
740  |   	﻿�  Eur J Pain. 2022;26:740–753.wileyonlinelibrary.com/journal/ejp

Received: 12 July 2021  |  Revised: 11 November 2021  |  Accepted: 25 December 2021

DOI: 10.1002/ejp.1902  

O R I G I N A L  A R T I C L E

Different genes may be involved in distal and local 
sensitization: A genome-wide gene-based association study 
and meta-analysis

Afroditi Kouraki1,2  |   Michael Doherty1,2,3,4  |   Gwen S. Fernandes5  |   Weiya Zhang1,2,3,4  |   
David A. Walsh1,2,3,4  |   Anthony Kelly1,2  |   Ana M. Valdes1,2,3

1Academic Rheumatology, School of 
Medicine, University of Nottingham, 
Nottingham City Hospital, Nottingham, 
UK
2NIHR Nottingham Biomedical 
Research Centre, University of 
Nottingham, Nottingham, UK
3Pain Centre Versus Arthritis, 
University of Nottingham, Nottingham, 
UK
4Versus Arthritis Centre for Sports, 
Exercise and Osteoarthritis, University 
of Nottingham, Nottingham, UK
5Population Health Sciences, Bristol 
Medical School, University of Bristol, 
Bristol, UK

Correspondence
Afroditi Kouraki, Department of 
Academic Rheumatology, School of 
Medicine, University of Nottingham, 
Clinical sciences building, City 
Hospital, Nottingham NG5 1PB, UK.
Email: afroditi.kouraki@nottingham.
ac.uk

Funding information
This work was part of a PhD project 
funded by the National Institute 
of Health Research via the NIHR 
Nottingham Biomedical Research 
Centre. The KPIC was supported 
financially by the Versus Arthritis 
Pain Centre; and Arthritis Research 
UK Centre for Sport Exercise and 
Osteoarthritis.

Abstract
Background: Neuropathic pain symptoms and signs of increased pain sensitiza-
tion in osteoarthritis (OA) patients may explain persistent pain after total joint 
replacement (TJR). Therefore, identifying genetic markers associated with pain 
sensitization and neuropathic-like pain phenotypes could be clinically important 
in identifying targets for early intervention.
Methods: We performed a genome-wide gene-based association study (GWGAS) 
using pressure pain detection thresholds (PPTs) from distal pain-free sites (ante-
rior tibia), a measure of distal sensitization, and from proximal pain-affected sites 
(lateral joint line), a measure of local sensitization, in 320 knee OA participants 
from the Knee Pain and related health in the Community (KPIC) cohort. We next 
performed gene-based fixed-effects meta-analysis of PPTs and a neuropathic-like 
pain phenotype using genome-wide association study (GWAS) data from KPIC 
and from an independent cohort of 613 post-TJR participants, respectively.
Results: The most significant genes associated with distal and local sensitiza-
tion were OR5B3 and BRDT, respectively. We also found previously identified 
neuropathic pain-associated genes—KCNA1, MTOR, ADORA1 and SCN3B—
associated with PPT at the anterior tibia and an inflammatory pain gene—
PTAFR—associated with PPT at the lateral joint line. Meta-analysis results of 
anterior tibia and neuropathic-like pain phenotypes revealed genes associated 
with bone morphogenesis, neuro-inflammation, obesity, type 2 diabetes, cardio-
vascular disease and cognitive function.
Conclusions: Overall, our results suggest that different biological processes 
might be involved in distal and local sensitization, and common genetic mech-
anisms might be implicated in distal sensitization and neuropathic-like pain. 
Future studies are needed to replicate these findings.
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1   |   INTRODUCTION

It is estimated that pain is not adequately controlled in 
4 of 10 people that suffer from knee osteoarthritis (OA) 
(Neogi, 2013). Knee pain hugely contributes to disability 
(Guccione et al., 1994; March & Bagga, 2004). Although 
OA pain has traditionally been associated with periph-
eral pain mechanisms due to joint damage and inflam-
mation, the presence of radiographic joint pathology 
does not always explain the severity of pain (Finan 
et al., 2013; Valdes et al., 2012). Many people with OA 
suffer from pain that they describe as numbness, electric 
shocks, or a burning, itching sensation that can initiate 
spontaneously and in the absence of a painful stimulus, 
suggestive of a neuropathic source (den Boer et al., 2019; 
Cavalli et al., 2019). A role of the central nervous system 
(CNS) in augmenting nociceptive processing has been 
described in OA, which is known as pain sensitization 
and displays similar characteristics to neuropathic pain 
(Chappell et al., 2009; Petersen et al., 2015; Soni et al., 
2019).

Quantitative sensory testing (QST) can be used to quan-
tify alterations in pain sensitivity. Reduced pressure pain de-
tection thresholds (PPTs) at the affected site may indicate 
the presence of peripheral sensitization, while reduced PPTs 
at a distal pain-free side is suggestive of altered pain process-
ing in the CNS and central pain augmentation (Croft et al., 
2005; Graven-Nielsen & Arendt-Nielsen, 2002; Suokas et al., 
2012). Magnetic resonance imaging-detected inflammation 
in knee OA, and not the severity of radiographic features, 
is associated with the development and worsening of local 
pressure pain sensitivity in the knee (Neogi et al., 2016), sug-
gesting that inflammation is a potential mechanism under-
lying local sensitization. Neuropathic pain symptoms on the 
painDETECT questionnaire have been associated with signs 
of central sensitization on QST, such as associations with 
PPTs at sites distant from the affected joints, suggesting that 
painDETECT may reflect central pain processing in patients 
with knee OA (Hochman et al., 2013; Moreton et al., 2015; 
Moss et al., 2018).

Genetic variants implicated in pain sensitivity 
have arisen from candidate gene studies. These in-
cluded amino acid change variants in the catechol-O-
methyltransferase (COMT) (van Meurs et al., 2009), 

the voltage-gated sodium channel Nav1.7 (SCN9A) 
(Reimann et al., 2010) and the transient receptor po-
tential cation channel, subfamily V, member 1 (TRPV1) 
(Valdes et al., 2011). However, there is a gap in our 
knowledge regarding the genes and molecular pathways 
influencing pain sensitization in knee OA. Evidence in-
dicates that signs of increased pain sensitization might 
be a barrier to treatment response. Indeed, widespread 
hyperalgesia assessed by PPTs predicts poor outcomes to 
arthroplasty (Lundblad et al., 2008; Petersen et al., 2016; 
Rakel et al., 2012; Wylde et al., 2015). Furthermore, knee 
OA patients with neuropathic pain symptoms identified 
using the painDETECT questionnaire are most at risk of 
developing chronic postoperative pain after total knee 
replacement (Kurien et al., 2018). Therefore, under-
standing the underlying mechanisms involved in pain 
sensitization and neuropathic-like pain may promote 
better profiling and diagnosis of pain patients and devel-
opment of new regimes for mechanism-based therapy. 
Thus, we completed two GWASs with PPTs from distal 
and affected sites to identify genetic variants for distal 
and local sensitization, respectively, using data from the 
Knee Pain and related health In the Community (KPIC) 
cohort (Fernandes et al., 2017). We then completed a 
genome-wide gene-based association analysis (GWGAS) 
and gene-set analysis on both PPT phenotypes separately 
to explore the genes and underlying genetic mecha-
nisms of distal and local sensitization in OA pain. Using 
existing GWAS data from an independent Nottingham 
cohort study of neuropathic-like pain (Warner, Walsh, 
et al., 2017), we performed a GWGAS to identify genes 
related to the neuropathic-like pain phenotype. GWGAS 
may have higher power to identify the causal variants of 
complex diseases compared to GWAS because it consid-
ers the joint effect of several single nucleotide polymor-
phisms within a single gene (Chung et al., 2019; Kang 
et al., 2013). As pain sensitization is suggested to display 
similar characteristics to neuropathic-like pain, we per-
formed two separate gene-based meta-analyses by com-
bining our neuropathic-like pain GWGAS findings with 
our findings from distal and local sensitization GWGAS 
to identify genes common in distal sensitization and 
neuropathic-like pain, as well as local sensitization and 
neuropathic-like pain, respectively.

Significance: To the best of our knowledge, this is the first GWAS for pain 
sensitization and the first gene-based meta-analysis of pain sensitization and 
neuropathic-like pain. Higher pain sensitization and neuropathic pain symptoms 
are associated with persistent pain after surgery hence, identifying genetic bio-
markers and molecular pathways associated with these traits is clinically relevant.
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2   |   METHODS

The study design is outlined in Figure 1. We used data from 
two independent study cohorts. Participants from both co-
horts had similar demographic characteristics (age, sex 
and BMI). We used a three-stage design for the identifica-
tion of any potential associations between genetic variants 
and two pain sensitivity phenotypes (distal sensitization 
and local sensitization), as well as genes common in pain 
sensitivity and neuropathic-like pain phenotypes. First, two 
GWASs with PPTs from both distal and affected sites were 
run to identify genetic variants for distal and local sensitiza-
tion, respectively, using data from the KPIC cohort. Second, 
three GWGASs were run to identify the genes associated 
with the two pain sensitivity phenotypes and a neuropathic 
pain-like phenotype using the GWASs outputs from KPIC 
and existing GWAS data from a Nottingham cohort. Third, 
we conducted two meta-analyses of our GWGAS findings 
to identify genes common in pain sensitization (distal and 
local) and neuropathic-like pain.

2.1  |  Participants

2.1.1  |  KPIC cohort

Baseline data from a subgroup of the KPIC (n = 320) that 
undertook clinical assessments including knee radiographs, 
knee ultrasound, quantitative sensory testing, muscle 
strength, balance, gait analysis and biomarker sampling 
and for which we had genetic information and no missing 
data on anterior tibia and lateral joint line PPTs was used 
(Fernandes et al., 2017) (Table S1). KPIC is a prospective 
community-based cohort of men and women aged 40 years 
or over within the East Midlands region (UK).

2.1.2  |  Nottingham post-total joint 
replacement (TJR) cohort

Participants were recruited post-TJR for OA (n  =  613) 
from secondary care in the Nottinghamshire area (Warner, 

F I G U R E  1   Study design. A three-stage design for identification of associations between genetic variants and two pain sensitivity 
phenotypes: distal sensitization [anterior tibia pressure pain threshold (PPT)] and local sensitization (lateral joint line PPT), as well as genes 
common in pain sensitivity and neuropathic-like pain (painDETECT questionnaire) phenotypes. First, two GWASs with PPTs from both 
distal and affected sites were run to identify genetic variants for distal and local sensitization, respectively, using data from the KPIC cohort 
(Tables S2 and S3). Second, three GWGASs and gene-set analyses were run to identify the genes associated with the two pain sensitivity 
phenotypes and a neuropathic pain-like phenotype using the GWASs outputs from KPIC and existing GWAS data from a Nottingham 
cohort (Tables 1–3). Third, two meta-analyses of our GWGAS findings were conducted to identify genes common in pain sensitization 
(distal and local) and neuropathic-like pain (Table S4) and a heat map analysis of the common genes identified from the distal sensitization/
neuropathic-like pain meta-analysis was performed (Figure 2)



      |  743KOURAKI et al.

Walsh, et al., 2017). Demographic characteristics of this 
cohort are presented in Table S1.

2.2  |  Phenotypes

2.2.1  |  Neuropathic-like pain

This phenotype has been described extensively elsewhere 
(Warner, van Meurs, et al., 2017). Briefly, neuropathic-like 
pain was measured with the painDETECT (Freynhagen 
et al., 2006), a self-report seven-item questionnaire with 
scores ranging from 0 to 39 developed to discriminate be-
tween nociceptive and neuropathic pain. The question-
naire asks about the intensity, pattern and quality of their 
knee pain, for example persistent with slight fluctuations, 
burning, tingling or sudden, with Likert scale and tick-box 
questions. Individuals were classified as having possible or 
probable neuropathic-like pain if they scored >12 according 
to the validated cut-offs for diagnosis by Freynhagen et al. 
(2006) making up 109 possible or probable neuropathic pain 
cases versus 504 controls (Warner, van Meurs, et al., 2017). 
The dichotomised value for the classification of participants 
to neuropathic-like pain versus controls was used for the 

GWAS and the results from this analysis can be found else-
where (Warner, van Meurs, et al., 2017).

2.2.2  |  Pressure pain detection thresholds 
(PPT)

PPTs (in kPa) were measured in triplicate with an algom-
eter (Somedic AB, Sweden) that is connected to a computer 
(HP ProBook 4520s). Pressure was administered manually 
at a progressively increasing rate (standardized rate set at 
30 kPa/s) by a trained researcher through the algometer, a 
circular rubber-coated pressure probe (1 cm2). Subjects were 
instructed to push a button when the sensation changed 
from pressure to pain and the algometer was immediately 
taken off the skin. Among other areas, PPT was applied to 
the lateral tibiofemoral joint line adjacent to the patellar 
ligament of the index knee and the anterior tibia 5 cm distal 
to the tibial tuberosity of the contralateral knee (Fernandes 
et al., 2017). PPT has been shown to be a reproducible meas-
ure of nerve sensitivity throughout localized, distal and re-
mote sites and it is part of QST, which is used to quantify 
pain perception. PPT at sites away from the affected joint 
has been interpreted as an index of central sensitization 

T A B L E  1   The results of interest from the MAGMA gene-based association analysis of anterior tibia PPT phenotype

Gene symbol CHR. Start position Stop position SNPS Z statistic Gene p-value Adjusted p*

OR5B3 11 58169938 58170882 1 9.48 1.22E-21 1.75E-17

WNT9A 1 228109165 228135676 1 8.59 4.36E-18 3.14E-14

DNAH7 6 29364416 29365448 2 7.04 9.47E-13 2.48E-09

IFNGR1 6 139456249 139501946 2 7.01 1.04E-12 2.48E-09

HECA 11 64863587 64879332 2 7.06 1.20E-12 2.48E-09

AIM2 1 159028790 159046685 3 6.98 1.48E-12 2.68E-09

POLR3E 16 22308696 22346424 3 5.69 6.41E-09 4.87E-06

IL10RA 11 117857106 117872198 3 5.33 4.95E-08 2.98E-05

HRH2 5 175084847 175136239 6 5.04 2.37E-07 9.23E-05

ROPN1 3 123687862 123711017 1 4.96 3.46E-07 1.28E-04

KCTD11 18 13218729 13652753 93 4.78 8.70E-07 2.68E-04

CCDC14 3 123616152 123680255 4 4.78 8.96E-07 2.69E-04

KCNA1 12 5019073 5027422 1 4.32 7.98E-06 1.52E-03

MTOR 1 11166588 11322614 6 3.98 3.40E-05 4.42E-03

HRH1 10 38383264 38412280 1 3.90 4.84E-05 5.82E-03

CACNB2 10 18429373 18830688 85 3.89 5.10E-05 6.08E-03

TNFAIP3 6 138663930 138790381 11 3.71 1.05E-04 1.02E-02

ADORA1 1 203096833 203136533 9 3.39 3.56E-04 2.17E-02

SCN3B 11 123499895 123525315 6 3.20 6.87E-04 3.43E-02

TAOK3 12 118587606 118810750 8 3.08 1.04E-03 4.51E-02

CACNA2D3 3 54156620 55108584 156 3.03 1.23E-03 4.97E-02

*Adjusted p values after applying B–H correction to control for multiple testing FDR.
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(i.e. increased pain perception in areas away from the knee) 
(Arendt-Nielsen et al., 2010; Pavlaković & Petzke, 2010). 
PPT at an affected joint may indicate a combination of pe-
ripheral and central sensitization. Results from a system-
atic review and meta-analysis revealed that people with OA 
have lower PPTs both at the affected joint and at areas away 
from the joint when compared to controls (Suokas et al., 
2012). The mean of PPT values for each site were computed 
from all three PPT rounds for analysis. Log transformation 
resulted in more symmetrical and less skewed distributions 
of the PPT values. Therefore, the log-transformed variables 
of PPT values were used for all further analyses.

2.3  |  GWAS

For all cohort study participants, genomic DNA was ex-
tracted from peripheral blood leukocytes. Genotype data 
were analysed using the Illumina Global screening array 
Inc Basic BioIT (Illumina). Quality Control (QC) checks 
and genotyping were done both at the sample and single 
nucleotide polymorphism (SNP) level and have been de-
scribed in detail elsewhere (Warner, Walsh, et al., 2017; 
Zeggini et al., 2012). PLINK software (version 1.07) was 
used to analyse GWAS data from this array (Purcell et al., 
2007). Two GWASs were conducted to identify associated 
SNPs and genes with the two distal and local sensitiza-
tion phenotypes, respectively. The GWAS output contains 
information about the SNPs’ location in the genome, a re-
gression coefficient beta (β) and a test statistic that indi-
cate the level of association of the genetic variants with the 
phenotype along with a p value to determine significance.

2.4  |  Functional annotation

To gain insights into the functions of the identified 
genes, we next tested the probability of these genes to 
map into specific biological pathways as defined by the 
Kyoto Encyclopaedia of Genes and Genomes (KEGG) or 
Reactome databases using the Database for Annotation, 
Visualisation and Integrated Discovery (DAVID) (Dennis 
et al., 2003) and Reactome online platforms, respectively. 
The gene list was composed of genes corresponding to all 
SNPs with a p-value of p < 0.0001 in the GWAS analysis.

2.5  |  Gene-based association analysis

Subsequently, our GWAS results were used for GWGAS 
using Multi-marker Analysis of GenoMic Annotation 
(MAGMA) (de Leeuw et al., 2015). MAGMA takes as 
input the p-values derived from the GWAS and annotates 

SNPs to known protein-coding genes to estimate aggre-
gate associations based on all SNPs in a gene (linkage 
disequilibrium) accounting for multi-marker effects, by 
applying multiple regression analyses. MAGMA then uses 
Fisher's test to compute p-values to test the association 
between a gene and the phenotype and does not assign 
a positive or negative coefficient to a gene-based associa-
tion. It differs from functional annotation as it provides a 
statistical gene-based test, whereas functional annotation 
methods map individually significant SNPs to genes. The 
1,000 Genomes Project (phase 1, release 3) was used as 
a reference panel to calculate linkage disequilibrium be-
tween genomic variants (Auton et al., 2015). A gene-based 
analysis was performed for each phenotype using the re-
sults from our GWAS for local and distal sensitization and 
existing GWAS data for neuropathic-like pain. The NCBI 
37.3 build was used to obtain the SNPs that were attrib-
uted to each gene (de Leeuw et al., 2015). A total of 14,428, 
14,428 and 14,722 protein-coding genes were assessed for 
an association with the distal sensitization phenotype, the 
local sensitization phenotype and the neuropathic-like 
pain phenotype, respectively. Benjamin–Hochberg (B–H) 
correction was used to determine significance.

2.6  |  Gene-based meta-analysis

Our GWGAS resulted in different genes for anterior tibia 
PPT and lateral joint line PPT. For anterior tibia PPT, we 
identified genes that have been previously related to cen-
tral mechanisms of pain, whereas one of the lateral joint 
line PPT genes found, has been previously associated with 
peripheral pain mechanisms. Accordingly, we conducted 
two separate fixed-effects gene meta-analyses combining 
our GWGAS neuropathic-like pain results with GWGAS 
results from anterior tibia PPT and lateral joint line PPT to 
identify genes common in neuropathic-like pain and dis-
tal sensitization as well as neuropathic-like pain and local 
sensitization, respectively. The Z-scores for each gene 
across the two cohorts, KPIC and Nottingham post-TJR, 
were combined using the weighted-Z method. According 
to this method, the weights are computed as the inverse of 
the squared standard error of the effect size estimate for 
each cohort, resulting in different weights for each cohort 
according to their power (Lipták, 1958; Whitlock, 2005). 
B–H correction was used to determine significance.

2.7  |  Pathway over-representation  
analysis

Significant results from the GWGAS were entered in 
FUMA for gene-set/GWAS catalogue over-representation 
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analysis with MAGMA (de Leeuw et al., 2015; Watanabe 
et al., 2017). We identified statistically significant overrep-
resented pathways for the anterior tibia PPT phenotype 
after adjusting for false detection rate (FDR) with B–H 
correction method.

3   |   RESULTS

3.1  |  Stage 1: GWAS

The 10 ‘top-hits’ (i.e. genes with highest p-values that 
survived correction for multiple testing) of the adjusted 
GWAS on anterior tibia and lateral joint line PPT phe-
notypes are shown in Tables S2 and S3, respectively. The 
total genotyping rate was 0.99 with 700,078 variants pass-
ing filtering and QC and each tested for association with 
both phenotypes. The genomic inflation factor lambda 
(based on median chi-square) was low for both pheno-
types (λ  =  1.07, for anterior tibia PPT and λ  =  1.00, for 
lateral joint line PPT). After adjusting for multiple test-
ing, 554,759 SNPs remained in the analysis. The results of 
GWAS on neuropathic-like pain are described elsewhere 
(Warner, van Meurs, et al., 2017).

3.2  |  Stage 2: Gene-based 
association analysis

As knee OA is a complex, polygenic disease, we next de-
cided to perform gene-based association analysis, which 
has been suggested to be more powerful at unravelling as-
sociations compared to GWAS, as it accounts for the cor-
relations among SNPs within a single gene (Chung et al., 

2019). The ‘top’ results, in terms of statistical significance 
(i.e. genes with highest p-values that survived correction 
for multiple testing) as well as biological relevance, of the 
gene-association analyses on anterior tibia and lateral tibi-
ofemoral joint line PPT can be seen in Tables 1 and 2, re-
spectively. Several of the genes identified for anterior tibia 
PPT phenotype are traditional pain-related genes and 
members of the ‘sensory perception’ gene set according to 
the Gene Ontology definition (GO: 0007600) (i.e. KCNA1, 
MTOR, ADORA1 and SCN3B). For lateral joint line PPT, 
we found a single gene, PTAFR, member of the ‘sensory 
perception’ gene set.

We then performed a gene-set analysis to identify path-
ways related to PPT phenotypes using FDR-adjusted sig-
nificant genes as identified from the GWGAS. We found 
significantly overrepresented pathways for anterior tibia 
PPT after B–H correction (Table 3). Enrichment was seen 
in several metabolic-related pathways.

3.3  |  Stage 3: Gene-based meta-analysis

We then conducted a fixed-effects gene meta-analysis of 
anterior tibia PPT and neuropathic-like pain in both co-
horts (KPIC and Nottingham post-TJR) and performed 
heat map analysis (Table S4 and Figure 2, respectively). 
Results from the meta-analysis revealed ‘top-hits’ (i.e. 
genes with highest p-values that survived correction for 
multiple testing) in various genes related to bone mor-
phogenesis and neuro-inflammation, including WNT9A, 
POLR3E, AIM2, HECA and IFNGR1 (Table S4). We visual-
ized tissue specific expression patterns based on GTEx v6 
RNA-seq data (GTEx Consortium, 2015) for each signifi-
cant gene as an interactive heat map plot (Figure 2).

T A B L E  2   The results of interest from the MAGMA gene-based association analysis of lateral joint line PPT phenotype

Gene symbol CHR. Start position Stop position SNPS Z statistic Gene p-value Adjusted p*

BRDT 1 92414928 92479985 4 6.92 2.24E-12 3.23E-08

RFX6 6 117198376 117253326 7 6.59 2.19E-11 1.05E-07

CRTAP 3 33155450 33189265 8 6.11 4.84E-10 1.74E-06

SUOX 12 56391043 56399309 2 6.06 6.73E-10 1.94E-06

CHD3 17 7788096 7816075 2 5.48 2.15E-08 5.15E-05

CRAT 9 131857073 131873070 2 5.18 1.10E-07 1.97E-04

IKZF4 12 56401268 56432219 5 4.92 4.31E-07 6.90E-04

TMEM26 10 63166401 63213208 5 4.36 6.53E-06 8.95E-03

IARS 9 94972489 95056038 1 4.35 6.83E-06 8.95E-03

PTAFR 1 28473677 28520447 1 4.02 2.89E-05 2.78E-02

C12ORF10 12 53693132 53700965 1 3.94 4.09E-05 3.10E-02

DAPK1 9 90112601 90323566 4 3.85 6.01E-05 4.33E-02

*Adjusted p values after applying B–H correction to control for multiple testing FDR.
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We also performed a fixed-effects gene meta-analysis 
of lateral joint line PPT and neuropathic-like pain in both 
cohorts, which yielded a single significant gene, CRTAP at 
chromosome 3 (Z = 4.83, p-adjusted = 0.01, after applying 
B–H correction).

4   |   DISCUSSION

In this study, we used a GWGAS approach to identify 
novel genes for pain sensitization in knee OA. The most 
significant genes associated with distal and local sensiti-
zation were OR5B3 and BRDT, respectively. Additionally, 
we identified several traditional pain-related genes, 
KCNA1, MTOR, ADORA1 and SCN3B, for anterior tibia 
PPT phenotype and PTAFR for lateral joint line PPT 
phenotype. Gene-set analysis for the anterior tibia PPT 
revealed enrichment of metabolic-related pathways. We 
found genes involved in bone morphogenesis (CRTAP 
and WNT9A), inflammation and neuroinflammation 
(POLR3E, AIM2 and IFNGR1), metabolic disease and 
obesity (AIM2, DNAH7, CADM2), and cognitive func-
tion (CRTAP and CCDC14) from meta-analysis of dis-
tal sensitization and neuropathic-like pain traits in the 
two cohorts. A single gene, CRTAP, was significant after 
meta-analysis of local sensitization and neuropathic-like 
pain traits.

The most significant gene associated with distal sensi-
tization was OR5B3. OR5B3 is an olfactory receptor gene 
involved in the production of G-protein coupled trans-
membrane receptors, which enable the detection and 
transmission of olfactory stimuli. A recent study revealed 
that knockdown of cathepsin S (CTSS) upregulates almost 
all olfactory receptor family genes and vice versa, in cell 
overexpressing CTSS and an increase of the expression 
level of olfactory receptor 5B3 protein was observed when 
cells were treated with a CTSS inhibitor (Chen et al., 2021). 
It has been shown that the release of CTSS from microglial 
cells causes neuropathic pain (Clark & Malcangio, 2012) 
that could be reversed by intraspinal injection of CTSS 
inhibitor. Consistent with our findings, these results sug-
gest a potential mechanistic role of OR5B3 in neuropathic 
pain. BRDT was the most significant gene associated with 
local sensitization and is a member of the bromodomain 
and extra-terminal (BET) family of proteins. BET proteins 
bind to acetylated lysine residues in the histones of nu-
cleosomal chromatin and function either as co-activators 
or co-repressors of gene expression (Filippakopoulos & 
Knapp, 2014), where they regulate the expression of key 
oncogenes, anti-apoptotic proteins and many immunity-
associated genes and pathways (Wang et al., 2021), which 
is consistent with an underlying role of inflammation in 
local sensitization.

Genes previously associated with neuropathic pain and 
signs of central sensitization—KCNA1, MTOR, ADORA1 
and SCN3B—were identified from GWGAS of anterior 
tibia PPT, while an inflammatory pain gene—PTAFR—
was found from GWGAS of lateral joint line. These 
findings are consistent with a role of joint damage and in-
flammation in local sensitization, as well as altered pain 
processing in the CNS in distal sensitization, and thus are 
biologically plausible. Specifically, KCNA1 encodes for the 
potassium voltage-gated channel subfamily A member 
1, which is a key player in the perception of mechanical 
stimuli (Hao et al., 2013). ADORA1 that codes for ade-
nosine A1  receptor is suggested to have anti-nociceptive 
properties, following surgery (Gan & Habib, 2007), and 
to reduce thermal hyperalgesia and mechanical allody-
nia in animal models of neuropathic pain (Gong et al., 
2010; Wu et al., 2005). MTOR that codes for the mamma-
lian target of rapamycin has a role in inflammatory- and 
opioid-induced hyperalgesia (Xu et al., 2011, 2014) and 
acts as a regulator of neuroplasticity in the CNS (Hoeffer 
& Klann, 2010; Jaworski & Sheng, 2006). SCN3B encodes 
for the b3 subunit of voltage-gated sodium channel (Nav) 
(Morgan et al., 2000) and is implicated in neuropathic 
pain (Casula et al., 2004; Lopez-Santiago et al., 2006; 
Pertin et al., 2005). Finally, PTAFR encodes for a member 
of the G-protein coupled receptor 1 family of proteins for 
platelet-activating factor and is involved in the perception 
and maintenance of neuropathic pain by regulating the 
production of pro-inflammatory cytokines in the dorsal 
root ganglion (Okubo et al., 2012; Shindou et al., 2017; 
Tsuda et al., 2011).

The results of pathway analysis for anterior tibia PPT 
revealed overrepresented pathways associated with sys-
tolic blood pressure, obesity-related traits, night sleep 
phenotypes, amyotrophic lateral sclerosis, type 2 diabetes, 
systemic juvenile idiopathic arthritis, body mass index 
and hand grip strength. These traits are often comorbid 
with OA and have been previously associated with pain 
from OA (Swain et al., 2020). For instance, cardiovascular 
disease and OA share similar underlying disease mecha-
nisms (Fernandes & Valdes, 2015). Obesity is a major risk 
factor for OA and shares common genetic variations with 
OA (Panoutsopoulou et al., 2014). Disturbed sleep has 
been associated with increased pain in OA (Doherty & 
Smith, 1993; Smith et al., 2009), while pain has been sug-
gested to increase the risk of developing frailty (low hand 
grip strength) in OA (Valdes & Stocks, 2018; Veronese 
et al., 2017).

Meta-analysis of distal sensitization and neuropathic-
like pain revealed ‘top-hits’ in genes involved in bone 
morphogenesis, CRTAP (Morello et al., 2006) and WNT9A 
(Regard et al., 2012). A recent GWAS identified WNT9A 
as a robust novel genetic marker for hand OA (Boer 
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et al., 2021). We identified several inflammation-related 
genes, POLR3E (Chiu et al., 2009), AIM2 (Hornung et al., 
2009), IFNGR1 (van de Wetering et al., 2010), LDLRAD4 
(Nakano et al., 2014) and HRH1 (Dong et al., 2014). 
Increased accumulation of pro-inflammatory factors in 
the joint accompanying synovitis, is highly correlated to 
OA pain (Berenbaum, 2013). Despite the role of POLR3E, 
AIM2, IFNGR1 in inflammation, evidence suggests that 
these genes are also involved in neuroinflammation, 
neurodegeneration and neuroplasticity, processes related 
to central pain facilitation and neuropathic pain (Ji et al., 
2018; Latremoliere & Woolf, 2009; Myers et al., 2006). 
For example, POLR3E participates in pre-mRNA splic-
ing and transcription and aged mice showed reduced 
expression of POLR3E (Kohman et al., 2011). Improper 
RNA splicing can result in abnormal translation of RNA 
and is associated with many age-related diseases in-
cluding Alzheimer's disease (Meshorer & Soreq, 2002). 
Furthermore, AIM2 is involved in neuroinflammation 
and neurodegeneration (Cox et al., 2015; Wu et al., 2017), 

as well as in neuronal plasticity and memory (Chen et al., 
2019; Wu et al., 2016). Moreover, deletion of IFNGR1 re-
sults in complete abrogation of neuroinflammation and 
nigrostriatal degeneration, suggesting a role of this gene in 
neuroinflammation and neurodegeneration (Strickland 
et al., 2018). We also identified genes involved in obesity 
and adiposity, AIM2 (Gong et al., 2019), IFNGR1 (Locke 
et al., 2015), DNAH7 (Söhle et al., 2012) and CADM2 
(Graff et al., 2017), as well as type 2 diabetes and cardio-
vascular disease, DNAH7 (Vujkovic et al., 2020), DDX59 
(van der Harst & Verweij, 2018), WDR25 (Perry et al., 
2014) and CLDN20 (Heid et al., 2010). Additionally, we 
found genes associated with intelligence, educational 
attainment, cognitive performance and psychological 
traits, CRTAP (Hall et al., 2018), CCDC14 (Hill et al., 
2019), TFB1  M, ROPN1 (Lee et al., 2018), HRH1 (Shan 
et al., 2015) and CADM2 (Okbay et al., 2016). There is 
strong epidemiological evidence of a link between cogni-
tive function, depression/anxiety and pain in people with 
arthritis (James & Ferguson, 2019).

T A B L E  3   Gene-set analysis for anterior tibia PPT MAGMA FDR-adjusted significant genes

GeneSet N n p-value Adjusted p Genes

Systolic blood pressure 793 26 1.88e-7 2.52e-4 CPSF3L, NME7, ADORA1, WNT9A, GPR137B, 
CACNB2, SYNPO2L, TCF7L2, NOX4, SYT1, 
MYCBP2, HOXB7, INSR, RGL3, SLC8A1, COBLL1, 
TNS1, COL4A4, JPH2, ITPR1, HRH1, FGD5, 
CTNNB1, MITF, ADRB2, TBXAS1

Obesity-related traits 756 25 2.77e-7 2.52e-4 CSF1, AIM2, CACNB2, SLC29A3, NAV2, NOX4, 
IL10RA, ANO2, SYT1, FAM155A, SAMD4A, MAX, 
FAM189A1, CEP152, SLC8A1, MACROD2, ITPR1, 
NCEH1, TLL1, LRFN2, GRIK2, NXPH1, AUTS2, 
TBXAS1, HR

Night sleep phenotypes 538 20 7.48e-7 4.51e-4 SPTA1, WNT9A, LRIG3, SAMD4A, AEN, PMP22, 
ZNF830, RTTN, ZNF486, LRP1B, UBOX5, TASP1, 
DTD1, CACNA2D3, LRTM1, GALNTL6, NADK2, 
RANBP3L, EPB41L4A, HRH2

Amyotrophic lateral 
sclerosis (sporadic)

164 11 9.94e-7 4.51e-4 FANK1, RYR3, ANKRD29, RNF165, MACROD2, 
MYO18B, TAPT1, TLL1, LRFN2, AUTS2, TBXAS1

Coronary artery calcified 
atherosclerotic plaque 
score in type 2 diabetes

26 5 5.65e-6 2.05e-3 LRP1B, MAGI1, ZBTB49, OSBPL3, MTSS1

Systemic juvenile idiopathic 
arthritis

34 5 2.24e-5 6.77e-3 KLF17, WWOX, ZNF521, TAPT1, COL12A1

Body mass index 1365 31 2.65e-5 6.88e-3 MTOR, FAM63A, CACNB2, TCF7L2, PNLIPRP3, 
STK33, SFSWAP, POLR2 M, CHTF18, CYLD, 
MYO19, CDC27, POP4, LRP1B, COBLL1, COL4A4, 
MACROD2, ENTPD6, TAF4, CACNA2D3, 
COL25A1, FGF2, TLL1, LRFN2, COL19A1, IFNGR1, 
RGS17, SBDS, AUTS2, TSGA13, DMD

Hand grip strength 156 9 3.21e-5 7.28e-3 TCF7L2, SYT1, SAMD4A, SLC8A1, DNER, ITPR1, 
CADPS, LRFN2, AUTS2

Note: The results of pathway analysis showing overrepresented pathways, before and after B–H correction.
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We do not find significant associations with some of the 
candidate genes previously reported to be associated with 
a pain phenotype, such as COMT, SCN9A and TRPV1, in 
our GWGAS. This can be partly explained due to differ-
ent analysis methods. In candidate gene studies, genes 
are selected a priori and only very small regions of the 
genome are investigated at a time, meaning that import-
ant genes may be overlooked using this method (Warner 
& Valdes, 2017). Furthermore, a lack of reproducibility 
of SNPs in candidate genes in GWAS meta-analyses has 
been previously shown. For example, candidate COMT 
SNPs were not reproduced in a GWAS meta-analysis of 
chronic widespread pain (Peters et al., 2013). In addition, 
although COMT has been extensively studied in relation 
to pain, results from candidate gene studies are not consis-
tent (Hagen et al., 2006; Hocking et al., 2010; Nicholl et al., 
2010). Rare and drastic mutations in the SCN9A gene that 
explain different types of congenital insensitivity to pain 
have been identified (Cox et al., 2006). Nevertheless, in 
addition to these rare-causing mutations, it is known that 
the genetic risk for chronic pain is due to common varia-
tions with small effect size (Mogil, 2012). TRPV1 has been 
associated with heat pain sensitivity, and thus it is not 
necessarily implicated in mechanical pain transduction. 
Indeed, it was shown that TrpV1 neurons are selectively 
tuned nociceptors that mediate responses to thermal but 
not mechanical pain (Mishra & Hoon, 2010).

Limitations of the current study include the small sam-
ple sizes of the individual cohorts used that are not suffi-
cient to power genome-wide significant results. We tried 
to overcome this by running gene-based meta-analysis of 
the two cohorts. Findings from GWAS are generally prone 

to type 1 errors (Bacanu et al., 2000). This was addressed 
by adjusting results for FDR with B–H (Benjamini, 2010). 
Another limitation with the use of GWAS is the possibil-
ity of inflated effect sizes (Ioannidis, 2008). We performed 
GWGAS and gene-set analysis that may have higher 
power to identify the causal variants of complex diseases, 
as it takes into consideration the correlations among SNPs 
within a single gene (Kang et al., 2013). Gene-based tests 
are designed to identify genes containing multiple risk 
variants that individually are weakly associated with a 
univariate trait (Chung et al., 2019). There is a possibil-
ity that distal PPTs are reflective of central sensitization 
mechanisms but can also reflect features of peripheral (in-
flammatory) mechanisms and while neuropathic pain is 
presumed to result from abnormal neuronal activity of the 
somatosensory nervous system, glial cell dysfunction may 
also contribute (Ji et al., 2013). Indeed, distal and local 
PPTs were correlated in our cohort (r = 0.72, p < 0.001) 
and from our meta-analysis of distal sensitization and 
neuropathic-like pain, we found some inflammation-
related genes. However, these genes are also associated 
with neuroinflammation, neurodegeneration and neu-
roplasticity, processes related to central pain processing 
and neuropathic-like pain (Ji et al., 2018; Latremoliere & 
Woolf, 2009; Myers et al., 2006). In addition, painDETECT 
scores apart from being associated with signs of central 
sensitization (e.g. reduced PPTs) (Hochman et al., 2013) 
can also reflect nerve damage (Sumitani et al., 2016). 
Although the majority of the patients in the KPIC cohort 
had unilateral OA (75.19%), 33 patients had bilateral OA 
and thus, for these patients the contralateral tibia could be 
an OA affected area.

F I G U R E  2   Gene expression heat-map plot of significant genes from the meta-analysis of anterior tibia PPT and neuropathic-like pain in 
both cohorts
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To conclude, our results suggest that different biolog-
ical processes might be involved in distal and local sen-
sitization, while common genetic mechanisms might be 
implicated in distal sensitization and neuropathic-like 
pain. Further research is needed to confirm these findings 
and to explore whether other measures of altered pain 
processing (temporal summation and conditioned pain 
modulation) demonstrate similar results.
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