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Abstract
The boreal forest biome is a major component of Earth's biosphere and climate system 
that is projected to shift northward due to continued climate change over the coming 
century. Indicators of a biome shift will likely first be evident along the climatic mar-
gins of the boreal forest and include changes in vegetation productivity, mortality, and 
recruitment, as well as overall vegetation greenness. However, the extent to which a 
biome shift is already underway remains unclear because of the local nature of most 
field studies, sparsity of systematic ground-based ecological monitoring, and reliance 
on coarse resolution satellite observations. Here, we evaluated early indicators of a 
boreal forest biome shift using four decades of moderate resolution (30 m) satellite 
observations and biogeoclimatic spatial datasets. Specifically, we quantified interan-
nual trends in annual maximum vegetation greenness using an ensemble of vegetation 
indices derived from Landsat observations at 100,000 sample sites in areas without 
signs of recent disturbance. We found vegetation greenness increased (greened) at 
38 [29, 42] % and 22 [15, 26] % of sample sites from 1985 to 2019 and 2000 to 2019, 
whereas vegetation greenness decreased (browned) at 13 [9, 15] % and 15 [13, 19] 
% of sample sites during these respective periods [95% Monte Carlo confidence in-
tervals]. Greening was thus 3.0 [2.6, 3.5] and 1.5 [0.8, 2.0] times more common than 
browning and primarily occurred in cold sparsely treed areas with high soil nitrogen 
and moderate summer warming. Conversely, browning primarily occurred in the cli-
matically warmest margins of both the boreal forest biome and major forest types 
(e.g., evergreen conifer forests), especially in densely treed areas where summers be-
came warmer and drier. These macroecological trends reflect underlying shifts in veg-
etation productivity, mortality, and recruitment that are consistent with early stages 
of a boreal biome shift.
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1  |  INTRODUC TION

Climate change could drive major shifts in the geographic extents of 
terrestrial biomes over the coming century (Gonzalez et al., 2010; 
Koven, 2013), especially the boreal forest biome that has warmed 
more rapidly than nearly any other terrestrial domain (Gonzalez 
et al., 2010; Scheffer et al., 2012). The boreal forest biome covers 
~15.1 million km2 (Olson et al., 2001), comprises ~23% of global for-
est area (Sexton et al., 2016), accounts for ~55% of global forest area 
with low human pressure (Venter et al., 2016), and stores greater 
than 32% of all forest carbon (Bradshaw & Warkentin, 2015; Pan 
et al., 2013). Hence, boreal forests are a major component of Earth's 
terrestrial biosphere and climate system (Bonan, 2008), yet vulnera-
ble to a biome shift as the climate continues to change (Baltzer et al., 
2021; Gonzalez et al., 2010; Koven, 2013; Scheffer et al., 2012).

Warming and shifting water availability could cause forest 
losses and gains along the warmest and coolest climatic margins of 
the boreal forest biome, respectively (Beck et al., 2011; Scheffer 
et al., 2012; Tchebakova et al., 2009). Along the warmest margins, 
increasing heat and drought stress could initially decrease vegeta-
tion productivity and increase tree mortality rates (Kharuk et al., 
2020; Peng et al., 2011), eventually causing forest conversion to 
woodlands, shrublands, or grasslands especially if disturbed (Baltzer 
et al., 2021; Scheffer et al., 2012). Conversely, along the coolest mar-
gins, warming could increase vegetation productivity and tree re-
cruitment, gradually causing forest expansion into Arctic and alpine 
tundra. Field and satellite observations provide some evidence that 
such changes are already underway (Beck et al., 2011; Dial et al., 
2007; Esper & Schweingruber, 2004; Frost & Epstein, 2014; Mamet 
et al., 2019), with a recent synthesis finding altitudinal or latitudi-
nal treeline advance during the 20th century at 79 of 151 (i.e., 52%) 
study locations in the boreal forest–tundra ecotone (Rees et al., 
2020). Ecosystem models predict further changes along the climatic 
margins of the boreal forest biome with continued climatic changes 
over the coming century (Foster et al., 2019; Gonzalez et al., 2010; 
Tchebakova et al., 2009). Nevertheless, the extent to which a biome 
shift is already underway remains unclear across the enormous bo-
real forest because of the local nature of most field studies, sparsity 
of systematic ground-based ecological monitoring, and reliance on 
coarse resolution satellite data.

Earth-observing satellites make it possible to assess multidecadal 
changes in vegetation greenness across the boreal forest that could 
provide evidence of an emerging biome shift. Remotely sensed met-
rics of vegetation greenness (e.g., Normalized Difference Vegetation 
Index [NDVI]) are indicators of vegetation productivity and mortal-
ity (Boyd et al., 2021; Rogers et al., 2018; Sellers, 1987). Therefore, 
if a biome shift is occurring, we expect [1] declining vegetation pro-
ductivity and increasing mortality to cause long-term decreases in 
vegetation greenness (browning) along the warmest margins and 
[2] increasing productivity and recruitment to cause long-term in-
creases in vegetation greenness (greening) in the forest–tundra ec-
otone (Beck et al., 2011). Greening and browning trends consistent 
with these expectations have been detected in Alaska, where they 

were corroborated by long-term changes in tree growth (Beck et al., 
2011). Pan-boreal greening and browning trends broadly consistent 
with these expectations have been detected over the past four de-
cades using NDVI derived from spectral measurements made by 
the Advanced Very High Resolution Radiometers (AVHRR) (Beck & 
Goetz, 2011; Bunn & Goetz, 2006). However, boreal greening and 
browning trends are strongly influenced by forest disturbance (e.g., 
wildfire, harvest) and subsequent succession that fundamentally 
hinder efforts to detect a biome shift using coarse spatial resolution 
(generally ~8 km) AVHRR NDVI (Sulla-Menashe et al., 2017; Wang 
& Friedl, 2019). Furthermore, there is substantial uncertainty in 
AVHRR NDVI time series partly because of challenges with cross-
calibrating measurements from sensors on 16 different satellites 
(Guay et al., 2014). Therefore, to detect an emerging biome shift, ef-
forts are needed to assess pan-boreal changes in vegetation green-
ness using well-calibrated higher resolution satellite measurements 
(National Academies of Sciences, 2019).

The Landsat satellites and new metrics of vegetation greenness 
could provide further insight into the extent and potential drivers 
of an emerging boreal biome shift. The sensors on Landsat 5, 7, and 
8 together provide 30-m resolution measurements of surface re-
flectance across most of Earth's land surface since the early 1980s 
(Wulder et al., 2019). This spatial resolution makes it more possible 
to account for impacts of disturbance and succession when evaluat-
ing vegetation greenness trends (Fiore et al., 2020; Sulla-Menashe 
et al., 2017; Wang & Friedl, 2019). Moreover, recent advances in 
cloud computing (Gorelick et al., 2017) and data processing tech-
niques (Berner et al., 2020; Zhu et al., 2015) have facilitated large-
scale analyses using the Landsat satellites (Berner et al., 2020; 
Hansen et al., 2013; Pastick et al., 2019) by helping to overcome is-
sues with large amounts of data, low temporal resolution (~16 days), 
and lingering need for cross-sensor calibration (Berner et al., 2020; 
Ju & Masek, 2016). Also, compared with NDVI, there are newer 
vegetation indices (e.g., EVI2, NIRv, kNDVI) that may be better in-
dictors of vegetation productivity (Badgley et al., 2017; Camps-Valls 
et al., 2021; Jiang et al., 2008). Despite these advances, pan-boreal 
changes in vegetation greenness potentially associated with early 
stages of a biome shift have yet to be assessed using the Landsat 
satellites.

Here, we evaluated changes in annual maximum vegetation 
greenness and their links with environmental drivers at recently 
undisturbed sample sites distributed across the boreal forest biome 
using nearly four decades of Landsat satellite imagery and environ-
mental datasets (Figure 1). Specifically, we examined (i) the extent 
that vegetation greenness changed from 1985 to 2019 and 2000 to 
2019; (ii) how changes varied with tree cover, land cover, and mean 
summer warmth; and (iii) the degree that greening and browning 
were associated with potential environmental drivers including cli-
mate, soils, and topography. We hypothesized there is an emerging 
boreal forest shift that includes browning in areas with high sum-
mer temperatures and dense tree cover, as well as greening in areas 
with low summer temperatures and sparse tree cover. Our analysis 
revealed changes in vegetation greenness during the last several 
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decades that are consistent with early stages of a boreal biome shift. 
An ongoing biome shift could have wide-ranging implications for 
biodiversity, hydrology, permafrost, climate feedbacks, and commu-
nities across the high northern latitudes.

2  |  MATERIAL S AND METHODS

2.1  |  Identifying recently undisturbed areas in the 
boreal forest

Our objective was to evaluate changes in vegetation greenness over 
the past four decades across recently undisturbed areas with natu-
ral vegetation in the boreal forest biome. The boreal forest spans 
~15.1 million km2 (Olson et al., 2001) and includes a mosaic of for-
est and nonforest land cover classes in various states of recovery 
from prior disturbances (e.g., wildfires, harvest) (Sulla-Menashe 

et al., 2017; Wang et al., 2019). We defined the spatial extent of the 
boreal forest biome using the Terrestrial Ecoregions of the World 
dataset (Olson et al., 2001) gridded at 300-m resolution in a North 
Pole Lambert Azimuthal Equal Area projection. Drawing on regional 
and global geospatial datasets (Table 1), we then applied a series of 
masks to exclude grid cells with nonvegetated or anthropogenic land 
cover (ESA, 2017), as well as grid cells with evidence of human pres-
sure (Venter et al., 2016) or disturbance since the early 1980s (Giglio 
et al., 2018; Guindon et al., 2017; Hansen et al., 2013; Kasischke 
et al., 2002; Loboda & Chen, 2016). We resampled several 30-m 
resolution disturbance datasets to the 300-m grid and excluded 
grid cells with any evidence of disturbance. The MODIS burned 
area (Giglio et al., 2018) and Russian Young Forest (Loboda & Chen, 
2016) datasets were originally gridded at 500-m resolution. To ac-
count for potential unrecorded disturbance in adjacent grid cells, 
we grew each disturbed grid cell outward by one grid cell in every 
direction and then masked out these grid cells. After masking out 

F I G U R E  1  Spatial extent of boreal forest study domain and locations of Landsat sample sites. (a) Boreal forest stretches across northern 
Eurasia and North America to form one of Earth's largest terrestrial biomes (15.1 million km2). The boreal study domain (green) included 
natural vegetation with low human pressure and no detectable disturbance since the early 1980s (8.4 million km2). Lands in the boreal 
forest that were masked from analysis are shown in white. (b,c) Locations of Landsat sample sites that were used for assessing changes in 
vegetation greenness from (b) 1985 to 2019 and (c) 2000 to 2019, shown here as the number of sample sites in a 30 x 30 km grid cell. Lands 
in the boreal forest without adequate data for time series analysis are shown in dark gray. The spatial extent of the boreal forest biome is 
from the World Wildlife Foundation's Terrestrial Ecoregions of the World dataset (Olson et al., 2001). Map Projection: North Pole Lambert 
Azimuthal Equal Area

Description Period
Resolution 
(m) Reference

Global Land Cover 2018 300 ESA (2017)

Global Human Footprint 2009 1000 Venter et al. (2016)

Global Forest Change 2001–2019 30 Hansen et al. (2013)

Global MODIS Burned Area 2000–2019 500 Giglio et al. (2018)

Alaskan Large Fires 1984–2019 --- Kasischke et al. (2002)

Canadian Landsat Disturbance 1984–2015 30 Guindon et al. (2017)

Russian Young Forests 1985–2012 500 Loboda and Chen (2016)

TA B L E  1  Geospatial datasets used 
to mask nonvegetated land cover, 
anthropogenic land cover, and recently 
disturbed areas from the analysis
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nonvegetated, anthropogenic, and potentially disturbed areas, our 
resulting study area (sampling frame) comprised 56% (8.43 million 
km2) of the boreal forest biome (Figure 1a). We processed geospatial 
data with the raster (Hijmans, 2019) and gdalUtilities (O'Brien, 2019) 
packages in the statistical software R (version 4.0) (R Core Team, 
2021), with subsequent data handling and visualization facilitated by 
the packages data.table (Dowle & Srinivasan, 2021), dplyr (Wickham 
et al., 2021), tidyr (Wickham, 2021), ggplot2 (Wickham, 2016), and 
ggpubr (Kassambara, 2020).

2.2  |  Generating time series of annual maximum 
vegetation greenness using the Landsat satellites

We developed time series of annual maximum vegetation green-
ness from 1985 to 2019 for 105 random sample sites using 30-m 
resolution measurements of land surface reflectance from Landsat 
5, 7, and 8. We focused on annual maximum vegetation greenness 
because it correlates with vegetation productivity and mortality 
(Berner et al., 2020; Boyd et al., 2021; Erasmi et al., 2021) and can be 
reliably estimated with Landsat data (Berner et al., 2020), whereas 
metrics like annual integrated growing season vegetation greenness 
are not readily derived using these satellite data given their low tem-
poral resolution. Landsat surface reflectance data were produced by 
the United States Geological Survey (USGS) as part of the Landsat 
Collection 2 (Tier 1 and Tier 2) dataset that included corrections for 
atmospheric and terrain effects based on the Landsat Ecosystem 
Disturbance Adaptive Processing System (Masek et al., 2006) and 
Landsat 8 Surface Reflectance Code (Vermote et al., 2016). We 
generated 105 random sample sites across the sampling frame. 
Each sample site had a 900-m2 footprint, indicating the total area 
across all sample sites was 90 km2 or ~0.001% of the sampling frame 
(Figure 1b,c). For each sample site, we then extracted all Landsat sur-
face reflectance measurements acquired June through August (days 
of year 152–243) between 1985 and 2019, for a total of 41.6 million 
multispectral surface reflectance measurements across all sample 
sites. Landsat data were extracted from the archive on Google Earth 
Engine (Gorelick et al., 2017) using the rgee interface (Aybar et al., 
2020) accessed through the lsatTS package in R (Berner et al., 2022).

After extracting Landsat data for each sample site, we then 
filtered out unusable measurements using pixel- and scene-level 
criteria following workflows developed as part of several studies 
(Berner et al., 2018, 2020). Specifically, we filtered out observations 
affected by clouds, cloud shadows, surface water, or snow using the 
Function of Mask (Fmask) algorithm (Zhu et al., 2015) and further 
masked residual water using a Landsat-based global surface water 
dataset (Pekel et al., 2016). We also excluded measurements with 
suspiciously low (<0.005) or high (>1) surface reflectance, as well 
as measurements from scenes with >80% cloud cover, >30-m geo-
metric uncertainty, >60° solar zenith angle. Data cleaning was con-
ducted using the lsatTS package in R (Berner et al., 2022). In total, 
there were 16.6 million clear-sky, multispectral surface reflectance 
measurements across all sample sites.

We developed time series of annual maximum vegetation green-
ness for each sample site using clear-sky surface reflectance mea-
surements in a Monte Carlo uncertainty framework. Estimates of 
annual maximum vegetation greenness are influenced by multiple 
sources of uncertainty that include sensor radiometric calibration, 
the selected metric of vegetation greenness (e.g., NDVI, EVI2), sys-
tematic differences in vegetation greenness among sensors, and the 
timing and availability of measurements. We therefore propagated 
these sources of uncertainty through our analysis using Monte 
Carlo simulations (n = 103) and used recently developed techniques 
to cross-calibrate vegetation indices among sensors and estimate 
annual maximum vegetation greenness (Berner et al., 2020). The 
Monte Carlo simulations were performed using a high-performance 
computing cluster at Northern Arizona University with cross-sensor 
calibration and phenological modeling implemented using algo-
rithms from the lsatTS package in R (Berner et al., 2022). The ap-
proaches for cross-sensor calibration and phenological modeling are 
briefly described below, with additional details provided in Berner 
et al. (2020).

For each simulation, we randomly selected 90% of surface re-
flectance measurements at every sample site and then randomly 
permuted red and near infrared reflectance measurements by up 
to ±7%, 5%, or 3% for Landsat 5, 7, and 8, respectively (Markham 
et al., 2014; Markham & Helder, 2012). We then derived one of four 
randomly selected vegetation indices that included NDVI (Rouse 
et al., 1974), EVI2 (Jiang et al., 2008), NIRv (Badgley et al., 2017), and 
kNDVI (Camps-Valls et al., 2021). To address systematic differences 
in vegetation indices among sensors that could introduce spurious 
greening trends (Figures S1–S4), we cross-calibrated each vegeta-
tion index using a machine learning approach that matches Landsat 
5/8 to Landsat 7, which is used as a benchmark because it tempo-
rally overlaps multiple years with the other sensors. Briefly, this ap-
proach involves identifying years when Landsat 5/8 and Landsat 7 
both imaged a sample site, and then for each sensor computing the 
median vegetation index across these years focusing on a randomly 
selected, well-sampled 15-day period during summer. A Random 
Forest machine learning model is then trained to predict the me-
dian vegetation index from Landsat 7 based on the median vegeta-
tion index from Landsat 5/8 and information on the timing of each 
15-day period and the spatial location of each sample site. Cross-
validation showed that for each vegetation index, these models ef-
fectively minimized biases among sensors (Figures S1–S4, Table S1).

We estimated annual maximum vegetation greenness at each 
sample site using phenological modeling that prevents spurious 
greening trends due to increasing available of Landsat scenes over 
time (Berner et al., 2020). For each sample site, this approach 
iteratively pooled observations over multiple years (n  =  5, 7, or 
9  years), fit cubic splines of varying stiffness (spar = 0.65–0.75) 
that described the seasonal land surface phenology during those 
years, and then estimated maximum vegetation greenness for 
each year by adjusting individual observations from that year 
based on the phenological timing of their acquisition. Previous 
evaluation showed that this approach yielded robust estimates 
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of annual maximum vegetation greenness even when few obser-
vations are available from a single growing season (Berner et al., 
2020). Overall, this approach enabled us to develop time series of 
annual maximum vegetation greenness that could be used to rig-
orously evaluate recent greening and browning trends, and trend 
uncertainty, across the boreal forest biome.

2.3  |  Analyzing vegetation greenness trends

We assessed temporal trends in annual maximum vegetation 
greenness from 1985 to 2019 and 2000 to 2019 using Landsat 
satellite measurements from sample sites located in recently un-
disturbed areas across the boreal forest biome. These periods 
enabled the assessment of changes over the available record of 
Landsat 5, 7, and 8, as well as over the first 20 years of the 21st 
century when there is improved spatial coverage of observations. 
For every Monte Carlo simulation (n = 103), we tested each vege-
tation greenness time series for the presence of a monotonic trend 
during both periods using rank-based Mann–Kendall trend tests 
and Theil–Sen slope estimators following the removal of temporal 
autocorrelation (Yue et al., 2002). These steps were implemented 
using the zyp package in R (Bronaugh & Werner, 2019). We then 
classified changes in vegetation greenness at each sample site dur-
ing both periods as greening, no trend, or browning based on the 
sign and significance (α = .10) of the trend assessment. This gen-
eral approach for time series analysis is less sensitive to outliers 
than ordinary least squares regression and has been widely used in 
prior remote sensing assessments of vegetation greenness trends 
in high northern latitude ecosystems (Berner et al., 2013; Forkel 
et al., 2013; Guay et al., 2014).

To visualize spatial patterns of vegetation greenness trends, we 
stratified the sample sites by ecological land unit (ELU) and then sum-
marized changes within each ELU. The Global ELU dataset identifies 
areas with similar ecophysiographic conditions (Sayre et al., 2014). 
We majority resampled the ELU dataset from 30-m resolution to 
our 300-m grid and then masked out nonvegetated, anthropogenic, 
and potentially disturbed areas as described above. There were 431 
unique ELUs in our study domain. After stratifying sample sites by 
ELU, we then computed and mapped not only the percentage of 
sample sites that greened or browned but also the median percent 
change in vegetation indices among sample sites in each ELU. These 
were effective means of summarizing patterns of change across a 
large network of sample sites.

2.4  |  Summarizing vegetation greenness trends by 
land cover and tree cover

To better understand biological conditions associated with recent 
greening and browning, we assessed how changes in vegetation 
greenness varied with land cover class and tree cover across re-
cently undisturbed sample sites in the boreal forest biome. For 

these analyses, we focused on changes in vegetation greenness 
from 2000 to 2019 rather than 1985 to 2019 because there is 
improved spatial coverage of Landsat data in the 2000s (Wulder 
et al., 2016) and greenness trends during the more recent period 
are likely less affected by vegetation recovery following distur-
bances in the 1960s and 1970s (Fiore et al., 2020; Sulla-Menashe 
et al., 2017). We characterized land cover class using the European 
Space Agency's Climate Change Initiative Land Cover dataset that 
represented conditions in 2018 at 300-m spatial resolution (ESA, 
2017). This dataset includes 37 land cover classes that we consoli-
dated to 10 simplified classes including deciduous broadleaf forest 
(DBF), deciduous needleleaf forest (DNF), evergreen needleleaf 
forest (ENF), mixed forest (MF), mosaic vegetation, shrublands, 
grasslands, wetlands, sparse vegetation, and other (e.g., urban 
areas, baren areas, water). The primary types of trees in DBF in-
clude aspen and birch (e.g., Populus tremula, P. tremuloides, Betula 
spp.), while DNF is composed of larch (e.g., Larix cajanderi, L. gmeli-
nii, L. sibirica), and ENF is mostly composed of spruce (e.g., Picea 
glauca, P. mariana, P. obovata) and pine (e.g., Pinus banksiana, P. syl-
vestris, P. sibirica). For every Monte Carlo simulation (n = 103), we 
computed the absolute and relative occurrences of sample sites 
that greened, had no trend, or browned in each land cover class. 
We then derived best estimates (medians) and 95% confidence in-
tervals (2.5th and 97.5th percentiles) of the absolute and relative 
occurrence of each trend class in every land cover class by sum-
marizing across Monte Carlo simulations. Overall, this allowed us 
to characterize not only the absolute and relative extent of recent 
greening and browning in each land cover class but also the uncer-
tainty associated with these estimates.

We examined how recent change in vegetation greenness var-
ied with tree cover. Here, we used tree cover based on the MODIS 
Vegetation Continuous Fields dataset that represented conditions 
averaged from 2017 to 2019 at 250-m spatial resolution (DiMiceli 
et al., 2021). First, we estimated average tree cover across sample 
sites that greened, had no trend, or browned while also determin-
ing the 95% confidence intervals around these estimates using the 
Monte Carlo simulations. Next, we examined how the prevalence 
(i.e., relative occurrence) of greening and browning varied along spa-
tial gradients of increasing tree cover with tree cover binned at 1% 
increments. We again computed best estimates (medians) and 95% 
confidence intervals using the Monte Carlo simulations. We also as-
sessed the association between tree cover and the prevalence of 
greening and browning using Pearson's correlations computed using 
each Monte Carlo simulation. This analysis provided multiple per-
spectives on how recent greening and browning were related to cur-
rent tree cover across the domain.

2.5  |  Potential topoclimatic drivers of changes in 
vegetation greenness

We explored possible drivers of changes in vegetation green-
ness among sample sites using Random Forest models (Breiman, 
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2001) to predict the vegetation greenness trend class (i.e., green-
ing or browning) from 2000 to 2019 based on climate, soil, and 
topography. We used climatic predictors that included averages, 
changes, and maximum anomalies in the summer warmth index 
(SWI; °C), summer vapor pressure deficit (VPD; kPa), summer soil 
moisture (cm), and annual water deficit (cm) from 2000 to 2019 
derived from monthly TerraClimate data gridded at 4-km resolu-
tion (Abatzoglou et al., 2018). The SWI is a metric of growing sea-
son heat load that is computed as the annual sum of mean monthly 
air temperatures across all months exceeding 0°C (Walker et al., 
2003), which can extend from roughly April through October in 
the southern boreal forest and June through September in the 
northern boreal forest. The SWI is widely used in Arctic and bo-
real ecological research (e.g., Berner et al., 2020; Keenan & Riley, 
2018; Raynolds et al., 2008) and is similar to growing degree 
days but computed using monthly rather than daily temperature 
data. For each climatic predictor, the direction and magnitude of 
change from 2000 to 2019 were determined for every grid cell 
using Theil–Sen slope estimators. The magnitude of extreme heat 
and drought stress was also derived using the 20-year maximum 
(SWI, water deficit, VPD) or minimum (soil moisture) standardized 
anomaly (i.e., z-score) for each grid cell. Additional predictors in-
cluded mean annual surface soil temperature from 2000 to 2016 
(Obu et al., 2018) and soil nitrogen content at standard depths 
(0–5  cm, 5–15  cm, 15–30  cm) (Hengl et al., 2017). Soil nitrogen 
at 15–30 cm was strongly correlated (r =  .83–.93) with nitrogen 
at deeper depths (30–60  cm, 60–100  cm, and 100–200  cm), so 
the deeper depths were not included. Topographic predictors in-
cluded elevation, slope, eastness, and southness from the Global 
Multi-resolution Terrain Elevation Data (GMTED2010) (Danielson 
& Gesch, 2011). Pairwise correlations between all predictors were 
r  ≤  .70. In total, we used 20 predictor variables in the Random 
Forest models. This general approach builds on our prior efforts to 
explore drivers of recent vegetation greening and browning across 
the Arctic tundra biome (Berner et al., 2020).

We focused on sample sites that either greened or browned 
and trained a unique Random Forest classification model for every 
Monte Carlo simulation (n = 103). More sample sites greened than 
browned, so we balanced the sample size between trend classes by 
randomly selecting the same number of sample sites that greened 
as that browned. We randomly selected sample sites for model 
training (75%) and evaluation (25%) and then tuned the Random 
Forest models by determining the number of variables to assess 
at each node to optimize classification accuracy. We selected the 
model with the highest out-of-bag classification accuracy and then 
cross-validated the model with data that was withheld for eval-
uation. Finally, we assessed variable importance using the mean 
decrease in accuracy metric and produced partial dependency 
plots that describe how the classification probability of each class 
changes over the range of each predictor while keeping other pre-
dictors at their mean value. This processes relied on tools from 
the R packages randomForest (Liaw & Wiener, 2002), caret (Kuhn, 
2008), and pdp (Greenwell, 2017).

3  |  RESULTS

3.1  |  Vegetation greenness trends in recently 
undisturbed boreal forest

Our analysis of Landsat satellite observations revealed wide-
spread changes in vegetation greenness during the past four 
decades across recently undisturbed natural vegetation in the 
boreal forest biome (Figure 2). Landsat observations were not 
available across much of eastern Eurasia and Alaska prior to the 
year 2000, and thus for these regions, we did not assess changes 
in vegetation from 1985 to 2019 but did from 2000 to 2019 
(Figure 1b,c). Across sample sites, median vegetation greenness 
increased 5.2 [2.3, 7.7] % from 1985 to 2019 and 1.7 [−0.8, 3.6] 
% from 2000 to 2019, or 0.15 [0.06, 0.22] % yr−1 and 0.08 [−0.04, 
0.18] % yr−1 during these two periods, respectively [95% Monte 
Carlo confidence intervals]. Similar changes in median vegeta-
tion greenness were evident from 2000 to 2019 whether we 
examined all sample sites or only sample sites used to assess 
changes from 1985 to 2019 (i.e., 0.08 [−0.04, 0.18] % yr−1 vs. 
0.07 [−0.06, 0.14] % yr−1).

Vegetation greenness increased (critical value [α] = .10; greened) 
at 38 [29, 42] % and 22 [15, 26] % of sample sites from 1985 to 2019 
and 2000 to 2019, respectively. Conversely, vegetation greenness 
decreased (α = .10; browned) at 13 [9, 15] % and 15 [13, 19] % of 
sample sites during these respective periods. There were no system-
atic trends in vegetation greenness (α = .10) at the remaining 48 [44, 
61] % and 64 [61, 67] % of sites during these periods. Greening was 
thus 3.0 [2.6, 3.5] times more common than browning from 1985 
to 2019 and 1.5 [0.8, 2.0] times more common from 2000 to 2019. 
Summaries for each vegetation index of the ensemble are provided 
in Table S2.

Regional hotspots of changes in vegetation greenness were evi-
dent. Greening hotspots including parts of the West Siberian Plain, 
northern Central Siberian Plateau, and Kolyma Basin in northern 
Eurasia, as well as the Labrador Peninsula and Northwest Territories 
in North America (Figure 2a,c,d,f). Browning hotspots included the 
eastern Central Siberian Plateau in Eurasia, as well as eastern interior 
Alaska and areas south of Great Slave Lake and Hudson Bay in North 
America (Figure 2b,c,e,f). On average, greening occurred in more 
northern latitudes (60.7 [59.0, 60.8] °N) than browning (58.0 [57.7, 
58.3] °N) from 2000 to 2019.

3.2  |  Vegetation greenness trends related to 
tree cover

Greening and browning from 2000 to 2019 generally occurred 
at sample sites with sparse and moderate tree cover, respec-
tively (Figure 3a,b,c). Tree cover averaged 25 [22, 27] % at sam-
ple sites that greened and 40 [39, 41] % at sample sites that 
browned (Figure 3b). Moreover, the prevalence of greening and 
browning markedly changed along spatial gradients in tree cover 
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(Figure 3c). Specifically, with tree cover binned at 1% incre-
ments, an increase in tree cover was associated with decreased 
prevalence of greening (r = −.95 [−.90, −.98]) and increased prev-
alence of browning (r  =  .94 [.90, .98]; Figure 3c). For example, 
moving from sample sites with 5% tree cover to those with 65% 

tree cover, the prevalence of greening decreased from 35 [28, 
42] % to 15 [5, 20] % while the prevalence of browning increased 
from 6 [5, 9] % to 20 [16, 33] %. Overall, there were pronounced 
differences in tree cover between areas that greened versus 
browned.

F I G U R E  2  Changes in vegetation greenness during recent decades across the boreal forest biome. Changes in vegetation greenness were 
assessed from 1985 to 2019 (top row) and 2000 to 2019 (bottom row) at sample sites in recently undisturbed boreal forest using Mann–
Kendall trend tests and Theil–Sen slopes. For visualization, the sample sites were grouped (i.e., stratified) and their trends summarized by 
ecological land unit (ELU), where each ELU is a distinct combination of bioclimate, landform, lithology, and land cover (Sayre et al., 2014). 
(a, d) Prevalence of greening within each ELU, specifically the percent of sample sites where vegetation greenness significantly (α = .10) 
increased over each period. (b, e) Prevalence of browning within each ELU, specifically the percent of sample sites where vegetation 
greenness significantly (α = .10) decreased over each period. (c, f) Overall magnitude of change in vegetation greenness within each ELU 
characterized by the median total percent change in vegetation greenness over each period. Panels (a, b, d, e) characterize how common 
significant changes in vegetation greenness were within each ELU, while panels (c, f) characterize the typical magnitude of change in 
vegetation greenness. There were 431 ELUs in the study domain

F I G U R E  3  Vegetation greenness trends related to tree cover. (a) Tree cover across the boreal forest biome. (b) Mean tree cover across 
sample sites where vegetation greenness significantly (α = .10) increased (greening), exhibited no trend, or decreased (browning) from 2000 
to 2019. (c) Prevalence (i.e., relative frequency) of greening and browning along spatial gradients in tree cover binned at 1% increments. 
Correlation coefficients (r) between tree cover and the prevalence of greening and browning. Tree cover exceeded 68% at 1% of sample 
sites and these were excluded when correlations were computed given the small number of sample sites within each 1% tree cover bin. The 
panels depict best estimates (dots or lines) and 95% confidence intervals (whiskers or bands) derived from Monte Carlo simulations (n = 103). 
Tree cover data from the MODIS Vegetation Continuous Fields dataset (DiMiceli et al., 2021)
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3.3  |  Vegetation greenness trends related to land 
cover class

The study domain was primarily (65%) composed of two forest 
types that accounted for much of the greening and browning from 
2000 to 2019 (Figure 4a,b). These included evergreen needleleaf 
forest (ENF) that comprised 36% of all sample sites and accounted 
for 29 [26, 32] % and 44 [41, 47] % of all greening and browning, 
respectively. Deciduous needleleaf forest (DNF) comprised 29% of 
all sample sites and accounted for 31 [28, 37] % and 28 [25, 30] % of 
all recent greening and browning, respectively. Mixed forests (MF) 
of needleleaf and broadleaf trees made up only 6% of all sample 
sites, but accounted for 10 [9, 11] % of all browning. The other six 
land cover classes each made up 1–9% of all sample sites and each 
accounted for less than 10% of all greening or browning (Figure 4b).

The prevalence (i.e., relative occurrence) of greening and 
browning from 2000 to 2019 widely varied among land cover 
classes across the biome (Figure 4c, Table S3). Greening was par-
ticularly prevalent in cold nonforest land cover classes including 
sparse vegetation, shrublands, and grasslands, where depending 
on land cover class, it occurred at 27 [19, 33] % to 38 [26, 44] % 
of sample sites and was 3.9 [2.1, 6.1] to 7.9 [3.0, 12.4] times more 
common than browning (Table S3). Greening was also more prev-
alent in deciduous needleleaf forests than any other forest class, 
with greening at 23 [19, 26] % of sample sites and about twice as 

common as browning. Browning was most prevalent in mixed-
forest and deciduous broadleaf forest, where it occurred at 25 [22, 
29] % and 21 [18, 27] % of sample sites, respectively. Greening 
was about half as common as browning in these two forest classes 
(Table S3). Greening and browning occurred with approximately 
equal frequency in evergreen needleleaf forest (18 [11, 22] % vs. 18 
[16, 22] % of sample sites) (Figure 4c). There was a strong negative 
correlation between the intraclass prevalence of greening versus 
browning across land cover classes (r = −.92 [−.85, −.96]), such that 
land cover classes with a high prevalence of greening generally had 
low prevalence of browning and vice versa (Figure 4d).

3.4  |  Vegetation greenness trends related to 
summer warmth

During the most recent 20 years, sample sites that greened had 
lower mean summer air temperatures (i.e., SWI) than sample sites 
that browned, both when pooling sample sites across the biome 
and within many individual land cover classes (Figure 5). The mean 
SWI from 2000 to 2019 averaged 53°C across sample sites, with 
95% of sample sites having a mean SWI between 32 and 71°C 
(Figure 5a). For the whole biome, the cross-site average mean SWI 
was lowest at sample sites that greened (52 [50, 53]°C), interme-
diate at sample sites with no trend (55 [54.0, 56]°C), and highest 

F I G U R E  4  Vegetation greenness trends related to land cover class. (a) Distribution of land cover classes across the boreal forest. (b) 
Occurrence of sample sites in each land cover class where vegetation greenness significantly (α = .10) increased (greening), decreased 
(browning), or had no trend (none) from 2000 to 2019 based on Mann–Kendall trend tests. (c) Prevalence of sample sites with recent 
greening or browning in each land cover class. (d) Comparison between the prevalence of greening and browning across land cover classes. 
Land cover classes include evergreen needleleaf forest (ENF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed 
forest (MF), and five colder nonforest classes. Note each land cover class is assigned a unique color that is consistently used. In (b) and (c), 
the land cover classes are ordered by total number of sample sites and prevalence of greening, respectively. Panels depict best estimates 
(bars, dots) and 95% confidence intervals derived from Monte Carlo simulations (n = 103). Land cover data from the European Space 
Agency's Climate Change Initiative Land Cover dataset (ESA, 2017)
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at sample sites that browned (58 [57, 59]°C). Permutation tests 
showed that average mean SWI was significantly (α =  .05) lower 
at sample sites that greened instead of browned not only for the 
overall biome but also for evergreen needleleaf forest, decidu-
ous needleleaf forest, mosaic vegetation, shrublands, and sparse 
vegetation (Figure 5b). Mixed forest was the only land cover class 
where greening occurred at significantly higher average mean SWI 
than browning (p = .03).

3.5  |  Environmental drivers of vegetation 
greenness trends

We assessed the degree to which recent changes in vegetation 
greenness were associated with climate, soil, and topography 
using Random Forest models. Specifically, these classification 
models attributed greening and browning classes from 2000 to 
2019 with environmental predictors. Cross-validated model clas-
sification accuracy was 77 [74, 81] %, while the expected clas-
sification accuracy at random would be ~50% (Table S4). The 
six most important environmental predictors were mean annual 
SWI and soil temperature, followed by elevation and soil nitrogen 
content (0–5 cm depth), as well as changes in SWI and summer 
VPD from 2000 to 2019 (Figure 6a). Greening was most likely 
to occur at sample sites that had low summer air temperatures 
(i.e., SWI), cold soils, and high soil nitrogen, along with slightly 
increased summer air temperatures. Conversely, browning was 
most likely to occur at sample sites with high summer air tem-
peratures, warm soils, and low soil nitrogen, along with increased 
summer air temperatures and VPD (Figure 6b). Greening was also 
more likely at low or high elevations, while browning was more 
likely at mid elevations.

4  |  DISCUSSION

We evaluated changes in vegetation greenness during recent dec-
ades across the boreal forest biome using the Landsat satellites and 
found evidence supporting the hypothesis of an emerging biome 
shift associated with recent climate warming. Focusing on natural 
vegetation with low human pressure and no evidence of recent dis-
turbance, we assessed changes in vegetation greenness using an 
ensemble of cross-calibrated and phenologically harmonized veg-
etation indices derived from moderate resolution Landsat measure-
ments in a Monte Carlo uncertainty framework. We found an overall 
increase in median pan-boreal vegetation greenness with greening 
being 1.5–3.0 times more common than browning, depending on 
period. Greening primarily occurred in cold sparsely treed areas with 
high soil nitrogen and moderate summer warming, whereas brown-
ing was concentrated in warm densely treed areas where summer 
temperatures and VPD increased. Landsat observations of vegeta-
tion greenness have been linked to field measurements of vegetation 
productivity and mortality in boreal and tundra ecosystems (Table 2). 
Our study thus contributes to mounting evidence from field and re-
mote sensing studies showing vegetation changes in the northern 
(Beck et al., 2011; Esper & Schweingruber, 2004; Frost & Epstein, 
2014; Lantz et al., 2019; Rees et al., 2020) and southern (Beck et al., 
2011; Kharuk et al., 2020; Kukavskaya et al., 2016) ecotones of the 
boreal forest that indicate a biome shift is indeed underway, albeit 
not uniformly across these expansive ecotones. Large-scale vegeta-
tion changes over coming decades could have manifold implications 
for biodiversity, hydrology, permafrost, climate feedbacks, and com-
munities across the high northern latitudes.

While median vegetation greenness of recently undisturbed 
areas increased during the past four decades in the boreal forest, 
we found a potential slowdown in the rate of increase during the last 

F I G U R E  5  Vegetation greenness trends related to summer warmth by land cover class. (a) Mean summer warmth index (SWI) from 2000 
to 2019 with SWI computed as the annual sum of mean monthly air temperatures above 0°C. The SWI is an indicator of total annual heat 
load. (b) Cross-site average of mean SWI for sample sites in each land cover class where vegetation greenness increased (greening), had 
no trend (none), or decreased (browning) from 2000 to 2019. Land cover classes are ordered from highest (top) to lowest (bottom) average 
mean SWI. Error bars are 95% confidence intervals derived from Monte Carlo simulations (n = 103). Black stars denote significant (α = .05) 
differences in cross-site average of mean SWI between greening and browning classes based on permutation tests. The SWI was derived 
using TerraClimate data (Abatzoglou et al., 2018)
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two decades. Specifically, median vegetation greenness increased 
at a rate of 0.15 [0.06, 0.22] % yr−1 from 1985 to 2019, but at a rate 
of 0.07 [−0.06, 0.14] % yr−1 from 2000 to 2019. These multidecadal 
changes in vegetation greenness suggest an increase in peak sum-
mer productivity that broadly aligns with enhanced summer carbon 
uptake inferred from atmospheric inversions (Lin et al., 2020; Welp 
et al., 2016), land surface modeling (Forkel et al., 2016), and coarse 
resolution satellite observations (Beck & Goetz, 2011; Park et al., 
2016). Increasing productivity is likely due to warmer and longer 
growing seasons (Forkel et al., 2016; Piao et al., 2020), higher nutri-
ent availability from permafrost thaw (Peng et al., 2020), and expan-
sion of trees and shrubs in the forest–tundra ecotone (Forkel et al., 
2016; Frost & Epstein, 2014), with CO2 fertilization playing a minor 
role (Girardin et al., 2016; Piao et al., 2020). Nevertheless, ongoing 
warming has reduced the extent to which low temperatures limit tree 
growth (Babst et al., 2019) and vegetation canopy cover (Keenan & 
Riley, 2018) across parts of the southern boreal forest. This could 
explain the reduced rate of greening during the last two decades and 
challenges ecosystem models to better account for how boreal for-
est productivity and carbon balance will respond to warming (IPCC, 
2021) with more extreme heatwaves (Perkins-Kirkpatrick & Gibson, 
2017) and droughts (Cook et al., 2020) over the next few decades.

Our Landsat analysis broadly supports changes detected using 
coarse resolution AVHRR NDVI (Guay et al., 2014; Park et al., 2016), 
but also highlights discrepancies between these satellite records that 
are at least partly a result of increased spatial resolution. Our higher 
resolution assessment corroborates greening in sparse forests 
and browning in denser forests (Beck & Goetz, 2011), but showed 

somewhat less greening (38 [29, 42] % vs ~44%) and considerably 
more browning (13 [9, 15] % vs. ~2%) than a recent assessment with 
AVHRR NDVI (Park et al., 2016). Some of these differences may also 
be related to the period and spatial domain analyzed, as well as var-
ious vegetation indices used. Nevertheless, our findings align with 
recent analyses from the Arctic tundra biome (Berner et al., 2020) 
and northern North America (Ju & Masek, 2016). In the boreal for-
est, patches of greening, browning, and stable vegetation can occur 
in close proximity (Ju & Masek, 2016; Wang & Friedl, 2019); thus, 
coarse resolution AVHRR NDVI likely inflates the extent of greening 
given enough greening hotspots in landscapes with otherwise stable 
vegetation. Similarly, AVHRR NDVI likely fails to detect patches of 
browning in landscapes with mostly stable or greening vegetation 
(Berner et al., 2020; Myers-Smith et al., 2020). Landsat's far higher 
spatial resolution makes it more suited for monitoring and under-
standing the types, extents, and drivers of heterogeneous ecologi-
cal changes in the boreal forest (Pastick et al., 2019; Sulla-Menashe 
et al., 2017; Wang et al., 2021), although cross-sensor calibration and 
phenological harmonization are still necessary for consistent use of 
these data (Berner et al., 2020; Ju & Masek, 2016).

We further show widespread greening occurred in the cold 
margins of the boreal forest during the past several decades. 
Specifically, we found greening at 22–38% of sample sites that were 
concentrated in sparse conifer forests with low summer air and an-
nual soil temperatures, as well as in colder tundra land cover classes 
(e.g., shrublands). Regional studies have documented increasing 
growth, cover, and/or density of trees and shrubs in regions where 
we detected extensive greening such as the Labrador Peninsula 

F I G U R E  6  Environmental predictors 
of recent greening and browning. 
Random Forest models predicted with 
77 [74, 81] % accuracy whether samples 
sites significantly (α = .10) greened or 
browned from 2000 to 2019 based on 
environmental predictors. (a) Variable 
importance of the six most important 
predictors as quantified by the mean 
decrease in accuracy, where a higher 
value indicates greater importance 
to classification accuracy. (b) Partial 
dependency plots show how classification 
probability varies with each predictor 
while holding all other predictors in the 
model at their average value. Climate 
means and changes (∆ for SWI and VPD) 
were for the period 2000–2019, except 
for mean annual soil temperature which 
was for the period 2000–2016 given 
available data. The panels depict best 
estimates (dots or lines) and 95% 
confidence intervals (whiskers or bands) 
derived from Monte Carlo simulations 
(n = 103)
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(Canada) (Ropars et al., 2015; Trant & Hermanutz, 2014), Northwest 
Territories (Canada) (Lantz et al., 2013, 2019), and Western Siberia 
(Russia) (Devi et al., 2008; Esper & Schweingruber, 2004; Frost & 
Epstein, 2014). In Western Siberia, tree-ring measurements from 
nine field sites showed increased growth and recruitment of larch 
(Larix spp.), Siberian pine (Pinus sibirica), and Siberian spruce (Picea 
obovata) in the forest–tundra ecotone during periods of decadal 
warming in the 1940–1950s and since the early 1970s (Esper & 
Schweingruber, 2004). In cold northern regions, higher summer 
temperatures can increase tree and shrub growth (Andreu-Hayles 

et al., 2020; Hellmann et al., 2016; Ropars et al., 2015), lead to the 
production of more viable seeds (Lantz et al., 2010, 2019), and pro-
mote seedling recruitment (Esper & Schweingruber, 2004; Kharuk 
et al., 2013; Wieczorek et al., 2017) that can drive infilling (Lantz 
et al., 2019; Wieczorek et al., 2017) and gradual northward and ups-
lope migration of trees and shrubs into herbaceous tundra (Esper & 
Schweingruber, 2004; Kharuk et al., 2013; Myers-Smith & Hik, 2018; 
Rees et al., 2020; Trant & Hermanutz, 2014). Thermal regimes re-
strict the locations of Arctic and alpine treelines (Maher et al., 2021; 
Paulsen & Körner, 2014), but tree migration into tundra has not kept 

TA B L E  2  Summary of recent studies relating Landsat NDVI to field measurements of vegetation dynamics and structure in boreal forest 
and tundra ecosystems. Temporal or spatial relationships were characterized with Pearson's correlations (r), Spearman's correlations (rs), 
nonlinear regression (r2), and mixed-effect models (marginal r2)

Field data Main result Reference

Ecosystem productivity Tundra gross primary productivity was positively correlated with spatial 
variation in NDVImax across 11 eddy covariance flux towers in three 
Arctic countries (rs = .72)

Berner et al. (2020)

Forest productivity Trembling aspen (Populus tremuloides) stand productivity was positively 
associated with temporal variation in NDVImax at 22 field sites in 
the Alaskan boreal forest (marginal r2 = .66 with mortality rate as 
significant covariate)

Boyd et al. (2021)

Cajander larch (Larix cajanderi) stand productivity was positively 
associated with temporal variation in NDVImax at 19 field sites in 
the Siberian boreal forest–tundra ecotone (marginal r2 = .09–.28 
depending on stand density)

Walker et al. (2021)

Tree growth Trembling aspen (Populus tremuloides) growth was positively associated 
with temporal variation in NDVImax at 22 field sites in the Alaskan 
boreal forest (marginal r2 = .27)

Boyd et al. (2021)

Trembling aspen (Populus tremuloides) growth was positively associated 
with temporal variation in NDVIJuly–August at four field sites in the 
Alaskan boreal forest (marginal r2 = .23)

Boyd et al. (2019)

Siberian larch (Larix siberica) growth was positively correlated with 
temporal variation in NDVImax at 13 of 15 field sites in the Mongolian 
boreal forest–steppe ecotone (median r = .60)

Erasmi et al. (2021)

Shrub growth Deciduous shrub growth was positively correlated with temporal 
variation in NDVImax at 19 of 22 field sites in six Arctic countries 
(median rs = .42)

Berner et al. (2020)

Dwarf birch (Betula glandulosa) growth was positively correlated with 
temporal variation in NDVIJuly–August at a field site in the Canadian 
Arctic (rs = .60)

Davis et al. (2020)

Aboveground biomass Tundra and shrub aboveground biomass were positively associated with 
spatial variation in NDVImax across 28 field sites in the Alaskan and 
Canadian Arctic (r2 = .79 and r2 = .82, respectively)

Berner et al. (2018)

Tundra aboveground biomass was positively associated with spatial 
variation in NDVIAugust across 104 field sites in the Norwegian Arctic 
(r2 = .68)

Johansen and Tømmervik (2014)

Vegetation mortality Trembling aspen (Populus tremuloides) stand mortality was negatively 
associated with temporal variation in NDVImax at 22 field sites in 
the Alaskan boreal forest (marginal r2 = .66 with productivity as a 
significant covariate)

Boyd et al. (2021)

Tree mortality events were associated with negative trends and 
anomalies in NDVIJuly–August across regional networks of field sites (n 
≈ 760) in the Alaskan and Canadian boreal forest

Rogers et al. (2018)

Massive landslides killed nearly all tundra vegetation and caused 
NDVIJuly–August to decrease ~45% across disturbed areas in the West 
Siberian Arctic

Verdonen et al. (2020)
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pace with recent warming (Rees et al., 2020) likely because migra-
tion is constrained by seed dispersal, seedling herbivory, and other 
factors such as pathogens, snow cover, and cold, nutrient-poor per-
mafrost soils that are buffered from climate warming (Van Bogaert 
et al., 2011; Maher et al., 2021; Olnes et al., 2017; Rees et al., 2020; 
Stöcklin & Körner, 1999). Greening in recent decades is linked to cli-
mate warming increasing growth, biomass, and probably recruitment 
of trees and shrubs in a significant portion of the forest–tundra eco-
tone, but such changes have not occurred everywhere along the cold 
margins of the boreal forest (Rees et al., 2020; Timoney et al., 2019).

Earth's atmosphere is now warming more rapidly than it has in 
at least the last ~2,000  years (IPCC, 2021), yet most sample sites 
in our analysis exhibited no systematic trend in vegetation green-
ness during the last four decades. This was especially true not only 
of sample sites within the climatically central portions of the boreal 
forest biome but also within the central portions of the primary for-
est types (i.e., evergreen and deciduous needleleaf forests). Forests 
in these core areas may be more resilient to change until some cli-
matic threshold is surpassed (Chapin et al., 2004). Moreover, climate 
warming may not increase vegetation greenness or productivity if 
access to soil nutrients or water constrains physiological processes 
like photosynthesis or growth (Berner et al., 2013; Ellison et al., 2019; 
Foster et al., 2019) nor might warming decrease vegetation produc-
tivity in water-limited regions if greater evaporative demands are 
offset by higher water use efficiency from CO2 fertilization (Sullivan 
et al., 2017). Our finding that greening was more probable where 
there was high soil nitrogen provides further support for the role 
of soil nutrients in mediating vegetation response to warming. Tree 
growth response to warming can also be mediated by the intensity of 
intra-stand competition for soil nutrients (Foster et al., 2019; Walker 
et al., 2021). It is also likely that important ecological responses to 
climate change could be occurring in areas where remotely sensed 
metrics of vegetation greenness show no long-term trend. For ex-
ample, spruce or larch recruitment might minimally affect vegetation 
greenness in shrubby landscapes (Huemmrich et al., 2021; Loranty 
et al., 2018), as might low levels of tree mortality where the growth 
of surviving trees is enhanced by reduced competition (Boyd et al., 
2021). To better understand variability in boreal forest resilience to 
future climatic changes, it will be necessary to further develop and 
apply mechanistic ecological models that simulate species-specific 
responses to changes at fine spatial scales (Foster et al., 2019).

Browning primarily occurred in the climatically warmest mar-
gins of both the boreal forest biome and major forest types, espe-
cially where summers became warmer and drier. This observation 
is consistent with field measurements in many such locations. For 
example, we detected browning in eastern interior Alaska where 
long-term ecological research has documented declining tree growth 
and browning associated with warming-induced drought stress and 
insect outbreaks (Barber et al., 2000; Beck et al., 2011; Boyd et al., 
2021; Juday & Alix, 2012; Parent & Verbyla, 2010). However, a re-
cent study from this region found little evidence of growth declines 
in black spruce (P. mariana) or white spruce (P. glauca) during recent 
decades and instead suggested rising concentrations of atmospheric 

CO2 could have stabilized growth by compensating for increasing 
evaporative demand (Sullivan et al., 2017). Local to regional vari-
ability is evident in the boreal biome, which has not exhibited wide-
spread response to CO2 fertilization (Girardin et al., 2016). We also 
detected browning in larch forests on the eastern Central Siberian 
Plateau, where hot and dry summers cause forest carbon uptake 
to be very sensitive to high summer VPD (Dolman et al., 2004) and 
declines in tree growth have been reported (Hellmann et al., 2016). 
In addition to declining tree growth, browning is also likely related 
to increasing rates of tree mortality linked with warming-induced 
drought stress along the warm dry margins of the boreal forest in 
North America (Michaelian et al., 2011; Peng et al., 2011; Refsland 
& Cushman, 2021; Rogers et al., 2018) and Eurasia (Allen et al., 
2015; Kharuk et al., 2020). In boreal North America, annual rates 
of tree mortality approximately doubled since the 1980s and are 
especially high in trembling aspen (Populus tremuloides) (Peng et al., 
2011; Refsland & Cushman, 2021; Rogers et al., 2018), which aligns 
with our finding that browning was particularly prevalent in decid-
uous broadleaf forests (e.g., aspen). Overall, drawing on spatially 
comprehensive and current remote sensing datasets, our analysis 
shows recent browning in the climatically warmest parts of the bo-
real forest biome where rising summer temperatures and VPD have 
been linked with reduced tree growth and increased tree mortal-
ity. These changes in forest greenness, growth, and mortality could 
foreshadow warming-induced transitions of dense forests toward 
patches of woodland, shrubland, and grassland along the warm cli-
matic margins of the boreal forest.

Disturbance and subsequent succession can cause pronounced 
multidecadal changes in vegetation greenness that complicate 
efforts to detect early indicators of a biome shift using satellite 
remote sensing (Fiore et al., 2020; Sulla-Menashe et al., 2017). 
Pulse disturbance events (e.g., wildfire, harvest) lead vegetation 
greenness to abruptly decrease, followed by a gradual increase 
over the subsequent two to four decades of succession (Beck & 
Goetz, 2011; Fiore et al., 2020; Sulla-Menashe et al., 2017). To 
alleviate these effects, we focused on areas of naturally occurring 
vegetation with low human pressure (Venter et al., 2016) that were 
nominally free from harvest, wildfire, and other disturbances since 
at least the early 1980s (Giglio et al., 2018; Guindon et al., 2017; 
Hansen et al., 2013; Loboda & Chen, 2017). However, we likely 
did not manage to exclude all disturbances after the early 1980s 
owing to errors of omission in the underlying disturbance data-
sets, yet such residual disturbances were less probable during the 
post-2000 period given extensive efforts to map contemporary 
disturbances (Giglio et al., 2018; Hansen et al., 2013). Vegetation 
recovery after disturbance in the 1960s and 1970s contributed to 
some of the greening we observed, especially from 1985 to 2019, 
yet it was not possible to consistently exclude disturbances from 
these earlier decades because comparable spatial information 
was not available. Therefore, we primarily focused on vegetation 
greenness trends from 2000 to 2019 that likely were less influ-
enced by residual disturbances and post-disturbance recovery 
(Fiore et al., 2020; Sulla-Menashe et al., 2017) and have better 
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geographic coverage than earlier periods due to greater availabil-
ity of Landsat data. It is unlikely the observed greening and brown-
ing trends were primarily due to disturbance and succession given 
both our efforts to exclude recent disturbances and the distinct 
bioclimatic settings where these spectral trends occurred. Rather, 
these greening and browning trends likely reflect underlying shifts 
in vegetation productivity, mortality, and recruitment arising from 
mounting impacts of rapid climatic changes on the northernmost 
forest biome.

To detect early indicators of a boreal biome shift, we focused 
on vegetation greenness trends in recently undisturbed areas; 
however, increasing wildfire activity could play an important role 
catalyzing a biome shift (Baltzer et al., 2021; Kukavskaya et al., 
2016; Stralberg et al., 2018; Tchebakova et al., 2009). In recent 
decades, warmer and drier conditions contributed to increasing 
wildfire activity in boreal North America (Walker et al., 2020) 
and Eurasia (Kharuk et al., 2021; Kukavskaya et al., 2016). In both 
continents, boreal forest conversion to woodlands, shrublands, or 
grasslands has been document after recent wildfires, particularly 
in warm and dry regions (Baltzer et al., 2021; Kukavskaya et al., 
2016) such as the southern margin of the boreal forest in Siberia 
that borders grassland steppe (Barrett et al., 2020; Kukavskaya 
et al., 2016). Forests can lose resilience to wildfire when shorter 
fire return intervals reduce seed availability and more frequent 
postfire droughts reduce seedling establishment, both contribut-
ing to tree regeneration failure (Baltzer et al., 2021; Kukavskaya 
et al., 2016; Whitman et al., 2019). Conversely, increasing wild-
fire activity could facilitate forest expansion into Arctic tundra 
(Alexander et al., 2018; Lloyd et al., 2007). Near treeline in far 
northeastern Siberia, a recent experiment showed that Cajander 
larch (L. cajanderi) recruitment was much higher in burned than 
unburned plots and increased with burn severity because of 
improved seedbed conditions associated with soils that were 
warmer, wetter, and had thinner organic layers (Alexander et al., 
2018). Wildfire activity is expected to increase with continued 
warming over the coming century and will contribute to further 
vegetation shifts along the southern and northern margins of 
the boreal forest (Gonzalez et al., 2010; Stralberg et al., 2018; 
Tchebakova et al., 2009).

Boreal forest greening and browning trends have typically 
been quantified using NDVI (e.g., Beck & Goetz, 2011; Myneni 
et al., 1997; Sulla-Menashe et al., 2017), whereas here we quanti-
fied these trends using an ensemble of vegetation indices that in-
cluded NDVI and three newer metrics (i.e., EVI2, NIRv, and kNDVI). 
Changes in Landsat NDVI have been linked with spatial or tempo-
ral variation in ecosystem productivity, forest productivity, tree 
growth, shrub growth, aboveground biomass, and vegetation mor-
tality at field sites in high northern latitudes (Table 2). However, 
Landsat NDVI can saturate in dense forests, likely hindering de-
tection of greening and biasing observed trends toward browning 
under such conditions (Huemmrich et al., 2021). We therefore also 
used three newer vegetation indices that are likely less prone to 
saturation and better indicators of vegetation dynamics, though 

their performance has not been thoroughly evaluated in high 
northern latitudes (Badgley et al., 2017; Camps-Valls et al., 2021; 
Jiang et al., 2008). We focus on results derived using the ensem-
ble of vegetation indices but note that NDVI and kNDVI detected 
~30% less greening and ~30% more browning than EVI2 and NIRv 
(Table S2), underscoring differences among vegetation indices. To 
guide future assessments of greening and browning in boreal and 
tundra ecosystems, further field validations are needed for newer 
vegetation indices.

In conclusion, by drawing on moderate resolution Landsat satel-
lite observations, we show that there have been systematic trends 
in vegetation greenness during recent decades that are consistent 
with an emerging boreal biome shift associated with ongoing cli-
mate warming. Climate warming contributed to greening in the cool 
forest–tundra ecotone but browning in the warm southern margins 
of the boreal forest, though there was little to no systematic change 
in vegetation greenness across much of the biome. Long-term trends 
in vegetation greenness reflect underlying shifts in growth, recruit-
ment, and mortality of trees, shrubs, and other vegetation; how-
ever, remotely sensed metrics of vegetation greenness do not fully 
capture the extent of ecosystem changes associated with climate 
warming and shifts in water availability. Hence, to better under-
stand the extent, causes, and consequences of a boreal biome shift, 
it will be essential to expand ground-based ecological monitoring, 
advance mechanistic ecosystem models, and further capitalize on 
satellite remote sensing assets like Landsat for improved mapping 
of forest extent, composition, and disturbance dynamics in recent 
decades. Improved monitoring will be especially important over the 
next few decades given projections of accelerated warming with in-
creasing extreme events (e.g., heatwaves, droughts, and mega-fires) 
that could drive rapid and potentially unanticipated changes in the 
boreal forest. Our analysis provides evidence of extensive climati-
cally linked vegetation changes along the warm and cool margins of 
the boreal forest biome that will have broad ecological and societal 
implications.
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