at fine geographic scale

are “smoothed out” and become less severe as population estimates are aggregated across

larger zones. To compare RMSE across cells of different geographic sizes, we normalised the

statistic by average population (Eq 1) and by area (Eq 2). The former represents RMSE of pop-

ulation counts expressed as a portion of the population [83], while the latter represents RMSE

of population density per hectare (100x100m unit) [84]. We evaluated RMSE in urban-slum,

urban-non-slum, and rural cells separately. In the calculation of RMSE, yi is the “true” syn-

thetic population count in cell i, ŷi is the gridded population estimate in cell i, Di is the “true”

synthetic population density per hectare, D̂i is the estimated population density per hectare,

and n is the number of grid cells.

Pop � adj RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i ¼ 1
ŷi � yið Þ

2

n

s

�

Pn
i ¼ 1
ðyiÞ

n
1

Area � adj RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i ¼ 1
D̂i � Di

� �2

n

s

2

To better understand the mechanics of the WorldPop-Global-Unconstrained model and

workflow, we calculated bias, a measure of error direction and magnitude. This metric was

especially useful for the two gridded population datasets derived from “true” synthetic popula-

tion counts because any inaccuracies would be related to the model and covariate datasets

alone; and not inaccuracies in the input population counts. Bias (Eq 3) reveals to what extent

cell-level estimates are systematically under- or over-estimated, and reflects over/under-counts

in cells of different sizes that a user might encounter in the field. Relative bias (Eq 4) refers to

bias normalised by the average synthetic population which enables comparisons across grid

scales. As above, bias and relative bias were assessed in 100x100m cells as well as cell sizes that

ranged up to 1x1km, and separately in urban versus rural areas.

Bias ¼
Pn

i ¼ 1
ðŷi � yiÞ
n

3

Relative bias ¼
Pn

i ¼ 1
ðŷi � yiÞ
n

=

Pn
i ¼ 1
ðyiÞ

n
4

To assess the degree to which non-zero population estimates in the WorldPop-Global-

Unconstrained dataset resulted in misallocation of population, a third statistic was calculated

counting the entire modelled population in Khomas that was misallocated to cells which were

unsettled according to the “true” synthetic population. For all statistics, we excluded gridded

population cell-level estimates of less than 1 person to avoid millions of near-zero cell-level

estimates in unsettled areas of Khomas (located outside of Windhoek) from dominating the

accuracy assessments.

Results

Neither measure of RMSE differed substantially across the simulated outdated-inaccurate cen-

sus scenarios (Figs 6 and 7). Furthermore, errors only slightly decreased when the input data

were aggregated to EA (finer) rather than constituency (coarser) (Figs 6 and 7). The major

driver of RMSE in cells was urban versus rural location, with further difference between

urban-slum and urban-non-slum. In urban cells, population-adjusted RMSE was
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substantially smaller than rural cells (Fig 6), but much larger per hectare due to larger pop-

ulation numbers (Fig 7). In urban areas, RMSE per hectare was lowest in 100x100m cells

(slum range: 32–72, non-slum range: 21–33), while in rural areas, RMSE per hectare was

lowest in cells 300x300m to 500x500m (rural range: 2–54) (Fig 7). Results for select sce-

narios are presented in Fig 6 ranging from the synthetic “true” 2016 population to the

most outdated (2001) and inaccurate (missing 10% to 60%) population, though tables of

all results are provided in Supplement 4.

Assessment of bias in the two gridded population datasets that were derived from synthetic

“true” 2016 population counts revealed systematic and substantial under-estimates of popula-

tions in urban-slum and urban-non-slum cells due to the aggregation-level of the input popu-

lation data and modelling approach, and not inaccuracies in the input data (Tables 4 and 5).

For example, the average 300x300m urban-slum cell under-estimated the population by more

than 350 people (EA-level input) up to 500 people per cell (constituency-level input). For com-

parison, the average 300x300m non-slum cell was under-estimated by 165 people (constitu-

ency-level input) to 187 people (EA-level input), while the average rural cell of the same size

was over-estimated by 3 people (constituency-level input) to 14 people (EA-level input)

(Table 4). When adjusted for population, the results indicate that for every person estimated in

Fig 6. Population-adjusted root mean square error (RMSE) according to input population aggregation, a selection of scenarios, and cell size.

https://doi.org/10.1371/journal.pone.0271504.g006

PLOS ONE Cell-level accuracy of WorldPop-Global-Unconstrained gridded population data in urban Namibia

PLOS ONE | https://doi.org/10.1371/journal.pone.0271504 July 21, 2022 12 / 23

https://doi.org/10.1371/journal.pone.0271504.g006
https://doi.org/10.1371/journal.pone.0271504


an urban non-slum cell, 0.5 to 1 person is omitted; and for every person estimated in an urban

slum cell, 0.75 to 1.5 people are omitted (Table 5).

Table 6 summarises the percent of the estimated population misallocated to “truly”

unsettled cells according to the synthetic population. For this analysis, no cells in the esti-

mated population were excluded. Roughly 20% (EA-level input) or 10% (constituency-

level input) of the population was misallocated to unsettled 100x100m cells (Table 6).

However, as cells were aggregated, the percent of misallocated population dropped precip-

itously. For example, at 300x300m, approximately 2% (EA-level input) or 1% (constitu-

ency-level input) of Khomas’s population was misallocated to unsettled cells. This

indicates that most of the population was disaggregated to unsettled cells within, or near

to, settlements. The rates of misallocation were similar when cells with less than one per-

son were excluded (not reported).

Fig 7. Population density root mean square error (RMSE) per hectare according to input population aggregation, a selection of scenarios, and cell size.

https://doi.org/10.1371/journal.pone.0271504.g007
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Discussion

This is among the first accuracy assessments of a top-down gridded population model at the

grid-cell level, and the first that we know of in a LMIC setting. By developing a simulated real-

istic population and several scenarios of the population with realistic levels of outdatedness

and inaccuracy, we were able to evaluate the accuracy of a gridded population model, as well

as assess the impact of outdated-inaccurate census inputs on estimates. In this paper, we evalu-

ated just one of several gridded population models–WorldPop-Global-Unconstrained. We

also only analysed one simulated population and focused on the particular setting of Khomas,

Namibia, so the results do no necessarily generalize to other cities or datasets. In this specific

analysis, cell-level inaccuracies between urban versus rural areas dominated the results.

In practical terms, this massive difference between urban versus rural accuracy means that

urban development indicators calculated with a WorldPop-Global-Unconstrained dataset at

fine scale (e.g., neighbourhood) would likely be incorrect, and could lead to poorly informed

decisions. For example, an underestimate of the number of people living in a neighbourhood

could overestimate both vaccination coverage and disease infection rates. Contrary to what

some might assume, there was limited evidence in this study that outdated or inaccurate cen-

sus data played a major role in cell-level inaccuracy of gridded population estimates. Instead,

we address three other potential sources of the cell-level inaccuracies observed.

Table 4. Bias in gridded population estimates derived from “true” synthetic population counts, by output grid cell size and urban/rural location (in cells> = 1 esti-

mated person).

Cell size EA-level input Constituency-level input

Non-slum Slum Rural Non-slum Slum Rural

100 0 0 20 -4 -34 7

200 -71 -135 18 -64 -212 6

300 -187 -353 14 -165 -498 3

400 -346 -678 8 -303 -929 -1

500 -549 -1029 3 -483 -1401 -8

600 -769 -1480 -22 -672 -2080 -34

700 -1094 -2114 -33 -981 -2747 -51

800 -1410 -2692 -72 -1247 -3359 -90

900 -1728 -3215 -126 -1576 -4437 -152

1000 -1928 -4453 -126 -1770 -5834 -167

https://doi.org/10.1371/journal.pone.0271504.t004

Table 5. Population-adjusted bias in gridded population estimates derived from “true” synthetic population counts, by output grid cell size and urban/rural loca-

tion (in cells> = 1 estimated person).

Cell size EA-level input Constituency-level input

Non-slum Slum Rural Non-slum Slum Rural

100 0.00 0.00 3.36 -0.10 -0.64 1.28

200 -0.58 -0.74 1.90 -0.52 -1.16 0.67

300 -0.76 -0.94 1.07 -0.67 -1.32 0.23

400 -0.85 -1.04 0.52 -0.74 -1.43 -0.08

500 -0.92 -1.07 0.15 -0.81 -1.46 -0.40

600 -0.96 -1.09 -0.77 -0.84 -1.53 -1.21

700 -0.99 -1.15 -1.02 -0.89 -1.50 -1.59

800 -1.03 -1.21 -1.70 -0.91 -1.51 -2.12

900 -1.00 -1.14 -2.41 -0.91 -1.58 -2.92

1000 -1.05 -1.09 -2.45 -0.96 -1.43 -3.25

https://doi.org/10.1371/journal.pone.0271504.t005
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The first issue is specific to the WorldPop-Global-Unconstrained modelling approach. In

this approach, input administrative units with zero population are excluded and the remaining

population counts are log-transformed before inclusion in a Random Forest model. While this

procedure ensures that population counts are normally distributed during modelling, it also

means that unpopulated cells are assigned a very small fraction of a person [22]. A possible

concern is that non-zero population estimates across millions of unsettled cells could result in

a sizable portion of the population being misallocated. Our analysis of misallocation, however,

indicates that this phenomenon played only a minor role in cell-level inaccuracies, if at all.

Table 6 demonstrates that even in this context of vast unsettled areas, only a small portion of

Khomas’ population was misallocated to cells far from actual settlements. Nearly all of the pop-

ulation was estimated to be in cells within 200 to 300 metres of the “true” synthetic population.

Most global gridded population producers constrain estimates to settled cells as defined

with a settlement layer (e.g. LandScan [24,85], GHP-POP [19,20], HRSL [21], GRID3 [28,86],

WPE [26]). Until recently, these settlement layers tended to be relatively coarse (e.g.

GHS-BUILT 1x1km [87]) and/or had a tendency to omit areas with few sparse buildings (e.g.

GUF [80]) which could under-estimate the population in rural areas and over-estimate the

population in urban areas. However, new free very high resolution Sentinel-2 imagery, and

major leaps in computing power for extracting building footprints and other features from

imagery, have enabled development of several new detailed settlement layers in the last few

years (e.g., GHS-BUILT-S2 [88], Maxar/Ecopia [89]). Recently, WorldPop-Global produced a

constrained global gridded population estimate for 2020 that uses the same input population

and covariate datasets as its unconstrained model plus several building footprint metrics (in

Africa), and then masks all 100x100m cells without building footprints (in Africa) or built set-

tlement (rest of the world) [35], eliminating the issue of non-zero population estimates in

unsettled cells.

The second potential source of inaccuracy relates to covariate resolution and the relation-

ship of covariates with population density. This issue seems to have contributed more substan-

tially to errors in this analysis, particularly within the city of Windhoek. A number of the

Random Forest model covariates, such a land cover type and night-time lights, had an original

resolution substantially coarser than 100x100m which could have resulted in a “halo” effect

around settlements, causing populations to be disaggregated to cells near a settlement, but not

directly over it. Table 5 provides evidence of this; the accuracy of the estimated population dis-

tribution, and correct allocation of population to settled cells, both performed well when the

estimated population was aggregated to 300x300m or larger. Other covariates, such as distance

Table 6. Percent of the overall population that is misallocated to unsettled cells (no exclusion), by aggregation

level of the input data and output grid cell size.

Grid cell size (m2) EA-Level Input Constituency-Level Input

100 20.8% 12.5%

200 5.0% 2.6%

300 2.2% 1.0%

400 1.3% 0.5%

500 0.8% 0.3%

600 0.6% 0.2%

700 0.4% 0.1%

800 0.3% 0.1%

900 0.3% 0.1%

1000 0.2% 0.1%

https://doi.org/10.1371/journal.pone.0271504.t006
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to roads and intersection locations were available at very fine spatial resolution and thus were

precise at the 100x100m scale. Although they are good indicators of a settlement, they are not

necessarily good indicators of higher or lower population density within a settlement. The lack

of fine-scale covariates associated with population density within cities and towns likely

explains a portion of the cell-level error observed in Khomas’s urban population. Other issues

that might further decrease local spatial accuracy are temporal miss-match of covariates [16]

and covariate spatial autocorrelation [90]. With the recent release of several building footprint

datasets (e.g., Maxar/Ecopia in most of Africa [89], Bing in Tanzania and Uganda [91]), several

new covariate layers have been created by the WorldPop team including number of buildings

and total area of buildings in 100x100m cells [92]. Building footprints are likely associated

with population density within settlements and have a finer spatial resolution than 100x100m,

making it a potentially powerful covariate to differentiate lower and higher population density

within urban areas in any gridded population model. The WorldPop team, among other

gridded population producers, is currently working to test and incorporate building footprint

datasets into gridded population models.

The third potential source of cell-level inaccuracies is use of average population densities

from large administrative units to estimate population densities in much smaller grid cells.

This is known as the ecological fallacy [93], and probably played the largest role in cell-level

inaccuracies, especially within urban areas. Population densities are used by the Random For-

est model to establish relationships between covariates and population density (total popula-

tion divided by total area), not population totals. Even with perfect covariates and exclusion of

unsettled areas, this would mean that cells with high “true” synthetic population counts are

likely to be severely underestimated because the geographic size of input population units are

larger (and population densities are smaller) than the output grid cells. When this happens,

population counts that are not allocated to the densest cells will instead be allocated to other

less dense cells in the same input areal unit. Tables 4 and 5 provide strong evidence of this

issue with the population in urban cells, especially urban-slum cells, systematically underesti-

mated regardless of cell size.

Although these results apply only to the WorldPop-Global-Unconstrained model, we can

speculate about how these results might apply to other gridded population datasets. Most top-

down gridded population datasets use average population densities from large input areal

units in some way to populate smaller grid cells, and are thus likely subject to similar errors

linked with the ecological fallacy. The High Resolution Settlement Layer (HRSL), for example,

uses uniform areal disaggregation of the population from input units (e.g., EA) to 30x30m grid

cells which contain a building footprint [21], and the Global Human Settlement GHS-POP

dataset takes a similar approach disaggregating input populations into 250x250m cells that are

classified as settled [19,20]. Gridded Population of the World (GPWv4) is likely even less accu-

rate at the cell-level because the population from each input unit (e.g., EA) are smoothed

across all cells in that unit, including unsettled cells [17]. Gridded population datasets based

on complex models with variable disaggregation from units to grid cells, such as LandScan

[24] and World Population Estimates (WPE) [26], are instead subject to the second limitation

described above because, like WorldPop-Global-Unconstrained, they lack high-resolution

model covariates (e.g., building density) to accurately differentiate population density within

settled cells.

This analysis reinforces findings of other studies which find that currently available gridded

population products tend to underestimate populations in urban areas [94–96], especially in

higher-density poorer neighbourhoods [97]. For example, Tuholske and colleagues (2021)

compared five gridded population products to estimate the proportion of population affected

by natural disasters (SDG 11.5) in three regions where disasters had occurred, and found that
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1x1km population estimates varied widely among data products, and reflected anywhere from

20% to 80% of the total UN estimated population in each region. Furthermore, they found that

WorldPop-Global-Unconstrained generally performed better than un-modelled products

(e.g., GPW), but not as well as products that constrained estimates to settled cells (e.g.,

GHS-POP) [94]. In a separate comparison of nine gridded population estimates of Kenyan

and Nigerian slum populations (SDG 11.1.1) where field counts were available for reference,

the estimated population in each slum varied widely and WorldPop-Global-Unconstrained

estimates reflected just 11% of the overall slum population while the best performing data

product (HRSL) estimated just 34% of all slum dwellers [97]. A key take-away from gridded

population comparison studies is that fine-scale accuracy across data products varies substan-

tially depending on location, potentially leading to different conclusions and decisions (e.g.,

about the humanitarian need or health care burden) depending on the gridded population

dataset used for analysis. Furthermore, these studies underscore the need to understand fine-

scale accuracy across gridded population datasets and locations to inform improvements to

the underlying modelling methods and inputs.

Our analysis of a simulated population offers a methodological approach that can be repli-

cated in other settings to evaluate the accuracy of any gridded population dataset at the cell-

level. This analysis also points toward two solutions–use of building footprint covariates and

finer-scale training data–that stand to improve cell-level accuracy of gridded population data-

sets derived from complex models, including all WorldPop-Global datasets as well as Land-

Scan [24,25], WPE [26], and GRID3 [28,86]. Other techniques would be needed to improve

the accuracy of gridded population datasets that do not vary (weight) population densities

within areal units based on auxiliary information (e.g., HRSL [21], GHS-POP [19,20], GPW

[17,18]).

Our first suggestion to improve WorldPop-Global datasets is to incorporate finer-scale

training data into models to overcome the problem of larger areal-unit average values being

used in smaller grid cells. In cases where the input areal units are geographically large, World-

Pop-Global-Unconstrained (and Constrained) models incorporate training data from a neigh-

bouring country that has finer-scale input population counts [22]. Our analysis showed,

however, that even when relatively small geographic units (census EAs) were used as the input

population area unit, urban slum and non-slum cell-level errors were still substantial, and cell-

level accuracy with EA-level input was only marginally improved compared to constituency-

level input (Fig 7). This suggests that finer-scale training data (e.g., closer to 100x100m) should

be incorporated during the model training phase, particularly from high-density urban areas,

to ensure that the WorldPop Random Forest model contains sufficiently large population den-

sity values to assign to urban cells. Fine-scale training datasets might come from existing

household survey enumerations (e.g., World Bank Living Standards Measurement Surveys),

or slum community profiles such as those published on the Know Your City Campaign web-

site [98]. Even if fine-scale densities are only available for a small sample of locations, they

would provide the model with more accurate maximum population values at the scale of

100x100m during model training.

The second potential solution is to incorporate more spatially detailed datasets into models

which correlate with variations in population density. This analysis of WorldPop-Global-

Unconstrained data raises broader questions about the cell-level accuracy of all gridded popu-

lation estimates in urban areas, especially the densest parts of cities such as in slums, informal

settlements, and neighbourhoods with high-rise apartment buildings [99–101]. New datasets

derived from very high resolution satellite imagery, in particular building footprints, are a

promising new covariate to reduce the “halo” effect of populations misallocated nearby, but

not directly over, the highest density cells. More work will be needed to improve building
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footprint datasets by distinguishing residential and non-residential buildings to avoid popula-

tion being misallocated to business districts, factories, universities, airports, and other non-res-

idential cells [102,103].

Conclusions

Global gridded population data initiatives aim to fill a gap in available disaggregated and cur-

rent population counts to ensure that everyone is counted and that all needs are met in devel-

opment initiatives. However, many gridded population datasets are not evaluated for accuracy

at fine spatial scale. This analysis of one simulated population in one setting revealed substan-

tial and systematic under-estimation of population in slums. Further analyses of other gridded

population datasets are needed across diverse settings. However, if severe under-estimates in

slums and other high-density urban areas are widespread, this means that gridded population

datasets might unintentionally reinforce marginalisation of the urban poorest by omitting

them from maps and population counts. We offer two suggestions to address this challenge:

inclusion of finer-scale training data from household survey listings or “slum” enumerations,

and the addition of new building footprints data as model covariates. Given the increased use

of gridded population datasets for monitoring health and development outcomes in small

areas, it is imperative that gridded population datasets area assessed for cell-level accuracy and

are improved where possible.
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