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Abstract Mechanism-based therapy centred on the molecular understanding of disease-causing pathways in a given patient is still
the exception rather than the rule in medicine, even in cardiology. However, recent successful drug developments cen-
tred around the second messenger cyclic guanosine-30-50-monophosphate (cGMP), which is regulating a number of car-
diovascular disease modulating pathways, are about to provide novel targets for such a personalized cardiovascular
therapy. Whether cGMP breakdown is inhibited or cGMP synthesis is stimulated via guanylyl cyclases or their upstream
regulators in different cardiovascular disease phenotypes, the outcomes seem to be so far uniformly protective. Thus, a
network of cGMP-modulating drugs has evolved that act in a mechanism-based, possibly causal manner in a number of
cardiac conditions. What remains a challenge is the detection of cGMPopathy endotypes amongst cardiovascular dis-
ease phenotypes. Here, we review the growing clinical relevance of cGMP and provide a glimpse into the future on
how drugs interfering with this pathway may change how we treat and diagnose cardiovascular diseases altogether.
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1. Background

For decades, the number of approved drugs has been in decline, indicat-
ing fundamental problems with respect to the productivity and innova-
tion in basic, translational, and industrial research.1 Potential reasons for
this include, amongst others, the underlying concept of disease, which is
mainly based on symptoms, an organ and its phenotypic function rather
than on molecular pathways. Indeed, causal, mechanistic understanding
of disease is still the exception and currently relevant primarily for
monogenic diseases.2 Common and complex diseases are primarily

treated based on their symptoms, on risk factors or markers; clearly, a
low-precision approach evidenced by the high numbers needed to
treat and low efficacy of currently available drugs.3–5 Cardiology is no
exception to this, and given its many unmet needs, this represents one of
the most important knowledge gaps in medicine.3

Therapeutic agents that modulate the second messenger cyclic
guanosine-30 -50 -monophosphate (cGMP) seem to be one exception to
this conceptual roadblock and may lead the way towards a different,
mechanism-based approach to a variety of diseases using also the powers
of big data, networks and systems medicine.6,7 cGMP modulators have
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..emerged as one of the most promising compounds in recent cardiovascu-
lar drug discovery.7 This may be because they do not act only symptomat-
ically but, at least in a subset of suitable patients, target a disease
mechanism rather than alleviating symptoms or modulating risk factors.7,8

In contrast, current cardiovascular treatments, such as renin–angiotensin–
aldosterone system (RAAS) blockade do not follow a pathomechanistic
approach. RAAS-blockers are not chosen as a therapy because in a patient
up-regulation of RAAS has been measured, but solely symptomatically be-
cause RAAS blockade causes vasodilation. This is not a mechanism-based,
causal therapy. The same holds true for other commonly used therapies,
such as beta-blockers and calcium channel antagonists.

Cyclic GMP modulating drugs are used in a broad set of cardiovascular
symptoms and conditions, such as angina, myocardial infarction, heart
failure, pulmonary hypertension (PH), hypertensive crisis, and erectile
dysfunction.9–14 Furthermore, preclinical evidence suggests benefit in
ischaemic stroke.8 In addition, cGMP-related biomarkers, natriuretic
peptides (NPs), are used to monitor heart failure patients.10

In the cardiovascular system, the effects of cGMP are predominantly
mediated by cGMP-dependent protein kinases and cGMP-regulated
phosphodiesterases (PDEs)15 (Figure 1). Cyclic GMP appears to exert
almost exclusively beneficial effects with a single overt limitation,

vasodilation which in some patients may lead to hypotension and syn-
cope, in particular in combination therapy.16 Therefore, cGMP increase
leverages apparently only additional therapeutic gain, particularly in
those cardiovascular conditions associated with a proven, i.e.
mechanism-based, deficit in cGMP signalling. Clinically, this is achieved
mainly by two approaches, either by (i) activating guanylyl cyclases to in-
crease cGMP synthesis or by (ii) inhibiting relevant PDEs to inhibit cGMP
breakdown. Future cGMP-centric strategies will most likely include com-
binations of different types of cGMP-modulating drugs and be increas-
ingly guided by additional innovative plasma- or cell-based biomarker
panels yielding powerful therapeutic and diagnostic (‘theranostic’) cou-
ples with cGMP-modulating drugs for cardiovascular precision medicine.

2. Cyclic GMP, a mechanism-based
approach for cardiology

cGMP-modulating drugs are very promising in cardiovascular medicine
and provide a broad clinical applicability. Indeed, cGMP-modulating drugs
provide protective effects within the heart and vasculature by inhibiting
vascular smooth muscle contraction and proliferation, suppressing

Figure 1 Classical, curated representation of cGMP signalling. Shown in green are the GCs and in yellow their positive regulators; NO produced by NOS
for soluble GC and NPs (ANP, BNP, and CNP) for particulate GC. Negative regulators (cGMP metabolizing PDEs 1, 2, 5, 6, 9, 10, 11, and NPs degrading
NEP) and pathophysiological conditions (oxidized/heme-free apo-sGC) are shown in pink. All clinically relevant cGMP-modulating drugs are shown in blue
(bold for approved drugs and in italic for drugs under investigation): ARB, Angiotensin II receptor blockers; GC-As, GC-A stimulators; GC-A/Bs, GC-A/B
stimulators; NEPi, neprilysin inhibitors; NOd, NO donors; NOSr, NOS recoupling nutraceuticals; sGCa, sGC activators; sGCs, sGC stimulators; PDEi, PDE
inhibitors. cGMP effector proteins (PKG and cyclic nucleotide-gated ion channels, CNG) and their substrates are shown in grey. cGMP can also inhibit some
isoforms of the PDE enzyme family. In turn, this leads to an altered phosphoprotein profile, a decrease in intracellular calcium levels and sensitivity, and al-
tered cGMP and cAMP levels (proffering crosstalk between cGMP and cAMP networks). GC-C is localized in intestines and GC-E and -F in the retina, thus
not relevant to the context of this review.
Ang II, angiotensin II; Sta, heat-stable enterotoxin I STa.
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platelet and leukocyte reactivity, and both anti-fibrotic and anti-
hypertrophic actions.15 A second, probably even more promising aspect
is the fact that dysfunctional cGMP formation and signalling appear to play
direct pathomechanistic roles in cardiovascular disease. Genome-wide as-
sociation studies have identified single nucleotide polymorphisms in genes
encoding several components of this pathway to be correlated with
cardiovascular diseases (Table 1).17,18 Thus, any up-regulation of cGMP
has the potential to act and cure in a unique mechanism-based manner.8,15

Table 2 demonstrates cGMP-related drugs for therapeutic cardiovascular
applications, either approved or under clinical investigation.

2.1 cGMPopathies
cGMPopathies describe a dysregulation of cGMP signalling by reduced
cGMP synthesis, increased cGMP breakdown, or defective cGMP down-
stream signalling.7 This term is a part of an overall new approach to dis-
ease namely, not to define diseases based on a symptom in an organ but
by a causal mechanism. This mechanism may lead to symptoms in differ-
ent organs. Coronary artery disease (CAD), myocardial ischaemia (MI),
heart failure (HF), hypertension, diabetic nephropathy, and metabolic
syndrome belong to cGMPopathies.15,18,19 NOS3 polymorphisms have
been associated with CAD/MI, hypertension, metabolic syndrome, dia-
betes mellitus, and diabetic nephropathy;18,19 a shorter half-life variant of
NOS3 with reduced event-free survival in HF with systolic dysfunction;20

a PDE5A variant with CAD;18 genetic variants of GUCY1A3 with blood
pressure, CAD and MI.18 Mutations in the a1-soluble guanylate cyclase
(sGC) subunit and CCT7g encoding genes, leading to decreased sGC
activity, have been associated with myocardial infarction risk.21 A dele-
tion mutation in the type A human NP receptor gene was associated
with essential hypertension and ventricular hypertrophy.22 In families
with atrial fibrillation, a frameshift mutation in the atrial natriuretic pep-
tide (ANP) encoding gene has been identified and possibly involved in
the development of the disease.23 Moreover, the ANP (NPPA) genetic
variant rs5068 characterized by increased production of ANP in humans
has demonstrated a phenotype of lower blood pressure, reduced risk of
hypertension, and decreased prevalence of metabolic syndrome.24 The
genetic involvement of cGMP signalling in these diseases is further con-
firmed by pathophysiological data.

Endothelial dysfunction characterized by NO dysregulation and in-
flammation coincides with reactive oxygen species (ROS) formation
leading to cardiovascular disease states.25 Notably in heart failure, neuro-
humoral activation, secretion of inflammatory messengers, and altered
shear stress lead to ROS generation that interferes with NO.26 The
resulting endothelial dysfunction causes a further imbalance of NO and
unphysiological ROS formation that worsens HF.26 Reduced PKG activ-
ity and cGMP concentrations, probably resulting from low NO bioavail-
ability, are related to cardiomyocyte stiffness in the HF with preserved
ejection fraction (HFpEF) myocardium.27 Higher levels of uncoupled
eNOS and PDE9A were also shown in HFpEF myocardium.28,29

Elevated ANP levels have been associated with HF, but blunted
responses to ANP infusion in HF patients indicate the possibility of
down-regulation of ANP receptors30 or up-regulation of the NP-metab-
olizing receptor.31 In human failing hearts, guanylate cyclase (GC)-A in
cardiomyocytes does not respond to ANP stimulation,32 and PDE1C
and PDE5 levels are up-regulated.33,34

Endothelial dysfunction, as a result of dysregulated ROS formation
and inflammation, correlates with atherosclerosis.35 Increased activity of
NADPH oxidase (as a source of superoxide) was associated with de-
creased endothelial vasorelaxations and increased atherosclerotic risk
factors.36 In CAD patients, the oxidized form of sGC was increased37

and asymmetric-dimethyl-L-arginine (ADMA) levels associated with
eNOS uncoupling.38 In hyperlipidaemia, cGMP modulators are unable to
induce cardioprotective effects, suggesting a dysfunction downstream of
cGMP formation.39 In the same study, PKG activity is down-regulated in
hyperlipidaemic rats as assessed by troponin I phosphorylation.39

Nitric oxide is implicated in impaired vasodilation in hypertensive
patients.40 Endothelial NO production by eNOS is decreased and sys-
temic NO production by iNOS increased (resulting in hyperproduction
of toxic NO levels) in patients with coronary heart disease (CHD) associ-
ated with hypertension; these effects are more expressed in CHD with
hypertension compared to isolated CHD patients.41 In addition, dimin-
ished L-arginine transport has been proposed as a link from dysfunctional
NO signalling to essential hypertension.42 In pulmonary arterial hyperten-
sion (PAH) patients, arginine levels in airway epithelial cells are inversely
associated with pulmonary arterial pressures, while in pulmonary artery
endothelial cells NO production is reduced and arginase activity higher.43

Importantly, when moving from organ- and symptom-based to mech-
anistic disease definitions not all patients with a given clinical disease phe-
notype is expected to suffer from the same cause. cGMPopathy rather
represents one endotype, and there will be others that could lead to a
similar phenotype. NOX5-induced uncoupling of eNOS as a causal
mechanism of age-related hypertension is a good example of this as it
affects approximately only one in four or five patients with hyperten-
sion.44 Different endotypes of one phenotype may have different symp-
toms or comorbidities, which in multiscale modelling is used to identify
the mechanism of unclear endotypes.

3. Drugs increasing cGMP
generation

3.1 Nitric oxide and its receptors, GC-1 &
GC-2
The traditionally defined ‘soluble guanylate cyclase (sGC)’, more recently
termed guanylyl cyclases GC-1 and GC-2 (to differentiate them from
the membrane-spanning, guanylyl cyclases, GC-A, GC-B, activated by

......................................................................................................

Table 1 cGMP-related loci. Identified to be associated
with cardiovascular diseases by genome-or exome-wide
association studies. NPPA genetic variant rs5068 and
GUCY1A3 variant a1-A680T may protect against
metabolic syndrome and PH, respectively

Gene Chromosome Association with

ANP [NPPA] 1 AF23, BP17, MetS24, VR178

BNP [NPPB] 1 BP17

Furin [PCSK3] 15 BP17, MI/CAD179

eNOS [NOS3] 7 BP180, CAD181, MetS19

NPR1 [NPR1] 1 BP22, VR178

PDE5A [PDE5A] 4 CAD18

sGCa1 [GUCY1A3] 4 BP17,182, PH183

sGCa1 [GUCY1A3] þ
CCTg [CCT7]

4þ2 MI/CAD21

sGCb1 [GUCY1B3] 4 BP17,182

AF, atrial fibrillation; BP, blood pressure; CAD, coronary artery disease; CCT7,
chaperonin containing TCP1 subunit 7; MetS, metabolic syndrome; MI, myocar-
dial infarction; PH, pulmonary hypertension; VR, ventricular remodelling.

Cyclic GMP modulating drugs in cardiovascular diseases 2087
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Table 2 cGMP-modulating drugs. NO donors, NOS targeting compounds, soluble GC (GC-1/2) stimulators and activators,
GC-A/B stimulators, NEP inhibitors, and PDE inhibitors, either approved or under clinical investigation for therapeutic
cardiovascular applications

Target Mechanism Compound Indication Status Clinical trial identifier

NO

NO donor

Nitroglycerine Angina pectoris, Acute HF

Peripheral arterial disease

Myocardial reperfusion injury

Erectile dysfunction

Approved

Phase I

Phase III

Phase III

NCT04155476

NCT01864252

NCT03813992

Isosorbide nitrates Angina pectoris, HF

Lacunar stroke

Approved

Phase II/III NCT03451591

SNP Hypertensive crisis, HF

Myocardial infarction—percutaneous coro-

nary intervention

Approved

N/A NCT03406832

Molsidomine Angina pectoris, atherosclerosis Phase IV

(negative)

NCT01363661

PETN Angina pectoris Phase III

(negative)

2008-007093-37

Nicorandil Angina Approved

Coronary artery disease—end stage renal

disease

Phase IV NCT01475123

Myocardial infarction Phase IV NCT02435797

Myocardial infarction—percutaneous coro-

nary intervention
Phase IV

NCT03445728,

NCT03252665,

NCT04665648,

NCT04826497

Sodium nitrite HFpEF

HFpEF

Pulmonary hypertension—HFpEF

Metabolic syndrome—hypertension

Hypertension

Painful diabetic neuropathy

Phase II

Phase II

Phase II

Phase II

Phase I

Phase II

NCT02918552

NCT02713126

NCT03015402

NCT01681810

NCT02527837

NCT02412852

Sodium nitrate Acute HF

Pulmonary hypertension

Pulmonary hypertension—HFpEF

Angina

Phase I/II

Phase I

Phase I

Phase II—negative

ACTRN12616000951459

NCT03787082

NCT02980068

NCT02078921

Potassium nitrate HFpEF

HF

Contrast-induced nephropathy

Aortic valve stenosis

Phase II

Phase I/II

Phase II

Phase II

NCT02840799

NCT02797184

NCT03627130

NCT03483051

Dietary nitrate Arrhythmia—HF

HF

Obesity

Hypertension

Hypertension-induced target organ damage

Peripheral arterial disease

Chronic kidney disease

Angina

Ischaemic stroke

Erectile dysfunction

N/A

Phase I/II

N/A

N/A

Phase II

Phase II

Phase IV

Phase II

Phase II

N/A

NCT03658174

NCT01682356

NCT03545009

NCT04755400

NCT03088514

NCT02553733

NCT03826147

NCT02529189

NCT02838901

NCT04116060

HNO donor

CXL-1427

(Cimlanod)

HFrEF Phase II NCT03357731

CXL-1020

(prodrug of Cimlanod)

HF Phase II NCT01096043

Continued
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Table 2 Continued

Target Mechanism Compound Indication Status Clinical trial identifier

NOS Recoupling

Arginine Sickle cell disease

Preeclampsia

Reperfusion injury after lower limb bypass

Peri-operative cardiovascular complications

Peripheral arterial occlusive disease

Insulin sensitivity

Hypertension

Chronic kidney disease

Phase III

Phase III

Phase IV

N/A

Phase IV

N/A

Phase IV

Phase IV

NCT04839354

NCT02363348

NCT02117206

NCT01413815

NCT01682889

NCT04239482

NCT02894723

NCT03982160

Citrulline Sickle cell disease

Cardiopulmonary bypass during heart

surgery

Peripheral artery disease

HF-chronic obstructive pulmonary disease

Phase I

Phase III

N/A

N/A

NCT02697240

NCT00335244

NCT02521220

NCT04432194

H4Biopterin Sickle cell disease

Peripheral artery disease

Chronic kidney disease

HFrEF

Hypertension

Phase II

Phase I

Phase II

Phase I

Phase I

NCT00445978

NCT04800692

NCT02947750

NCT03136029

NCT00208780

Inhibition Ronopterin (VAS203) Traumatic brain injury Phase III NCT02794168

GC-1/2

Stimulation

Riociguat Pulmonary hypertension

Pulmonary hypertension-HFpEF

Sickle cell disease

Approved

Phase II

Phase II

NCT02744339

NCT02633397

Vericiguat HFrEF

HFpEF

Approved

Phase II—negative NCT03547583

Praliciguat Type II diabetes-hypertension

HfpEF

Diabetic nephropathy

Phase II

Phase II—negative

Phase II—negative

NCT03091920

NCT03254485

NCT03217591

Activation

Ataciguat Aortic valve calcification

Peripheral arterial disease

Phase II

Phase II—negative

NCT02481258

NCT00443287

Cinaciguat HF Terminated-Phase II NCT01064037

Runcaciguat Diabetic retinopathy

Chronic kidney disease
Phase II

NCT04722991

NCT04507061

Neprilysin Inhibitor

LCZ696=Sacubitril þ Valsartan HFrEF, HFpEF

Resistant hypertension

PH-HFpEF

Myocardial infarction

Type II diabetes

Atrial fibrillation—cardiac remodelling

Approved

Phase II

Phase III

Phase IV

Phase II

N/A

NCT04637152

NCT04753112

NCT04342351

NCT03744975

NCT03791723

GC-A Stimulator

Carperitide Acute HF Approved

Ularitide Acute HF Phase III—negative NCT01661634

Nesiritide Acute HF

Hypertension

Diabetes

Approved

Phase I/II

Phase I

NCT02608996

NCT03234751

ANX-042 Cardiorenal syndrome Phase I NCT03019653

MANP Hypertension, metabolic syndrome

Hypertension

Phase I

Phase I

NCT03781739

NCT04542681

GC-A/B Stimulator

Cenderitide HF

HF—renal impairment

Myocardial infarction

Phase II

Phase I/II

Phase I

NCT02359227

NCT02603614

NCT02071602

PL-3994 HFpEF Phase II NCT04318145

PDE1 Inhibitor

Vinpocetine Ischaemic stroke Phase II/III NCT02878772

Lenrispodun (ITI-214) HF

Parkinson’s disease

Phase I/II

Phase I/II

NCT03387215

NCT03257046

Continued
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NPs), is a heterodimeric haemoprotein comprised of one of two alpha
subunits (a1 or a2) and a beta subunit (b1). An N-terminal pocket binds
Fe(II)haem via a proximal histidine and thereby confers sensitivity to
NO.45,46 Binding of NO cleaves the proximal histidine-Fe(II) haem bond
and induces a structural shift that activates the catalytic site converting
GTP into cGMP.45,46 Inappropriate formation of ROS, in particular su-
peroxide, can interfere with NO-cGMP signalling in at least three ways:
(i) by chemically scavenging NO; (ii) by uncoupling NO synthase (NOS);
or (iii) by oxidizing the haem group within GC-1/2 from Fe(II) to Fe(III)
eventually resulting in heme-deficient apo-GC. The latter is not only in-
sensitive to NO but also prone to rapid degradation.47

Therapeutically, three avenues are clinically promising for reinstating
or augmenting NO-GC-1/2 signalling: (i) repairing or replacing NO syn-
thesis; (ii) sensitizing GC-1/2 to lower levels of NO by allosteric modula-
tor compounds, so-called sGC stimulators;48 or (iii) re-activating NO-
insensitive, haem-free apo-GC by haem-mimetics, so-called sGC activa-
tors, which also prevent enzyme degradation.48,49

3.1.1 Repairing or replacing NO synthesis
Recoupling NOS, by dietary supplementation of its redox-sensitive co-
factor tetrahydrobiopterin or its substrate L-arginine, is pre-clinically ef-
fective. So far, there are, however, no clinical trials with positive
outcomes to demonstrate the efficacy of such a nutraceutical

approach.50 Therapeutically, NO substitution with so-called NO-donor
or nitrovasodilator compounds has the longest history (e.g. in angina,
heart failure), but also limitations, such as pharmacokinetic51 and phar-
macodynamic52 tolerance, which requires therapy-free intervals to
regain nitrate sensitivity. According to ESC/AHA guidelines, the use of
sodium nitroprusside, chemically an NOþ donor, is limited to i.v. applica-
tion in hypertensive emergencies e.g. as first-line treatment in acute car-
diogenic pulmonary oedemas, and in acute HF as second-line
therapy.10,14,53,54 Short-acting nitrates, such as nitroglycerine and isosor-
bide dinitrate (ISDN), can be used as first-line therapy for pain relief of
an angina attack, whereas long-acting nitrate formations of nitroglycer-
ine, ISDN, or isosorbide mononitrate (ISMN) are used as second-line
treatments for angina prophylaxis.9,12,55,56 Nitroglycerine and ISDN are
also considered second-option vasodilators in acute HF.10,54 A combina-
tion of ISDN and hydralazine can be used as second-line therapy in HF
with reduced ejection fraction (HFrEF).10,54 Additionally, molsidomine,
an NO-donor upon metabolism, is an antianginal drug; but not yet rec-
ommended in routine use.57 Three NO donors, pentaerythritol tetrani-
trate, nicorandil and nitroxyl (HNO or NO-), seem to be devoid of
tolerance, which awaits to be exploited therapeutically.58,59 However,
PETN is not recommended for stable angina yet due to not sufficient effi-
cacy evidence.58 Nitroxyl donors, such as BMS-986231 (previously
CXL-1427) differ from pure NO donors and showed a favourable safety

..............................................................................................................................................................................................................................

..............................................................................................................................................................................................................................

Table 2 Continued

Target Mechanism Compound Indication Status Clinical trial identifier

PDE3 Inhibitor

Milrinone HF

Pulmonary hypertension

Ischaemic heart disease

Approved

Phase IV

N/A

NCT04484675

NCT04153383

Cilostazol Anti-thrombotic

Restenosis

Ischaemic, atherosclerotic events in type II

diabetes

Approved

N/A

Phase IV

NCT01261234

NCT02983214

NCT03248401

NCT02933788

Levosimendan Acute HF

Systolic HF

Pulmonary hypertension-HFpEF

Aortic stenosis- HF

Myocardial infarction—acute HF

Cardiogenic shock

Approved

Phase IV

Phase II

Phase IV

Phase IV

Phase III

NCT03764722

NCT03624010

NCT04573049

NCT03189901

NCT04020263

Enoximone Acute HF

HF

Approved

Terminated-

Phase III

NCT00051285

PDE5 Inhibitor

Sildenafil, tadalafil Erectile dysfunction, pulmonary

hypertension

Approved

Sildenafil Peripheral artery disease

HF—pulmonary hypertension

Small vessel cerebrovascular disease

Ischaemic retinal disorders

Phase III

Phase III

Phase II

Phase II

NCT03686306

NCT01616381

NCT03855332

NCT04356716

Tadalafil Type II diabetes

Cardiomyopathy—renal impairment

Cerebral small vessel disease

Diabetic cardiomyopathy

Phase II

Phase I/II

Phase II

Phase IV

NCT02601989

NCT02058095

NCT02801032

NCT01803828

Vardenafil Erectile dysfunction

Pulmonary hypertension

Approved

Phase IV NCT01649739
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and haemodynamic profile in acute decompensated HF.60 Nicorandil, a
nicotinamide- nitrate ester and Kþ channel opener, is suggested as a
second-line antianginal drug for patients with chronic coronary syn-
dromes in Europe but not approved in USA.9,10,12,58 In addition to nitrate
tolerance, a general concern is that under conditions of elevated ROS
levels, NO donors may lead to unwanted reactive nitrogen species and
endothelial dysfunction.51,61

Two more targeted and mechanism-based strategies circumvent
these shortcomings and risks i.e. sGC stimulators and sGC activators.
Despite their very similar sounding names, they have distinct targets, i.e.
Fe(II)haem-containing GC-1/2 and apo-GC-1/2, respectively.
Importantly, both enhance cGMP synthesis independently of modulating
NO levels and are thus devoid of tolerance.48

3.1.2 sGC stimulators
These compounds interact with an allosteric site to sensitize (FeII)haem
containing GC-1/2 for NO.46 If tissue levels of NO are low, this will re-
sult in a mechanism-based ‘recovery’ of a physiological cGMP response.
However, if levels of NO are high, these compounds have limited or no
additional effect on cGMP.

Riociguat (BAY 63–2521) was the first registered sGC stimulator ap-
proved for use in PH, i.e. chronic thromboembolic pulmonary hyperten-
sion and PAH.62 No evidence-based first-line therapy is suggested for
PH, but riociguat is one of the initial monotherapies that can be chosen
according to ESC/CHEST guidelines.11,63 However, following the early
termination of the phase II RISE-IIP trial because of serious adverse
events, riociguat is not suggested to patients with PH associated with idi-
opathic interstitial pneumonia.64 Riociguat was also evaluated in PH asso-
ciated with left systolic heart failure, and, despite not meeting the
primary endpoint of change in mean pulmonary artery pressure (mPAP),
it had favourable effects on secondary outcomes.65 The DILATE-1 trial
tested riociguat in patients with HFpEF and PH; stroke volume and car-
diac index were increased, systolic blood pressure and right ventricular
end-diastolic area decreased, but there was no significant change on
peak decrease in mPAP.66 At the moment, riociguat is under investiga-
tion for its long-term treatment in PH associated with HFpEF
(NCT02744339).67

Vericiguat (BAY-1021189) reached the primary outcome in reducing
cardiovascular mortality or hospitalization for HF in a Phase 3 clinical trial
for HFrEF (VICTORIA) and recently received approval in USA.68,69 It
was also further evaluated in a phase IIb HFpEF trial (VITALITY-HFpEF)
where it failed to improve the quality of life (physical limitation score of
the KCCQ), which was the previously suggested beneficial outcome in
phase IIb SOCRATES-PRESERVED.70,71

Another sGC stimulator with promising effects in an animal model of
cardiorenal failure, praliciguat (IW-1973), showed favourable trends in
metabolic and hemodynamic variables in patients with type 2 diabetes
(T2D) and hypertension.72,73 However, it failed to reach the primary
endpoints of improved peak rate of oxygen consumption and reduction
in albuminuria in Phase 2 trials for HFpEF and diabetic nephropathy,
respectively.74,75

A shortcoming of all these trials still is that they stratified patients
purely on clinical grounds and did not use biomarkers to identify HFpEF
and HFrEF patients with a mechanistic endotype indicating cGMP dysre-
gulation. By failing to do so, potential benefits in some patients may have
been diluted through non-responders with different underlying patho-
mechanisms. Of note, the terms HFpEF and HFrEF are purely descriptive

overarching terms, recently complemented by Heart Failure with mid-
range or intermediate ejection fraction (HFmrEF or HFiEF).

3.1.3 sGC activators
These molecules specifically bind to the NO-insensitive, haem-free or -
oxidized apo-GC-1/2.48 Large molecules, such as cinaciguat (BAY58–
2667), but not the smaller ataciguat (HMR1766) binding the oxidized
form,76 occupy the empty haem site and prevent its ubiquitination and
proteasomal degradation,47 thereby both an activating and stabilizing
apo-sGC. However, clinical phase II trials (COMPOSE programme) with
cinaciguat in patients with acute heart failure had to be stopped prema-
turely due to severe hypotension.77 Moreover, the safety of ataciguat
(HMR1766) has been evaluated in patients with moderate aortic valve
stenosis (NCT02049203) and efficacy in patients with aortic valve calcifi-
cation (NCT02481258) and peripheral arterial disease (NCT00443287);
however, ataciguat’s development was discontinued.78 A novel com-
pound with improved physicochemical and pharmacokinetic characteris-
tics, runcaciguat, is now investigated in chronic kidney disease and
diabetic retinopathy.78

3.2 NPs and their GC-coupled receptors
The second cGMP forming family is plasma membrane-spanning GCs, of-
ten referred to as particulate GCs due to their subcellular localization in
the particulate fraction. They comprise seven members (GC-A to GC-
G), of which two, GC-D and GC-G, are pseudogenes and three, GC-C,
GC-E, and GC-F, are—as far as we know—not relevant for the cardio-
vascular system.79,80 This organ- and function-based GCs compartmen-
talization is further confirmed in silico (Figure 2). Here, we make use of
experimentally validated protein–protein interaction (PPI) data from the
Integrative Interactive Database (IID).81 Starting from GC-coupled
receptors, we look at their direct protein interactions in IID to build the
first neighbour PPI network. After pruning the network from highly con-
nected but non-relevant protein interactions, four different subnetworks
or signalling modules are extracted: (i) sGC module, (ii) ANP receptors
module, (iii) intestinal GC module, and (iv) retinal GCs module. GC-A
and GC-B are homodimers containing an N-terminal extracellular
ligand-binding domain for NPs.79 They are therefore also termed NP
receptors NPR-A and NPR-B, respectively.

Humans express four types of NPs, atrial (ANP), brain (BNP), and C-
type natriuretic peptide (CNP) and urodilatin.82 ANP, BNP, and urodila-
tin each activate GC-A; CNP is the sole endogenous GC-B agonist. Via
GC-A/B, NPs have a wide range of cardio- and vaso-protective effects,
i.e. natriuresis, diuresis, inhibition of vasoconstriction, as well as anti-
hypertrophic, anti-fibrotic and anti-proliferative effects and possibly also
metabolic actions, such as lipolysis and browning of adipocytes.82 NPs
bind to another NP receptor, natriuretic peptide clearance receptor
(NPR-C), which has no GC activity and is responsible for NPs clearance
from the circulation. However, CNP activation of NPR-C plays a crucial
role in cardiac function and vascular homeostasis.83

Elevated NP levels are also disease biomarkers, in particular in heart
failure. Paradoxically though, increased expression and release of NPs
does not necessarily translate into enhanced activation of the particulate
GC-cGMP pathways. Instead, there appears to be a disconnect. In heart
failure, proBNP, the precursor of mature BNP, is the predominant circu-
lating form and lacks significant GC-A activating properties compared to
BNP.84 More recently, studies have revealed the presence of glycosyla-
tion of ANP, resulting in a molecular form with reduced GC-A activa-
tion.85 The presence of altered molecular forms of ANP and BNP with
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reduced cGMP production supports the use of native and designer syn-
thetic NPs to rescue these NP structural abnormalities. Such a hormone
replacement strategy is also underscored by the presence of an ANP de-
ficiency in human heart failure due to either reduced production and/or
increased peptide degradation.86 Therefore, even when plasma levels of
NPs are elevated in heart failure and other conditions, pharmacological
GC-A/B stimulation may still be beneficial. Three therapeutic approaches
to enhance NP signalling have entered the clinic; natural peptides, such
as neseritide or carperitide, designer peptides, such as uralitide, and mol-
ecules that inhibit peptide breakdown via neutral endopeptidase (NEP),
such as sacubitril.

3.2.1 Recombinant and designer NPs
The clinical utility of GC-A/B-cGMP stimulation was first examined with
recombinant ANP, carperitide, in acute heart failure,87,88 but its impact
on in-hospital mortality and length of hospitalization was inferior to
nitrates.89 LASCAR-AHF now tests the long-term effects of carperitide
in acute HF.89 Despite the lack of sufficient evidence, carperitide is used
in Japanese practice as second-line treatment in acute HF.90 In the
J-WIND trial, recombinant ANP decreased infarct size and improved
ejection fraction in patients with myocardial infarction undergoing percu-
taneous coronary intervention91 but had no effect on in-hospital
mortality.92

Another NP, a synthetic form of urodilatin, ularitide, neither affected a
clinical composite endpoint nor cardiovascular mortality in patients with
acute HF.93 Similarly, the recombinant BNP, nesiritide, despite a small

change in dyspnoea, neither improved all-cause death nor re-hospitaliza-
tion for HF in patients with acute, decompensated HF.94 Even worse, a
meta-analysis associated the use of nesiritide to an increase in the short-
term risk of death in such patients.95 This perhaps provides a warning
that excessive GC-A activation may be detrimental due to significant hy-
potension that may compromise renal function and lead to sympathetic
activation, both unfavourable events in patients with heart failure.
Currently, it is considered a second-line intravenous vasodilator for
acute HF in Europe and USA.10,54

An alternative strategy has been the development of ‘designer’ NPs,
which aim to combine beneficial effects of different endogenous pepti-
des. CD-NP, i.e. cenderitide (CD-NP), is a modified CNP with 15 addi-
tional amino acids at the C-terminal tail of DNP (a related peptide
identified in the venom of the green mamba, Dendroaspis angusticeps).96

The rationale behind this combination is to promote the vasodilator and
anti-fibrotic properties of C-type natriuretic peptide (at least in part via
GC-B stimulation), with the natriuretic properties of DNP (which stimu-
lates GC-A but is thought to avoid a dose-limiting hypotension). Both
these pharmacodynamics as well as safety, i.e. absence of hypotension,
were established in stable HF patients.97 ANX-042, a peptide designed
based on an alternative spliced variant of BNP, is currently under
investigation as a non-hypotensive drug in cardiorenal syndrome
(NCT03019653).98 Beyond heart failure, the designer ANP-analogue
(MANP) was engineered as a novel ANP mimetic whose biological prop-
erties of natriuresis, blood pressure-lowering, and aldosterone suppres-
sion are greater than ANP.99 This analogue retains the 28 amino acids of

Figure 2 Unbiased, PPI-based GCs signalling modules. (A) Table of clinically relevant GCs. These were used as seed proteins to start building their first
neighbour PPI network. (B) First neighbour PPI network of GCs from IID. Seed proteins are shown in green and their first neighbour PPI interactions in
grey. A line was drawn between two proteins when they interact with each other according to IID. Only experimentally validated data were used. (C) Four
different modules are extracted after curating the network with a 0.1 subnetwork participation degree (SPD) cut-off. The SPD cut-off removes highly
connected and non-relevant proteins, thus, confirming in silico the literature function- and organ-based distinction of different GCs.
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ANP but possesses a novel 12 amino acid extension to the carboxyl
terminus resulting in greater resistance to enzymatic degradation by
neprilysin and reduced clearance by the NPR-C.99 MANP has been re-
cently investigated in hypertension and metabolic syndrome, where it
showed a safe profile, a borderline significant blood pressure decline and
a significant increase of cGMP and non-esterified fatty acids levels.100

3.2.2 NEP inhibitors
NEP (also known as neprilysin) is a membrane-bound metalloproteinase
responsible for the breakdown of many vasoactive mediators, including
NPs, but also glucagon, bradykinin, oxytocin, substance P, angiotensin II,
endothelin, and beta-amyloid.101 Clinically, however, NEP inhibitors
(NEPi) have little or no effect on blood pressure despite significantly ele-
vated plasma NP concentrations.102 This paradox was attributed to the
fact that NEP metabolizes both vasodilating (e.g. NPs, bradykinin) and
vasoconstricting (e.g. angiotensin II and endothelin) peptides, thereby
possibly outweighing any hemodynamic benefit.

As a result, drug development in this area focused on a combined
blockade of NEP and angiotensin-converting enzyme (ACE)—to pre-
vent the accumulation of pro-hypertensive angiotensin II—leading to the
so-called vasopeptidase inhibitors.103 However, in heart failure, the vaso-
peptidase inhibitor, omapatrilat, did not meet its primary endpoint of all-
cause death or hospitalization for HF vs. enalapril but was associated
with an increased incidence of angioedema (likely because both NEP and
ACE are involved in the degradation of bradykinin).104 In hypertensive
patients, the effect of omapatrilat on systolic blood pressure change and
use of adjunctive antihypertensive therapy exceeded that of an ACE in-
hibitor alone, but again at the expense of a higher incidence of angioe-
dema.105 Accordingly, omapatrilat did not make it to its clinical use.

Co-crystallizing the NEPi sacubitril with the angiotensin II type 1 re-
ceptor blocker, valsartan, in a one-to-one molar ratio as LCZ696, jointly
termed an angiotensin receptor-neprilysin inhibitor (ARNI), was more
successful than valsartan in reducing diastolic blood pressure in hyper-
tensive patients, with no reports of angioedema.106 The rationale was to
avoid the double hit on bradykinin breakdown and angioedema by block-
ing angiotensin II type 1 receptors rather than inhibiting ACE. In HFrEF
patients, sacubitril-valsartan reduced the risk of cardiovascular death and
HF hospitalization more effectively than the ACE inhibitor, enalapril
(PARADIGM-HF).107 PARAGON-HF compared sacubitril-valsartan vs.
valsartan alone in HFpEF, but the primary outcome of total hospitaliza-
tions and death from cardiovascular causes did not differ.108 A high het-
erogeneity within the HFpEF population and the definition of HFpEF
itself might be the underlying explanations of the failure of PARAGON-
HF.108,109 Indeed, sacubitril-valsartan was beneficial in a subgroup with
lower ejection fraction, a patient population more likely to represent
early HFrEF rather than HFpEF.108 The protective effect in women
remains unclear and warrants further investigation.108 The abovemen-
tioned studies have led LCZ696 to get FDA approval for HFrEF110 and
also very recently for HFpEF patients with stronger evidence for those
with below-normal LVEF.111 LCZ696 is recommended to replace ACE
inhibitor as first-line treatment for HFrEF ambulatory symptomatic
patients despite optimal therapy with ACE inhibitor, beta-blocker and a
mineralocorticoid receptor antagonist according to ESC/AHA guide-
lines.10,112 In addition, a meta-analysis showed a potent antihypertensive
effect of sacubitril-valsartan vs. valsartan alone or olmesartan in elderly
hypertensives.113

4. Drugs preventing cGMP
breakdown

In addition to enhancing cGMP production, PDE inhibitors can exert, in
principle, similar effects by inhibiting cGMP degradation. However, ther-
apeutic exploitation of PDE inhibition has not been as great as one might
have anticipated. A total of 11 superfamilies of PDE isoforms are present
at different subcellular localizations, thereby targeting different cGMP
(or cAMP) enzymatic sources and pools. With respect to cGMP, espe-
cially PDE1, 2, 3, 5, and 9 have been implicated in cardiovascular
disorders.114

4.1 PDE5
Sildenafil and tadalafil are used in erectile dysfunction, as first-line treat-
ments in Europe and USA,13,115 and in PH; among the initial treatments
that can be chosen since there are not available head-to-head compari-
sons between compounds according to ESC/CHEST guidelines.11,63

Sildenafil also improved peak oxygen uptake in PH due to HFrEF116 and
pulmonary pressure and right ventricular function in PH due to
HFpEF.117 It showed beneficial effects on glycometabolic control and P-
selectin in T2D.118 In HFrEF, sildenafil improves left ventricular (LV) dia-
stolic function and cardiac geometry, while in diabetic cardiomyopathy
benefits LV contraction.119,120 In another use-extension trial in HFpEF,
sildenafil showed no improvement in exercise capacity or clinical sta-
tus.121 However, in HFpEF, cGMP concentrations are down-regulated
due to low NO bioavailability,27 while sildenafil minimally increases
plasma cGMP;121 thus, PDE5 inhibition would not be expected to repre-
sent an effective mechanism-based approach whilst the cGMP dysfunc-
tion most likely comes from a source different from the targeted one.

4.2 PDE3
The PDE3 inhibitor milrinone is licenced in Europe and USA for acute
HF in its intravenous form as second-line treatment,10,54 while oral milri-
none was associated with increased all-cause and cardiovascular mortal-
ity in severe chronic heart failure.122 Another PDE3 inhibitor, cilostazol,
has antithrombotic properties and, as such, has been under investigation
for its antiplatelet effects in T2D (NCT02983214, NCT03248401,
NCT02933788). In T2D patients with symptomatic lower extremity ar-
tery disease, cilostazol reduced the incidence of acute ischaemic stroke/
transient ischaemic attack, acute myocardial infarction, and vascular
causes-associated death.123 Moreover, in T2D with carotid atheroscle-
rotic plaques, it diminished the carotid plaque progression.124 This bene-
fit can be explained mechanistically by a crosstalk between cGMP and
cAMP, where cAMP-specific PDE3 is inhibited by cGMP through direct
competition at the catalytic site. Thus, some effects of cGMP, e.g. in pla-
telets, are likely to be mediated at least in part via the cAMP-PKA axis.125

More recently, PDE3 inhibition was explored in HFpEF, focusing on a
new extended-release version of milrinone.126 This small pilot study
showed a safe profile and improved quality of life in HFpEF patients.126

The inotrope-dilator molecule levosimendan is used in 60 countries
outside the USA as second-line treatment for acute HF10,127 and, in addi-
tion to its calcium-sensitizing properties, also inhibits PDE3.128 A recent
study found that in HFpEF with PH, levosimendan improved the 6-min
walk test, although the exercise pulmonary capillary wedge pressure was
not significantly reduced.129 Important questions remain regarding the
population of patients for which this would be beneficial and how
mechanism-based patient stratification can be performed.
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4.3 PDE1
The PDE1 inhibitor, vinpocetine, improved clinical outcomes and
reduced lesion size in acute ischaemic stroke through inhibition of
NF-jB-dependent inflammation.130 This agent, however, is a weak PDE1
inhibitor and also blocks sodium channels and regulates NF-jB signal-
ling.131 The novel and potent PDE1 inhibitor, ITI-214, was recently
tested in patients with HFrEF (NCT03387215). This double-blind, place-
bo-controlled multi-dosage trial revealed that ITI-214 induces systemic
arterial vasodilation and increases cardiac output and mean LV
power.132

4.4 PDE9A
PDE9A is the most selective cGMP-hydrolysing PDE of the superfam-
ily.29 In 2015, a study performed in mice demonstrated a role in a model
of cardiac pressure-overload, with both global genetic deletion and
treatment with a selective PDE9 inhibitor reducing hypertrophy and
fibrosis while improving cardiac function.29 The study established a close
linkage of PDE9A with the regulation of cGMP generated by NP (rather
than nitric oxide) signalling.29 In a recent study in mice, the PDE9 inhibi-
tor CRD-733 improved HF characteristics; human trials in HF using
CRD-733 are now underway.133

4.5 PDE10A
PDE10A is a dual cAMP/cGMP PDE. In a recent study in mice, PDE10A
inhibition with TP-10 improved pathological cardiac remodelling.134

PDE10A inhibition has been clinically tested in schizophrenia and
Huntington’s disease, proving that it is a safe target for drug treatment
and a potential therapeutic option for diseases related to cardiac
remodelling.134

5. Network pharmacology

As indicated above, cGMPopathies can emerge from different dysfunc-
tions within cGMP formation, breakdown or signalling. Network medi-
cine analysis, however, shows that the specific cGMP source matters. PPI
networks of validated seed genes suggest that cGMP signalling is segre-
gated into modules. These modules are likely to define the therapeutic
(and diagnostic, see below) targets. Thus, NP analogues may not neces-
sarily compensate for a loss of GC-1/2 function, while vice versa, sGC
stimulators may not compensate for a loss of GC-A or GC-B-mediated
cGMP production; a phenomenon exemplified in experimental heart
failure.135

A complex disease mechanism is comprised of a protein network
rather than being definable by a single target protein. Within these net-
work modules, the specific source of cGMP matters, as they are not in-
terchangeable. Moreover, another important therapeutic option
emerges from that i.e. network pharmacology. A dysfunctional multi-
protein network is more likely to be remedied to a more physiological
state by several drugs targeting different proteins of the same module.
This should occur in a synergistic manner allowing reductions in the
dose of each individual drug whilst retaining overall efficacy but likely re-
ducing side effects.136 This mechanism-based network pharmacology ap-
proach is different and not to be confused with classical combination
therapy, where drugs are combined that have different mechanism of ac-
tion, none of which is causal for the disease, and effects are maximally ad-
ditive. A clinical application of this approach is a triple-drug combination
in patients with cystic fibrosis; these drugs target a causal mechanistic
dysfunction increasing the eligibility for up to 90% of cystic fibrosis

patients.137 Since cystic fibrosis has cardiovascular symptoms or pheno-
types,138 this is also a good example for both network pharmacology
and an organ-agnostic approach to disease. With respect to
cGMPopathies, one approach may be to enhance cGMP production and
at the same time inhibit cGMP degradation,139 but such combinations
have to be chosen in an evidence-based manner, strictly within one dis-
ease module (Figure 3). Preclinical models indicate that PDE5 is more in-
volved in regulating GC-1/2 signalling (e.g. in erectile dysfunction),
whereas PDE9 and PDE2 are biased towards NP signalling (e.g. in heart
failure).29,140 It remains to be seen whether some of the negative clinical
studies (e.g. cinaciguat and sildenafil in heart failure) can be explained by
the use of a suboptimal cGMP-modulating therapy.77,121 However, such
combinations may also be contraindicated in one setting and indicated in
another. A possible example of this is sildenafil and NO donors, which
are contraindicated as they lead to severe hypotension.141 A similar ex-
cessive decrease in systemic blood pressure was observed with riociguat
and sildenafil in patients with PH (PATENT PLUS trial).142 Conversely, a
small (six patients), pilot clinical trial investigating a combination of the
tried-and-tested organic nitrate, ISMN, and the PDE5 inhibitor, sildenafil,
appeared to achieve better regulation of the blood pressure in patients
afflicted with ‘resistant’ hypertension.143 Another proof-of-concept ex-
ample came from the phase IIa trial of neprilysin inhibition in PAH
patients already stable on PDE5i; this mechanistic combination seems to
have an additional benefit in PAH.144

6. How to diagnose cGMPopathies
and stratify patients?

The missing link between cardiovascular phenotypes and cGMP-
modulating treatments are mechanism-based biomarkers. Such tools
would identify the patients that have a cGMPopathy and also the specific
part of the pathway that should be targeted. Therefore, who would ben-
efit from a cGMP therapy and which cGMP-targeting drug or drugs com-
bination to choose remain unknown. Here, we review the current
cGMP-related biomarkers and their applications. In principle, three
approaches exist to assess endogenous cGMP signalling in patients: (i)
cGMP itself, (ii) cGMP-PKG-dependent protein phosphorylation (e.g. of
the vasodilator-stimulated phosphoprotein, VASP); or (iii) levels of en-
dogenous GC stimulators (NO- or NP-related). Of clinical relevance, so
far, are only circulating NPs and phospho-VASP (Figure 4).

6.1 cGMP
cGMP has been used to monitor drug-induced increase as proof of tar-
get engagement e.g. with ARNis, designer NPs, and PDE-5 inhibitors.145–

147 However, variation in cGMP concentrations between individuals has
hindered its use as a biomarker for primary diagnosis.148

6.2 P-VASP
P-VASP was introduced two decades ago as a new biomarker able to
monitor the vascular NO/cGMP/PKG signalling.149 In principle, cell-
based assays could be suited to detect defective endogenous cGMP sig-
nalling, e.g. via lower than normal phosphorylation of VASP or other
PKG target proteins. However, both the phosphorylation and dephos-
phorylation kinetics150 would require extremely reproducible proce-
dures with respect to blood collection, work-up and analysis. So far, this
has prevented the establishment of basal P-VASP levels as a biomarker.
In contrast, P-VASP assays are clinically established to assess drug
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responses, e.g. to predict responders and non-responders to antiplatelet
drugs to reduce major cardiovascular and cerebral events.151,152 P-VASP
responses to sGC activators have been used to detect a higher apo-GC-
1/2/Fe(II)GC-1/2 ratio in CAD patients,37 which could be used for
mechanism-based therapy in patients with elevated apo-GC-1/2 levels.

6.3 NPs and soluble neprilysin
Each of the NPs has been proposed as a predictive biomarker for cardio-
vascular diseases or to guide cardiovascular therapy. The best character-
ized is BNP and its N-terminal fragment post-processing NT-proBNP.
The lack of NT-proBNP degradation by NEP and analogous enzymes
makes it superior to BNP for monitoring patients. Plasma levels of BNP,
NT-proBNP, and mid-regional pro-atrial natriuretic peptide (MR-
proANP) have been used to aid the heart failure diagnosis as ‘rule-out’
tests, excluding significant cardiac dysfunction.10 Of note, the 2016 ESC
Guidelines on the Management of Acute and Chronic Heart Failure recom-
mend the use of BNP and NT-proBNP for the diagnosis of HF.10

Furthermore, BNP levels are associated with poor prognosis in
stroke,153 NT-proBNP levels in hypertrophic cardiomyopathy,154 while
both peptides predict cardiovascular events in the general population,155

and poor outcome in heart failure.156,157 However, NPs do have some
limitations as diagnostic markers since there are many confounding fac-
tors.10 Indeed, age, sex, renal function but also cardiovascular diseases,
including volume expansion and possibly increased wall stress, ischaemia,
and hypertension, all affect circulating NP concentrations.10,158

N-Terminal pro C-Type Natriuretic Peptide predicts HFpEF out-
come159 and is negatively associated with myocardial ageing;160 N-termi-
nal pro ANP has been proposed as a prognostic biomarker in stable
angina;161 MR-proANP, in heart failure.162 Finally, high levels of circulat-
ing soluble NEP (sNEP) predict outcome in HFrEF,163 but not HFpEF,164

diabetes and other cardiovascular diseases.165 Application of the above
correlations for NP-guided therapy is less developed and its value uncer-
tain: HF-related hospitalization may be reduced166 and patients with car-
diovascular risk factors but not heart failure may benefit.167

6.4 Nitrogen oxides (NOx)
Many pathological conditions have been associated with altered levels of
nitric oxide through measurement of more stable metabolites, nitrite
and nitrate (collectively abbreviated NOx) or nitrotyrosine. Rapidly
measured plasma nitrite rather than nitrate reflects endothelial nitric

Figure 3 cGMPopathies and evidence-based therapies. Potential combinatorial cGMP therapies in cardiovascular applications. Blue dashed lines show
drugs in clinical trials, whereas solid blue lines approved drugs. Red lines show limitations of usage in these indications. ARNI, angiotensin receptor-neprilysin
inhibitor; GC-A/Bs, GC-A/B stimulators; NOd, NO donors; HNOd, nitroxyl donors; NOSr, NOS recoupling drugs; PDEi, PDE inhibitors; sGCs/a, sGC stim-
ulators/activators. Created with BioRender.com.
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oxide synthase activity.168 Nitrotyrosine, either scavenging of nitric oxide
through ROS or myeloperoxidase activity, is associated with increased
inflammation.169 Lower levels of NOx are associated with a more severe
outcome in stroke and with increased mortality in idiopathic PAH,170,171

while higher levels of NOx and nitrotyrosine correlate with increasing
severity of chronic HF.169 Finally, higher levels of NOx correlate with
cardiovascular mortality.172

6.5 Asymmetric dimethylarginine (ADMA)
Endogenous ADMA and NG-monomethyl-L-arginine (L-NMMA) attenu-
ate L-arginine-dependent NO production by inhibiting and uncoupling

NOS.173 Elevated levels of ADMA impair endothelial function and thus
promote atherosclerosis.174 ADMA and L-NMMA are possibly strong
and independent risk factors for cardiovascular disorders, such as hyper-
tension, CAD, atherosclerosis, PH, atrial fibrillation, stroke, and periph-
eral artery disease.173,175 However, ADMA-guided interventional studies
are missing.

7. Summary and outlook

Several cGMP-modulating drugs have entered the clinical arena with
indications across a wide spectrum of cardiovascular disease states.

Figure 4 cGMP diagnostic toolbox. cGMP-related biomarkers currently used in the clinic for cardiovascular diseases. NPs and their precursors, sNEP and
P-VASP have several diagnostic, prognostic or predicting applications in cardiovascular disorders.
CV, cardiovascular.
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Based on genetic evidence,18,19 correcting dysfunctional cGMP signalling,
i.e. cGMPopathies, has the potential to become one of the few
mechanism-based, causal interventions in cardiovascular medicine.
Whilst all necessary drugs seem to be available, the key challenge will be
to identify those patients with the right indications that present not only
a suitable phenotype but, importantly, also exhibit cGMP dysfunction, i.e.
the mechanotype. Some of the recent failures in HFpEF drug develop-
ment may have been preventable by mechanism-based patient stratifica-
tion. PKG phosphoprotein panels in combination with markers, such as
ADMA and nitrotyrosine, may be components of such a cGMPopathy di-
agnostic algorithm. Once this milestone is achieved, diagnostic-enabled
cGMP precision therapy will be possible, most likely by network pharma-
cology i.e. using multiple cGMP-modulating drugs with different targets
in a synergistic manner and in doses that are lower than single drug
approaches and, consequently, lower side effects. Based on the compart-
mentalization of cGMP and unique functions, there is a rationale for fur-
ther drug discovery on both sGC and pGC. Moving from reductionistic
approaches of disease development to molecular network modules is vi-
tal to understand the underlying mechanism of a disease state and the
connection with its comorbidities, which is one of the reasons preclinical
research fails to be translated in the clinic.176,177 Clearly, we are in an era
of increasing clinical relevance and high precision, mechanism-based and
curative applications of cGMP-modulating drugs.
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Sjögren M, Vinay DG, Alexander M, Tabara Y, Shaw-Hawkins S, Whincup PH, Liu
Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen K-DH, Lehtimäki T,
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Guney E, Egea J, López MG, Baumbach J, Schmidt HHHW. From single drug targets
to synergistic network pharmacology in ischemic stroke. Proc Natl Acad Sci USA
2019;116:7129–7136.

137. Ridley K, Condren M. Elexacaftor-tezacaftor-ivacaftor: the first triple-combination
cystic fibrosis transmembrane conductance regulator modulating therapy. J Pediatr
Pharmacol Ther 2020;25:192–197.

138. Labombarda F, Saloux E, Brouard J, Bergot E, Milliez P. Heart involvement in cystic
fibrosis: a specific cystic fibrosis-related myocardial changes? Respir Med 2016;118:
31–38.

139. Lukowski R, Krieg T, Rybalkin SD, Beavo J, Hofmann F. Turning on cGMP-
dependent pathways to treat cardiac dysfunctions: boom, bust, and beyond. Trends
Pharmacol Sci 2014;35:404–413.

140. Castro LRV, Verde I, Cooper DMF, Fischmeister R. Cyclic guanosine monophos-
phate compartmentation in rat cardiac myocytes. Circulation 2006;113:2221–2228.

141. Webb DJ, Muirhead GJ, Wulff M, Sutton JA, Levi R, Dinsmore WW. Sildenafil cit-
rate potentiates the hypotensive effects of nitric oxide donor drugs in male patients
with stable angina. J Am Coll Cardiol 2000;36:25–31.
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Lehtimäki T, Loos RJF, Melander O, Metspalu A, März W, Palmer CN, Perola M,
Quertermous T, Rader DJ, Ridker PM, Ripatti S, Roberts R, Salomaa V, Sanghera
DK, Schwartz SM, Seedorf U, Stewart AF, Stott DJ, Thiery J, Zalloua PA, O’Donnell
CJ, Reilly MP, Assimes TL, Thompson JR, Erdmann J, Clarke R, Watkins H,
Kathiresan S, McPherson R, Deloukas P, Schunkert H, Samani NJ, Farrall M, the
CARDIoGRAMplusC4D Consortium. A comprehensive 1000 Genomes–based
genome-wide association meta-analysis of coronary artery disease. Nat Genet 2015;
47:1121–1130.

182. Chen Y, Zhu L, Fang Z, Jin Y, Shen C, Yao Y, Zhou C. Soluble guanylate cyclase
contribute genetic susceptibility to essential hypertension in the Han Chinese popu-
lation. Ann Transl Med 2019;7:620.

183. Wilkins MR, Aldashev AA, Wharton J, Rhodes CJ, Vandrovcova J, Kasperaviciute D,
Bhosle SG, Mueller M, Geschka S, Rison S, Kojonazarov B, Morrell NW, Neidhardt
I, Surmeli NB, Surmeli NB, Aitman TJ, Stasch J-P, Behrends S, Marletta MA. a1-
A680T variant in GUCY1A3 as a candidate conferring protection from pulmonary
hypertension among Kyrgyz highlanders. Circ Cardiovasc Genet 2014;7:920–929.

A. Petraina et al.2102


	tblfn1



