
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12489  | https://doi.org/10.1038/s41598-022-14443-z

www.nature.com/scientificreports

Large‑scale application of free 
energy perturbation calculations 
for antibody design
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Daniel M. Faissol3*

Alchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the 
free energy difference between distinct chemical systems. Here we report our implementation of 
automated large-scale FEP calculations, using the Amber software package, to facilitate antibody 
design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to 
predict the effect of mutations on both the binding affinity and the structural stability. Importantly, 
we incorporate multiple strategies to faithfully estimate the statistical uncertainties in the FEP results. 
As a case study, we apply our protocols to systematically evaluate variants of the m396 antibody 
for their conformational stability and their binding affinity to the spike proteins of SARS-CoV-1 and 
SARS-CoV-2. By properly adjusting relevant parameters, the particle collapse problems in the FEP 
simulations are avoided. Furthermore, large statistical errors in a small fraction of the FEP calculations 
are effectively reduced by extending the sampling, such that acceptable statistical uncertainties 
are achieved for the vast majority of the cases with a modest total computational cost. Finally, 
our predicted conformational stability for the m396 variants is qualitatively consistent with the 
experimentally measured melting temperatures. Our work thus demonstrates the applicability of FEP 
in computational antibody design.

Alchemical free energy perturbation (FEP) simulation1 is a rigorous physics-based method to calculate the free 
energy difference between distinct chemical systems. Due to recent technological advancement, FEP is now 
capable of accurately predicting relative binding affinities2–4 and has found increasingly more applications in 
drug development.

Antibodies are proteins produced by the immune system to bind specific antigenic proteins and thereby 
neutralize the antigen. Therapeutically, antibodies can be designed and manufactured as effective medicines 
against the infection. Recently, FEP has been successfully applied to predict the relative binding affinity between 
antibody and antigen5,6, thus potentially facilitating antibody design7–9 and optimization.

In our ongoing battle against the current COVID19 pandemic10, we aim to develop antibodies to neutralize 
SARS-CoV-2 and other coronaviruses. Toward this goal, we introduced FEP simulations as one of the compu-
tational tools for our multidisciplinary team. Specifically, the basic task of FEP is to predict the change in the 
binding affinity due to proposed mutations on the antibody. In our workflow, batches of mutations are routinely 
proposed for evaluation, and quick turnarounds are necessary for further decision making. Such requirements 
necessitate automated processing of many FEP calculations. In this situation, it is not feasible to manually exam-
ine all the simulations individually and identify potential problems therein. Therefore, a faithful and automated 
estimation of the uncertainties in such calculations is especially important, as it could provide the level of confi-
dence for the FEP results when data from many different sources are integrated to inform the decision making. 
With these requirements in mind, we implemented automated protocols for performing FEP calculations with 
Hamiltonian replica exchange11 using the Amber software package12, along with an uncertainty estimation that 
incorporates a number of factors in the analysis of the simulations.

Whereas the binding affinity to antigen is a critical component for the efficacy of an antibody, the structural 
stability is important for the developability13, such as manufacture, storage, and distribution of the antibody. 
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Therefore, computational stability evaluation14 is desired in our antibody design. Recent studies demonstrated 
that FEP15–18 and other computational approaches19–24 could provide reasonable predictions for the relative sta-
bility of protein mutants. In this project, we also incorporated stability prediction by FEP calculations, such that 
our FEP protocols evaluate the effect of proposed mutation on both the binding affinity and the conformational 
stability of the antibody.

In this report, we take the m396 antibody25 as a case study to demonstrate our FEP protocols. m396 is known 
to neutralize the coronavirus SARS-CoV-1 by binding to the receptor binding domain (RBD) of the viral spike 
protein25, but does not bind or neutralize SARS-CoV-226. The RBD is a self-contained and stable domain, and 
isolated RBDs could independently bind m396 without other parts of the spike protein25. One of our objectives is 
to modify relevant residues of m396 such that the mutated antibody could bind the SARS-CoV-2 RBD. The focus 
of this article is only on the implementation of FEP calculations, and our much broader efforts in the antibody 
design will be reported in due course.

Methods
In this study, the basic task of an FEP calculation is to evaluate two effects due to the mutation of a single residue 
on the antibody from type a to type b , as schematized in Fig. 1. The first effect, quantified by

describes the shift in equilibrium between the bound and unbound states. Here �GComplex is the difference in 
free energy between the bound systems with the concerned residue in type a and type b , respectively. Similarly, 
�GAntibody is the free energy difference between the unbound antibody systems of a and b . The difference between 
the two �G s above, ��GBinding , directly determines the change in the binding affinity due to the mutation. The 
second effect, quantified by

describes the shift in equilibrium between the native (folded) and denatured (unfolded) conformations of the 
antibody. The structure of denatured antibody is unknown and is thus approximated by a highly simplified model 
of 7-residue peptide18 here.

Because our FEP simulations are under constant volume, the results here correspond to the differences in the 
Helmholtz free energy ( A ). In contrast, the thermodynamics of constant-pressure systems should be described 
by the Gibbs free energy ( G ), with G = A+ PV  , where P and V  are respectively the pressure and the volume. 
However, given that the contribution of the PV  term to the ��G is typically small for biochemical systems, we 
consider ��A ≈ ��G and use A and G interchangeably in this article.

In this section, we will first review the fundamental theories involved in FEP calculations. We will then 
describe our specific FEP simulations to evaluate the m396 antibody variants for their conformational stability 
and their binding to the SARS-CoV-1 and SARS-CoV-2 RBDs. We will also describe our experiments to measure 
the thermal stability of the antibodies.
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Figure 1.   Schematics for the FEP calculations in this study. The free energy differences �G
Complex , �G

Antibody , 
and �G

Peptide between systems with residues a and b are obtained from the corresponding FEP simulations, 
and the results further determine (Eqs. (1) and (2)) the effect of mutation on the binding ( ��G

Binding ) and the 
stability ( ��G

Stability ) of the antibody. The illustrated protein structures are from the m396 antibody25, rendered 
by the VMD program43 (version 1.9.3).
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Free energy difference between two systems.  Consider two systems i and j , both consisting of an 
identical set of atoms but with different energy functions Ei

(

−→
X
)

 and Ej
(

−→
X
)

 , respectively, where −→X  represents 
the microstate of the system, i.e., the positions and velocities of all the atoms. Under constant temperature ( T ) 
and volume, the difference in the Helmholtz free energy between the two systems is given by:

where kB is the Boltzmann constant.
The free energy difference above can be rewritten in a more practical and useful form:

in which 〈〉i represents the expected value in the equilibrium ensemble of system i . This expected value can be 
estimated as the average of exp

(
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 , with −→X  taken from an equilib-
rium sampling of system i using, e.g., molecular dynamics (MD) simulations. This method27 is termed exponen-
tial averaging (EXP). Alternatively, if one performs equilibrium sampling for system j instead, the free energy 
can also be obtained in a similar way:

with the expected value above estimated as the average of exp
(

−
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)

 , where �Eji = Ei
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.
If equilibrium sampling is available for both systems i and j , the Bennett acceptance ratio (BAR) method28 

can also provide the free energy difference �A ≡ Aj − Ai , with better statistical accuracy. The BAR method is 
based on the following relation:

Again, the expected values above can be estimated as the corresponding averages, with �Eij
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 and �Eji
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−→
X
)

 
obtained from the sampled microstates in systems i  and j , respectively. Equation (6) thus contains only one 
unknown, �A , which can be numerically solved. If the sample sizes for systems i and j are different, Eq. (6) could 
be slightly modified into a more general form that minimizes the statistical error28. In this study, since the two 
involved systems always have identical sample size, Eq. (6) is the optimal form to calculate the �A.

Sampling with intermediate windows.  Although the free energy methods in “Free energy difference 
between two systems” are correct and rigorous, they are only practically useful if the two systems are sufficiently 
similar such that their equilibrium distributions of the microstates −→X  are largely overlapped. If the two systems 
are substantially different, direct applications of Eqs. (4)–(6) will be practically difficult to achieve reliable results. 
In such cases, one could introduce intermediate systems (each conventionally called a “window”), calculate the 
free energy difference between adjacent systems using the methods in “Free energy difference between two sys-
tems”, and then add these increments to obtain the free energy difference between the two end systems.

Suppose we aim to calculate the free energy difference between two dissimilar systems, a and b , with the same 
set of atoms. Typically, intermediate systems can be constructed by introducing a parameter � , in the range of 
[0, 1] , into the energy function E

(
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)

 , such that E
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= Eb

(

−→
X
)

 . Now 
the system free energy A(�) is also a function of � , and the target free energy difference becomes 
Ab − Aa = A(� = 1)− A(� = 0) . Intermediate systems between a and b can thus be defined by a series of � 
values: 0 = �1 < �2 < · · · < �N = 1 , such that systems i and i + 1 are sufficiently similar. With all the incre-
mental changes A(�i+1)− A(�i) calculated, their sum then corresponds to Ab − Aa.

As another alternative to calculate the free energy difference, thermodynamic integration (TI) is based on 
the following relation:

in which 〈〉� represents the expected value in the system with the energy function E
(

−→
X ; �

)

 . Therefore,

(3)Aj − Ai = −kBT ln

∫

exp
[

−Ej

(

−→
X
)

/kBT
]

d
−→
X

∫

exp
[

−Ei

(

−→
X
)

/kBT
]

d
−→
X

,

(4)Aj − Ai = −kBT ln

�

exp



−
Ej

�

−→
X
�

− Ei

�

−→
X
�

kBT





�

i

,

(5)Aj − Ai = kBT ln

�

exp



−
Ei

�

−→
X
�

− Ej

�

−→
X
�

kBT





�

j

,

(6)

〈

1

1+ exp

[

�Eij

(

−→
X
)

−�A

kBT

]

〉

i

=

〈

1

1+ exp

[

�Eji

(

−→
X
)

+�A

kBT

]

〉

j

.

(7)d

d�
A(�) =

〈∂E
(

−→
X ; �

)

∂�

〉

�

,



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:12489  | https://doi.org/10.1038/s41598-022-14443-z

www.nature.com/scientificreports/

The simulation setup for TI is identical to that for FEP, both entailing equilibrium sampling in systems E
(

−→
X ; �i

)

 
for i=1,2,…,N  . To apply TI, we estimate fi ≡ �

∂E
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 by averaging the 
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)

∂�
 value over the sampled 

microstates for each system i . Then a numerical integration of Eq. (8) using the trapezoidal rule will provide the 
free energy difference:

Energy function in alchemical system.  To obtain the free energy difference between two systems ( a and 
b ) that do not share an identical atom set, an “alchemical” system can be constructed. All the atoms in a and b are 
present in the alchemical system. In Amber12, the microstate of an alchemical system is described as 
−→
X =

(

−→
X 0,

−→
X

SC

a ,
−→
X

SC

b

)

 . Here −→X 0 represents the common atoms in both systems. In addition, two separate sets 

of coordinates, −→X
SC

a  and −→X
SC

b  , represent the atoms unique to systems a and b , respectively, which are called “soft 
core” (SC) atoms.

The system energy is the sum of kinetic energy and potential energy. Kinetic energy is independent of � and 
thus does not contribute to the energy difference �E . Therefore, we only need to consider the potential energy 
V  in the calculations. In Amber12, the potential energy for the alchemical system has the following form:

In the potential Va above, the atoms in −→X
SC

b  have no nonbond interaction with −→X 0 or −→X
SC

a  and are thus decoupled 
from the rest of the system. Similarly, in Vb , the −→X

SC

a  atoms are decoupled from the rest of the system. Further-
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)

 conform to the standard 

potentials in the MD force field for systems a and b , respectively, except that the nonbond interactions involving 
the SC atoms are modified as described below, to avoid the “end-point catastrophes”.

Specifically, between an atom in −→X 0 and another atom in −→X
SC

a  , the van der Waals (VDW) term in Va has the 
modified form:

where rij is the distance between the two atoms and α is a user-defined parameter. When α = 0 or � = 0 , uVDWa  
recovers the standard Lennard–Jones potential with the parameters σ and ε . Similarly, between an atom in −→X 0 
and another atom in −→X

SC

b  , the VDW term in Vb is:

In addition, the electrostatic terms involving the SC atoms are modified as:

where qi and qj are the charges, and β is a user-defined parameter. When β = 0 , uELa  and uELb  recover the standard 
Coulomb potential.

With the designs above, when � is 0 or 1, the V
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)

 in Eq. (10) becomes the potential energy of system a 
or b , respectively. The systems with the intermediate � values thus establish an alchemical path between a and b
.

Alchemical system for mutation of protein residues.  Our task here is to evaluate the mutation of a 
single residue in the protein from type a to type b , excluding proline (Pro) and any charge-reversing mutation 
(i.e., between a positively and a negatively charged types). The SC atoms (i.e., in −→X
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consist of the side chain atoms of the residue other than the Cβ, except when a or b is a Gly, in which case the SC 
includes the hydrogen atoms bonded to the Cα as well as the side chain of the non-Gly residue.

For charge-changing mutations, i.e., between a charged type and a neutral one, a co-alchemical ion is intro-
duced to render the system electrically neutral for both end states. Specifically, the co-alchemical ion is a Na+ if 
the charged residue is negative, or a Cl− if the residue is positively charged. In the end state corresponding to the 
neutral protein residue, the co-alchemical ion is assigned a zero charge, thus ensuring that the systems at both 
ends have identical total charge. The co-alchemical ion was initially placed in the bulk solution. In the simula-
tions, we applied positional restraints (with a spring constant of 1 kcal/mol/Å2) on the co-alchemical ion as well 
as a Cα atom at the center of the protein, to ensure that the co-alchemical ion is always in the bulk region and 
has no close encounter with the protein.

Preparation and equilibration of wildtype m396 systems.  In this study, FEP simulations were per-
formed on four systems: (1) m396 bound to SARS-CoV-1 RBD; (2) m396 bound to SARS-CoV-2 RBD; (3) m396 
alone; (4) 7-residue peptides taken from m396 or its variants, as models for denatured antibody. We describe the 
setup for each system (Fig. 2) below.

The protein complex of an m396 antigen-binding fragment (Fab) bound to the SARS-CoV-1 RBD was taken 
from the crystal structure25 2DD8. The m396 Fab consists of a heavy chain and a light chain, folded into a variable 
domain and a constant domain. The RBD consists of residues 321–512 in the spike protein of SARS-CoV-1. The 
RBD and the Fab have 4 and 5 disulfide bonds, respectively. The glycan molecule attached to Asn330 of the RBD 
in the crystal structure25 was not included in our model. Standard protonation states at pH 7 were assigned to all 
the residues. In particular, all His residues were neutral, with the proton on the ε nitrogen (i.e., the “HIE” type 
in Amber12). The protein was solvated by 40,814 water molecules. In addition, 109 Na+ ions and 113 Cl− ions 
were included to make the system electrically neutral and to establish a bulk NaCl solution of ~ 150 mM. The 
simulation system (Fig. 2a) consists of a total of 131,986 atoms. Periodic boundary conditions with a truncated 
octahedron unit cell were imposed in all the simulations.

The structure of the SARS-CoV-2 RBD was taken from the crystal structure29 7BZ5, which has the best resolu-
tion among all the currently available structures. We superimposed this RBD against the SARS-CoV-1 RBD25 in 
2DD8 to obtain a complex structure of the SARS-CoV-2 RBD and the m396 Fab. Specifically, the superimposition 
was based on the alignment of the Cα atoms in residues 336–456 and 491–516 of the SARS-CoV-2 RBD to the Cα 
atoms in residues 323–443 and 477–502 of the SARS-CoV-1 RBD. One missing residue in the crystal structure29, 
His519 of the RBD, was added back to the model based on another crystal structure30, 6M0J, of the complete 
SARS-CoV-2 RBD. Our simulation system (Fig. 2b) consists of residues 334–528 of the SARS-CoV-2 RBD, the 
m396 Fab, 41,248 water molecules, 110 Na+ ions and 115 Cl− ions, with a total of 133,320 atoms. The structure 
(in pdb file) of this system after equilibration is provided in Supplementary Information.

The unbound antibody system was also built from the 2DD8 crystal structure25. The simulation system 
(Fig. 2c) consists of the m396 Fab, 22,777 water molecules, 60 Na+ ions and 62 Cl− ions, with a total of 74,789 
atoms. Crystal structures revealed that the conformations of the m396 variable domain are quite similar in the 
RBD-bound and the unbound states25. In addition, all the systems were subject to MD equilibration to allow 
the relaxation of the protein structure.

Each peptide system consists of the residue to be mutated as well as its 3 preceding and 3 succeeding resi-
dues in the antibody sequence, thus a total of 7 residues. The N- and C-termini of the peptide are capped by the 

Figure 2.   Four simulation systems in this study. (a) Complex of the m396 Fab and the SARS-CoV-1 RBD. (b) 
Complex of the m396 Fab and the SARS-CoV-2 RBD. (c) m396 Fab. (d) A 7-residue peptide representing the 
local structure of denatured antibody. Images were rendered by VMD43 (version 1.9.3).
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[–C(=O)–CH3] and the [–NH–CH3] groups, respectively. Similar to other systems, the peptide was placed in a 
bulk solution of ~ 150 mM NaCl. Figure 2d shows one example of the peptide simulation system.

For each system, we first fixed all the protein atoms and performed 500 steps of conjugate-gradient minimiza-
tion for the water and ions, followed by an MD equilibration of 2 ns. We then relaxed the protein and performed 
a minimization of 500 steps and an equilibration of 20 ns for the entire system. All the simulations in this stage 
were under a constant pressure of 1 atm. We then calculated the average of the system volume in the last 10 ns of 
the simulation trajectory and fixed the system volume at this average. All the subsequent FEP simulations were 
under constant volume. The length of the truncated octahedron unit cell (see Fig. 2) is ~ 120 Å for the RBD/Fab 
complex systems and 99.1 Å for the antibody system.

FEP simulations for m396.  In our protocols, the number of � windows is N=24 for charge-changing 
mutations and N=12 for others. The � values for the windows are evenly spaced between 0 and 1, including the 
two ends. For a mutation from the wildtype a to a new type b , the input for the calculation is the equilibrated 
wildtype system described in “Preparation and equilibration of wildtype m396 systems”. For charge-changing 
mutations, we also introduce a co-alchemical ion (see “Alchemical system for mutation of protein residues”) in 
the simulation system as follows. Depending on whether the wildtype a is charged or not, the co-alchemical ion 
is placed by taking an existing ion or by replacing a water molecule. For each ion or water molecule in the system, 
we calculate its shortest distance to any protein atom or their periodic images, and the ion/water with the longest 
distance is converted into the co-alchemical ion.

Our protocols consist of a forward calculation and a backward calculation. In the forward calculation, �1 = 0 
corresponds to the residue type a and �N = 1 corresponds to the type b . We first carried out a “mutating” simula-
tion, which starts at �1 and equilibrates the system at each �i for 0.5 ns before changing � to the next value �i+1 . In 
this way, the residue type was gradually transformed from type a to type b in the mutating simulation. Snapshots 
in this simulation were used to initiate the sampling simulations below.

In the production runs, all the � windows were sampled simultaneously, each by an individual simulation 
called a replica. Furthermore, Hamiltonian replica exchange11 was employed to allow neighboring windows to 
exchange their replicas. The criterion for swapping windows i and i + 1 is based on the change in the total energy 
due to the exchange: �E =

[

E
(

−→
X i+1; �i

)

+ E
(

−→
X i; �i+1

)]

−

[

E
(

−→
X i; �i

)

+ E
(

−→
X i+1; �i+1

)]

 , with the swap-
ping probability given by11 min

[

exp(−�E/kBT), 1
]

 . The simulations were run for 5 ns per window unless noted 
otherwise, with the exchanges attempted every 0.4 ps. The last 4 ns of the simulation trajectories were used for 
free energy calculations.

As described earlier, the mutating simulation ended with the residue in type b . We further performed an 
equilibration of this mutant system for 10 ns. Starting from the equilibrated mutant, we carried out a backward 
calculation with the residue mutated from b to a . Similar to the forward calculation above, the backward calcula-
tion involves a mutating simulation and subsequent sampling simulations with Hamiltonian replica exchange. 
The comparison of the forward and backward calculations serves as an important indicator for the convergence 
of the sampling, as will be elaborated in “Analysis and error estimation”.

Common simulation protocols.  We adopted the Amber ff14SB force field31 for the proteins and the 
TIP3P model32 for the water molecules. All simulations were run using a time step of 2  fs. All bond lengths 
involving hydrogen atoms were constrained using the SHAKE algorithm. Nonbond interactions were calculated 
with a cutoff distance of 8 Å. Full electrostatics was calculated using the Particle Mesh Ewald (PME) method33. A 
constant temperature of 300 K was maintained in all the simulations using the Langevin dynamics method with 
a collision frequency of 5 ps−1. We used the Amber software package12 to run the simulations on a computer clus-
ter of IBM Power9 nodes equipped with NVIDIA TeslaV100 (Volta) GPUs. For technical reasons, we adopted an 
earlier version12 (Amber18) of the simulation engine (pmemd.cuda) in this study, which worked with better sta-
bility than Amber20 on our particular hardware and encountered fewer random crashes for the FEP simulations.

Analysis and error estimation.  At every 0.4  ps, when exchanges of the replicas were attempted, the 
Amber program12 output the potential energies V

(

−→
X i; �i

)

 and V
(

−→
X i±1; �i

)

 for each window. These output 
data allowed us to calculate the �Eij and �Eji values in Eqs. (4)–(6). Among all the mentioned techniques (“Free 
energy difference between two systems” and “Sampling with intermediate windows”), we adopted the BAR 
method (Eq. (6)) to calculate the free energy differences between adjacent windows. We then added these incre-
mental differences to obtain the free energy difference �Aab ≡ Ab − Aa between the two end states.

However, it is not straightforward to directly derive the statistical errors in the BAR results. Therefore, we 
combined a few strategies to estimate the uncertainties. One strategy is to obtain the uncertainty from some of 
the alternative methods (see “Free energy difference between two systems” and “Sampling with intermediate 
windows”) that are easier for estimating the statistical errors therein. In addition, given that all those methods 
would give the same ideal �Aab value if the sampling were infinite, the differences between their results could 
reflect to a lesser extent the deviation from the ideal �Aab due to the finite sampling. Furthermore, a more 
important strategy is to estimate the uncertainty by comparing different simulations. The specifics of our error 
estimation are described below.

We first estimated the statistical errors in the EXP method (Eq. (4)), where the free energy difference �Aij is 
obtained from the average of exp

(

−
�Eij
kBT

)

 in window i . The variance of this average can be estimated by block 
averaging34 on the exp

(

−
�Eij
kBT

)

 trajectory, and the variance in �Aij can be further obtained. The sum of all the 
variances for �Aij between adjacent windows was then taken as the variance of the end-to-end �Aab , and the 
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square root of this variance was the standard error for the calculated �Aab . Furthermore, if the deviation between 
the �Aab values calculated by the EXP (Eq. (4)) and the BAR (Eq. (6)) methods exceeds the standard error above, 
we would take this deviation as the new estimate for the standard error.

As the �Aij may also be calculated by the EXP method based on the sampling of window j (Eq. (5)), we fol-
lowed the steps above to obtain another standard error. We then took the larger of the two standard errors as the 
statistical error estimated from the EXP method.

In addition, �Aab can be calculated by the TI method (Eqs. (8) and (9)), which offers a straightforward 
uncertainty estimation. In particular, the variance of each fi may be estimated by block averaging34, and the 
statistical error of �Aab can be further obtained. We took the larger of the error estimates from the EXP and the 
TI methods as the standard error for the FEP sampling.

For the forward and backward FEP calculations, following the procedure above, we obtained the �Aforward
ab  

and �Abackward
ab  along with their variances var

(

�Aforward
ab

)

 and var
(

�Abackward
ab

)

 , respectively. We always took the 
average 

(

�Aforward
ab +�Abackward

ab

)

/2 as our final result for �Aab . Accordingly, the standard error for the �Aab 
would be 

√

var
(

�Aforward
ab

)

+ var
(

�Abackward
ab

)

/2 . However, this estimated error will be overwritten by 
∣

∣�Aforward
ab −�Abackward

ab

∣

∣/2 if the latter is larger. In such cases, the large deviation between the results from the 
forward and backward calculations will determine our statistical uncertainty.

Protein thermal shift experiments.  We performed experiments to measure the thermal stability for 
a group of selected m396 variants, which can be used to validate some of our FEP predictions. Humanized 
recombinant antibodies were purchased from Genscript. To determine melting temperatures, each antibody was 
subjected to protein thermal shift assay according to the manufacturer (ThermoFisher). Briefly, each antibody 
was diluted to 0.1 mg/ml in PTS buffer plus 1X PTS dye. Thermal shift was performed on an ABI 7500 Fast Real-
Time PCR machine (ThermoFisher) according to the manufacturer recommendation of increasing the tempera-
ture from 25 to 99 °C at 1 °C per minute. Thermal profiles were analyzed using Protein Thermal Shift Software 
(ThermoFisher, version 1.4, https://​www.​therm​ofish​er.​com/​order/​catal​og/​produ​ct/​44660​38) using multi-peak 
analysis.

Results
As described in “Methods”, we implemented automated protocols to evaluate antibody mutations using FEP and 
Hamiltonian replica exchange11 along with a systematic uncertainty estimation. In this section, we describe the 
application of the protocols in our effort of optimizing the m396 antibody. In our definition, a positive ��GBinding 
(see Eq. (1)) means a weaker binding affinity compared to the wildtype, and a positive ��GStability (see Eq. (2)) 
means a poorer conformational stability for the antibody mutant.

Particle collapse problem.  Some of our preliminary calculations involving the Asp or Glu residues exhib-
ited abnormally large statistical errors, thus indicating severe sampling problems. Visual inspection of the corre-
sponding simulation trajectories revealed a “particle collapse problem”4, with an SC oxygen atom in the carbox-
ylic group of Asp or Glu making abnormally close contact with a Na+ ion from the bulk solution, as illustrated 
in Fig. 3. This behavior could be explained by Eqs. (11) and (12) for the interaction between the two overlapping 
atoms. In these equations, the default Amber parameters are α = 0.5, β = 12 Å2, and the force field parameters 
for the pair of oxygen and Na+ atoms are qi = − 0.8188 e, qj = 1 e, and ε = 0.1355074 kcal/mol. With these param-
eters, a complete overlap of the two atoms (i.e., rij = 0 ) in the system with � = 0.5 corresponds to a VDW energy 
(Eq. (11)) of 6.5 kcal/mol and an electrostatic energy (Eq. (12)) of − 111.2 kcal/mol, or a net interaction energy 
(Eq. (10)) of − 52.3 kcal/mol. In the default setting, therefore, a collapse of the two atoms into each other is ener-
getically favorable35.

Figure 3.   A snapshot from an FEP simulation with a Trp residue mutated to a Glu residue, in the window of �
= 0.65. The side chain of the Glu is shown, with an oxygen atom in very close contact to a Na+ ion from the bulk 
solution, thus exhibiting a particle collapse problem. Image was rendered by VMD43 (version 1.9.3).

https://www.thermofisher.com/order/catalog/product/4466038
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In principle, the unphysical behaviors in the intermediate � windows should not affect the correctness of 
the calculated free energy difference between the two ends. In this case, however, ion association and disso-
ciation have very slow kinetics, and the presence or absence of the ion has a significant effect on the energies. 
Consequently, it is difficult to fully equilibrate some of the intermediate � windows, thus resulting in very large 
statistical errors.

In the SC potentials (Eqs. (11) and (12)), the parameter α controls the softness of the particle core, and β deter-
mines the limit of the electrostatic energy at short distances. To solve the particle collapse problem, therefore, 
one may decrease α to make the VDW energy more repulsive and thus make the atoms “harder”, or increase β 
to reduce the attractiveness of the electrostatic energy. In this study, we reduced α from the default value of 0.5 
to 0.3 for all the FEP simulations. The new α value is also within the examined range in a previous systematic 
evaluation35. In addition, mutations between Asp and Glu appeared to be more vulnerable to the problem, and we 
thus further increased the β parameter from the default of 12 Å2 to 20 Å2 and increased the number of windows 
from 12 to 24 for such cases. After the adjustment of the SC parameters, the particle collapse problem no longer 
appeared to be significant in our simulations.

Evaluating single mutations.  We applied our automated FEP protocols to exhaustively evaluate single 
mutations for 27 residues located on the m396 binding interface to the RBD. Each of the wildtype residues was 
mutated to all the other types except Pro and charge-reversing ones. In total, this task involved 480 single muta-
tions from the wildtype m396. For each mutation, we calculated the �G values for the complex systems of m396 
bound to SARS-CoV-1 and SARS-CoV-2 RBDs, the isolated m396 system, and the 7-residue peptide system 
(Fig. 2).

We also performed uncertainty estimation for each �G calculation. As explained in “Analysis and error 
estimation”, our statistical error was essentially taken as the largest among three estimates based on the EXP 
method, the TI method, and the comparison of forward and backward simulations, respectively. Figure 4a shows 
the distributions of the errors estimated by the three individual methods for all the �G calculations. Whereas 
the EXP and TI methods provided similar statistical errors overall, the difference between results from the 
forward and backward FEP simulations revealed substantially larger errors in many cases. Indeed, most of the 
large estimated uncertainties here were due to the deviation between the forward and backward results, thus 
confirming that our method of comparing simulations starting from distinct initial coordinates would offer a 
more stringent error estimation than methods based on single simulations do36.

Statistical Uncertainty (kcal/mol)

Statistical Uncertainty (kcal/mol)
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t
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Extend from      
5 ns to 10 ns 

Total count: 110

Extend from    
10 ns to 20 ns 
Total count: 56

Extend from      
20 ns to 40 ns 
Total count: 32

Extend from     
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Total count: 17
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Figure 4.   Distributions of the statistical uncertainties in the �G calculations. (a) Histograms for the statistical 
errors estimated by three different methods, i.e., EXP, TI, and difference between the forward and backward 
simulation results, as described in “Analysis and error estimation”. (b) Histograms of the statistical errors in the 
original calculations, with 5 ns per window, for the four systems. (c) Comparisons of the uncertainty histograms 
after extending some of the sampling simulations from 5 to 10 ns, from 10 to 20 ns, from 20 to 40 ns, and from 
40 to 80 ns.
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Figure 4b displays the distributions of the estimated standard errors for the �G calculations in the four 
systems. Although the sampling simulations (5 ns per window) were relatively short, most of our calculations 
nonetheless had satisfactory statistical errors. Overall, the statistical errors here appear to be negatively corre-
lated to the structural complexity of the system, with the simplest 7-residue peptide system having the smallest 
uncertainty and the antigen–antibody complex systems having the largest uncertainties.

For the ��GBinding and ��GStability calculations in this study, we aimed to achieve a statistical accuracy of 
2 kcal/mol or better. For the cases in which the statistical error exceeded 2 kcal/mol, therefore, we extended the 
sampling simulations from 5 to 10 ns per window. Subsequently, for the cases with the errors still above 2 kcal/
mol in the 10-ns sampling, we further extended the simulations to 20 ns per window. Similarly, we performed 
extension runs for the subset of simulations with large errors to 40 ns and then to 80 ns. As shown in Fig. 4c, 
each extension clearly reduced the overall statistical errors in the �G calculation and reduced the number of 
cases with unacceptable uncertainty. After all the extensions (up to 80 ns per window), the vast majority of our 
calculated ��GBinding and ��GStability values had statistical errors below 2 kcal/mol. Calculation results for all 
the single mutations are provided in Supplementary Information.

Several �G calculations still had relatively large statistical errors after the extensive sampling (80 ns per 
window), mainly due to the presence of alternative conformations of the protein residues. Figure 5 shows such 
an example taken from the FEP simulations for the complex of m396 and SARS-CoV-1 RBD, with the wildtype 
Thr33 in the m396 heavy chain mutated to an Asp. In the simulations, Thr33 and nearby residues exhibited 
multiple conformations, two of which are shown in the figure. The conformations differ in the sidechain rotamer 
states of Thr33 and Thr51 as well as the local H-bond network. Furthermore, spontaneous transitions between 
these conformations were rare in the simulations, and proper equilibration of the conformations was thus dif-
ficult and would require very long simulation times. Consequently, the statistical uncertainty here was relatively 
high, as manifested by the deviation between the results from the forward and backward calculations. Such 
conformational variability is a common cause of slow convergence and large uncertainty in the FEP simulations. 
One potential solution to the problem would be to run a separate FEP calculation for each of the conformational 
states (e.g., each rotamer). However, to properly combine the results and obtain the overall �G between the two 
end states, we also need to know the equilibrium probabilities of the alternative conformations in at least one end 
state. If spontaneous transitions between these conformations are too rare, other enhanced sampling techniques36 
could be employed to calculate such probabilities.

Evaluating multi‑point mutants.  Antibody design typically involves mutations of multiple residues from 
the wildtype template, and the capability of FEP to evaluate multi-point mutants is thus desirable. Given that our 
protocols take one mutation at a time, we adopted a multi-step approach to handle the multi-point mutants. For 
example, the free energy shift for a double-mutant (a, b) relative to the wildtype (denoted as 0 below) is equal to 
the sum of two stepwise shifts:

where the first step is between the wildtype and an intermediate single-point mutant, and the second step is 
between the single-point mutant and the target double-point mutant. With this approach, we evaluated a given 
set of 221 mutants of m396, each consisting of mutations on two to twelve residues. Here we do not discuss how 
the mutants were proposed, and instead only focus on our FEP evaluation of these provided antibodies for their 
relative conformational stability and binding affinity to the SARS-CoV-2 RBD.

In principle, each n-point mutant should take n steps to evaluate. However, because different mutants may 
share common single mutations, a proper scheduling could maximize the number of shared intermediates and 
thereby reduce the total number of the steps to evaluate all the given mutants. In this study, we adopted a greedy 
heuristic below to minimize the total computational cost. First, similar to the Hamming distance, we defined 
the distance between two mutants as the number of residues that are different between the two. For example, the 

(13)��G0→a,b = ��G0→a +��Ga→a,b = ��G0→b +��Gb→a,b,

T33 T33

T52
T52

D95 D95

Y491
Y491

a b

Figure 5.   Snapshots of two alternative side chain conformations for the residues around Thr33 in the binding 
interface between the m396 heavy chain (blue) and the SARS-CoV-1 RBD (red). H-bonds between the residues 
are shown. In panel (b), a water molecule is also involved in the H-bond network. A proper equilibration 
between these alternative conformations would require long simulation times, thus resulting in slow 
convergence of the FEP calculations. Images were rendered by VMD43 (version 1.9.3).
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distance between the wildtype and an n-point mutant is n . We then created an “evaluation set” of mutants and 
defined the distance from any mutant x to the evaluation set as the shortest distance from x to any member of 
the set. The sum of the distances from the 221 target mutants to the evaluation set was denoted as L . Initially, the 
evaluation set contained the wildtype only, giving rise to L=1,410 for our case here. Next, given that we already 
evaluated 480 single mutations (see “Evaluating single mutations”), we added the corresponding 480 single-point 
mutants to the evaluation set, which reduced L to 1,189. Subsequently, we added new mutants to the evaluation 
set one at a time. At each step, the new mutant must be derived from an existing member in the evaluation set by 
mutating one more residue. Among all the eligible new mutants that can be added for the current step, we chose 
the one that minimizes the L for the resulting new evaluation set. Such steps were repeated until L was reduced 
to zero, when all the targets were in the evaluation set. With this strategy, it took 554 steps to reduce L from 1,189 
to 0, with each step evaluated by an individual FEP calculation. The ��G for any target mutant with respect to 
the wildtype was then obtained by summing up the ��G values from the individual steps.

Alternatively, by assuming additivity37, the ��G for a given multi-point mutant can be approximated by 
adding the ��G values for the individual single mutations from the wildtype. For example, the ��G for the 
double-mutant in Eq. (13) can be approximated as ��G0→a,b ≈ ��G0→a +��G0→b . With the ��G values 
available for all the single mutations, this approximation allows a direct estimate of the ��G for any given multi-
point mutant without running additional simulations.

As shown in Fig. 6, we examined the additivity by comparing the approximate ��G values above to the more 
rigorous ��G obtained from the stepwise FEP calculations described earlier. Overall, for ��GStability (Fig. 6b), 
the two methods agree reasonably well, thus suggesting that the ��GStability values for the single mutations are 
roughly additive and can be used to approximately evaluate the conformational stability of a multi-point mutant. 
In the meantime, we caution that the stability calculations here were based on highly simplified models for the 
denatured state, and experimental measurements are still required to confirm our finding for the additivity of 
��GStability . In contrast, the agreement is much poorer for the ��GBinding (Fig. 6a), thus indicating that these 
residues at the binding interface may not act completely independently and that the ��GBinding values for the 
single mutations may not be quantitatively predictive for their collective effects on the binding affinity.

We also experimentally measured the melting temperature ( Tm ) for some of the m396 mutants above (see 
“Protein thermal shift experiments”). Most of the mutants exhibited two peaks in the thermal shift curve38, in 
which cases we took the first peak as the Tm . We performed four measurements for each mutant and took the 
mean and the standard error as the reported Tm and its uncertainty, respectively. All the computational results and 
the Tm data for the m396 multi-point mutants are provided in Supplementary Information. Figure 7 shows the 
change ( �Tm , relative to the wildtype) in the experimental melting temperature vs. the FEP-predicted ��GStability 
for each tested variant. Although simplified theories24,39 predicted a linear relation between ��GStability and �Tm 
for small changes (i.e., when the two are close to zero), their relation over large ranges has no known quantitative 
form and would be system specific. Therefore, we did not attempt to fit the data points in Fig. 7 into a mathemati-
cal (such as linear) function. Rather, some qualitative classification would be more practical for this dataset. 
Indeed, most of the mutants with small ��GStability also have small �Tm , thus consistently indicating similar 
stabilities relative to the wildtype. Moreover, with a few exceptions, the mutants with large positive ��GStability 
tend to have much lower Tm values, thus indicating significantly reduced stability.

Given the additivity described earlier, the ��GStability of a multi-point mutant can be approximated by the 
sum of contributions from individual single mutations. This analysis allowed us to identify the mutation of Trp47 
in the heavy chain to Asp as the major contributor for the large predicted ��GStability . Indeed, all the antibodies 
with this W47D mutation were predicted a highly positive ��GStability . However, although most of these mutants 
do have significantly reduced Tm values as expected, there are three clear outliers (at the upper-right corner of 
Fig. 7) with their Tm not very different from that of the wildtype. One possible reason for the discrepancy might be 
that those mutants could establish a somewhat differently folded conformation which is more probable but failed 
to be sampled by our MD simulations. In addition, the simplification in our models of denatured conformation 
could always be a source of inaccuracy. Further experiments on relevant variants are thus required to elucidate 
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Figure 6.   Comparisons of the ��G values for 221 multi-point mutants obtained from two methods, as 
described in the text. The approximate ��G for the mutant is the sum of the ��G values for the corresponding 
single mutations with respect to the wildtype. The stepwise ��G for the mutant is calculated by adding the 
incremental ��G values when the wildtype is transformed to the mutant one residue at a time. The ��G is 
shown for both the binding to the SARS-CoV-2 RBD (a) and the stability of the mutant (b). All the units are in 
kcal/mol.
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the underlying cause. Nonetheless, our calculations correctly identified the potentially destabilizing mutation 
of W47D, thus providing helpful information for the antibody design.

Discussion
In this article, we report our implementation of automated FEP calculations to facilitate antibody design. Our 
protocols enable systematic large-scale predictions, such as scanning the residues in the binding interface and 
exhaustively evaluating all possible single mutations for these residues. A critical component in our protocols 
is a faithful estimation of the statistical uncertainty in the results. The uncertainty would determine the level of 
confidence when the individual results are considered in the decision making. Furthermore, abnormally high 
uncertainty could indicate pathological cases, such as the particle collapse problem identified in this study. Such 
alarms are especially important in the automated large-scale calculations, where manual inspections on every 
individual case become unfeasible. In addition, a faithful uncertainty estimation could identify the simulations 
that need to be improved. In this study, e.g., whereas most FEP simulations were relatively short, we extended 
only those simulations with large statistical errors to much longer sampling times.

Due to the stochastic nature of the sampling, no method guarantees correct uncertainty estimation for all 
cases36. For example, although most of the extended samplings reported in this study reduced the estimated 
uncertainty, the error estimates for a small fraction of the simulations became even larger after the extension. 
Therefore, it is entirely likely that among the simulations that were not extended, the uncertainty of some may 
have been underestimated and would have been revealed in extension runs. As another example, in our evalu-
ation of the multi-point mutants (“Evaluating multi-point mutants”), each mutant is connected to the wildtype 
by a single path of intermediates, whereas establishing multiple paths could improve the uncertainty estimation 
by exploiting the thermodynamic consistency2. In general, longer and more simulations should always make 
the results more reliable. In practical applications, however, the increased computational cost associated with 
more samplings has to be considered as well. In this study, by allocating the computational resource to the cases 
with the most needs, most of our calculations appeared to achieve acceptable statistical uncertainties at a mod-
est aggregated simulation time. Our approach thus strikes a good balance between the statistical accuracy and 
the computational cost.

An important strategy in our uncertainty estimation is to compare the results from two groups of FEP 
simulations starting from different initial coordinates, namely, a forward calculation from residue a to b and a 
backward calculation from b to a . In contrast to estimating errors from single simulations alone, this approach 
could often capture statistical uncertainties (see Fig. 4a) caused by slow equilibrations36, such as the case shown 
in Fig. 5 with multiple alternative conformations of the protein residues.

In the context of rapid large-scale screening here, we considered it acceptable if the statistical uncertainty is 
below 2 kcal/mol. In the meantime, we note that with sufficient sampling, FEP can often achieve a higher accu-
racy, e.g., 1 kcal/mol or even better. If an improved statistical accuracy is needed, however, we may always further 
extend the FEP sampling to reduce the uncertainty, as similarly done in this study. Furthermore, as experimental 
binding affinities are not available yet at this stage, we do not have a direct validation for our predicted ��GBinding 
values and do not know their actual errors.

In addition to the relative binding affinity, our protocols also predict the relative conformational stability 
for the antibody mutant. Protein stability describes the equilibrium between its native (folded) and denatured 
(unfolded) conformations. Given that the denatured structure is not known, one needs to resort to highly sim-
plified models to approximate the local environment of the mutated residue in the denatured conformation. In 
many FEP works, e.g., the denatured state was represented by just a single amino acid (i.e., the residue under 
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Figure 7.   The predicted ��G
Stability for the m396 multi-point mutants from the FEP simulations vs. the shift of 

their experimentally measured melting temperature relative to the wildtype m396. Some of the horizontal error 
bars are smaller than the size of the data marker and are thus invisible.
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the mutation) in bulk solution. Recent studies18 demonstrated that the accuracy of the predicted stability can be 
improved if a few flanking residues are also included in the model for the denatured state, as adopted in this study. 
Whereas our peptide system remains a crude model for the denatured protein, our predicted free energy shift for 
the measured m396 mutants appears to be consistent with the experimental melting temperature for the major-
ity of the test cases. Furthermore, predictions of both the affinity and the stability by our FEP protocols would 
allow one to jointly consider these factors in the early stage of antibody design, thus helping develop antibodies 
with good manufacturability properties that will become important for the clinical applications at a later stage.

As FEP has been widely adopted in many applications, there are multiple variations in its implementation. 
In the following, we will briefly discuss the tradeoffs for some of the alternative implementations and suggest 
potential improvement for future applications.

First, as the case for all MD-based methods, the accuracy of FEP heavily replies on the faithfulness of the 
simulation system, especially the quality of the protein structures. In addition, the protonation states of the 
protein residues may also have a significant impact on the simulation. In this study, we adopted the simplest 
approach of assigning standard protonation state for all the residues. More careful treatment of the protonation 
states, such as by PROPKA40 or other programs, should in principle improve the accuracy of our FEP calculations.

As mentioned earlier, longer and more simulations should always improve the statistical uncertainty but will 
increase the computational cost. Therefore, alternative implementations should be compared based on the same 
computational cost determined by the total simulation length. For example, one could repeat the same sampling 
simulation multiple times with different initial velocities41, or alternatively extend the sampling multiple times 
longer. Here we would argue that a longer simulation is often preferred over multiple short runs. The essence of 
equilibration is to “forget” the initial microstate during the simulation, such that the statistics become completely 
independent of the particular starting coordinates36. In this aspect, a long simulation should more likely forget 
the initial condition than multiple short simulations do, especially when involving a relaxation with nontrivial 
first passage times to some more probable structures. As demonstrated in this study, the discrepancy between 
our forward and backward simulations became increasingly smaller as the simulations were extended longer, 
and it is doubtful that the same could be achieved by repeatedly running those simulations but with a fraction 
of the sampling time for each run. On the other hand, when equilibration is fast and not of a concern, running 
multiple shorter simulations has the advantage of parallel execution and thus possibly a faster turnaround.

A related issue concerns the number and the placement of the � windows in FEP. In this study, we adopted a 
simple recipe5,6 of 12 or 24 windows depending on whether the mutation is charge-changing or not. However, 
we found that with the same number of windows, calculations involving bulky residues (such as Trp) normally 
have substantially higher statistical uncertainties than others, thus suggesting that it would be beneficial if 
the number of � windows is determined according to the residue type, with more windows allocated to larger 
residues. Furthermore, with Hamiltonian replica exchange implemented, the exchange rate between adjacent 
windows could conveniently indicate whether the windows have sufficient overlap. Indeed, the accuracy of the 
calculated �A (see “Free energy difference between two systems” and “Sampling with intermediate windows”) 
between two neighboring windows appears to be correlated to their exchange rate. Moreover, we observed that 
the exchange rates for the windows near the ends (i.e., when � is near 0 or 1) tend to be substantially lower than 
those in the midrange, especially after our adjustment of the α and β parameters (“Particle collapse problem”). 
Therefore, instead of uniformly placing the � windows as in this study, the sampling efficiency may be improved 
by allocating denser windows near the ends and sparser windows in the midrange.

Our FEP implementation in this study adopted the one-step transformation where the electrostatic and VDW 
potentials vary simultaneously (Eqs. (11) and (12)) with � . In contrast, multi-step transformation is an alternative 
scheme in which the SC atoms are decharged prior to the transformation of their VDW interactions35,41. Although 
technically the one-step transformation is slightly simpler, the multi-step transformation has the advantage of 
eliminating the particle collapse problem encountered here.

The double-system/single-box setup42 is an alternative simulation setup for FEP, in which two entities (such 
as one antibody and one peptide) are placed far apart from each other in the same simulation system. Then in 
the FEP simulations, the alchemical transformation from a to b in one entity occurs simultaneously with the 
transformation from b to a in the other entity. Despite a much larger system size and higher atom count for the 
simulations, this setup could obtain the ��G in a single FEP calculation, whereas in the traditional setup the 
��G is the difference between two �G s (Eqs. (1) and (2)), each from a separate FEP calculation. For charge-
changing mutations, the double-system/single-box setup has a unique advantage of simultaneously satisfying 
the charge neutrality in both ends, thus making the co-alchemical ion unnecessary. In this study, we still adopted 
the traditional setup, partly due to its technical simplicity. In addition, as mutation on the isolated antibody is 
required for determining multiple ��G s here, it is more convenient to obtain the �GAntibody (Eqs. (1) and (2)) 
in just one FEP calculation.

In this article, we mainly focus on the FEP technique, using m396 as a case study. As mentioned in “Introduc-
tion”, our FEP implementation is a component in a much broader multidisciplinary effort of antibody design. 
Our project involves several other antibodies, a diverse set of computational approaches for proposing and 
evaluating antibody mutants, and extensive experiments. The other components of the project will be presented 
in forthcoming reports.

In summary, given the capability of FEP to rigorously predict relative free energies, our work here could help 
transform this powerful technique into a reliable and efficient tool that can be routinely applied to aid antibody 
design and to elucidate protein–protein interactions.

Data availability
Computational and experimental data are provided in Supplementary Information. Relevant code (scripts) may 
be requested from the corresponding author.
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