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A simplified prediction model 
for end‑stage kidney disease 
in patients with diabetes
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Yukihiro Inoguchi4, Kentaro Ochi6, Yuichi Takashi7, Fujiyo Hiyama8, Daisuke Nishida8, 
Fumio Umeda5, Teruaki Yamauchi5, Daiji Kawanami7, Kunihisa Kobayashi6, 
Masatoshi Nomura4 & Naoki Nakashima2

This study aimed to develop a simplified model for predicting end-stage kidney disease (ESKD) 
in patients with diabetes. The cohort included 2549 individuals who were followed up at Kyushu 
University Hospital (Japan) between January 1, 2008 and December 31, 2018. The outcome was a 
composite of ESKD, defined as an eGFR < 15 mL min−1 [1.73 m]−2, dialysis, or renal transplantation. 
The mean follow-up was 5.6 ± 3.7 years, and ESKD occurred in 176 (6.2%) individuals. Both a machine 
learning random forest model and a Cox proportional hazard model selected eGFR, proteinuria, 
hemoglobin A1c, serum albumin levels, and serum bilirubin levels in a descending order as the most 
important predictors among 20 baseline variables. A model using eGFR, proteinuria and hemoglobin 
A1c showed a relatively good performance in discrimination (C-statistic: 0.842) and calibration (Nam 
and D’Agostino χ2 statistic: 22.4). Adding serum albumin and bilirubin levels to the model further 
improved it, and a model using 5 variables showed the best performance in the predictive ability 
(C-statistic: 0.895, χ2 statistic: 7.7). The accuracy of this model was validated in an external cohort 
(n = 5153). This novel simplified prediction model may be clinically useful for predicting ESKD in 
patients with diabetes.

Diabetic kidney disease (DKD) continues to be the leading cause of end-stage kidney disease (ESKD) and 
accounts for ≥ 40% of patients receiving dialysis and renal transplantation in many countries1,2. Early and accu-
rate prediction of progression to ESKD is of practical benefit in patients with diabetes.

In current clinical practice, the estimated glomerular filtration rate (eGFR) and the presence of proteinu-
ria (albuminuria) are used as the main predictors for progression of chronic kidney disease (CKD) including 
DKD3,4. However, these two variables may not be sufficient for clinical decision-making, especially in DKD. 
In fact, other clinical variables, such as glycemic control, affect the progression of DKD5,6. Various prediction 
models for the progression of CKD to ESKD have been reported7–10, and some ESKD prediction equations are 
widely used through electronic applications10. However, CKD is heterogenous in the variability of progression 
rates and its pathogeneses. Therefore, developing a prediction model specific for DKD is important. None of 
the CKD models include variables related to glycemic control such as hemoglobin A1c (HbA1c) levels. There-
fore, several prediction models have also been reported for predicting ESKD in people with diabetes11–15. These 
models showed a moderate to good performance for predicting ESKD, but they used many predictive variables 
in addition to the eGFR (or creatinine) and albuminuria. For clinical use, the ideal prediction models should 
not only be accurate, but also easy to implement. In this study, we aimed to develop a simplified, but accurate 
model for predicting ESKD in patients with diabetes using a few commonly available variables that are easy to 
measure in the primary care setting.
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In recent years, oxidative stress has been considered to be an important pathogenic factor in the development 
of DKD16–21. Since bilirubin and albumin are potent endogenous antioxidants in serum22–24, these variables may 
play an important role in the progression of DKD10,11,14,15,25–28. Therefore, in this study, we first evaluated the 
relative importance of various possibly predictive variables including serum bilirubin and albumin levels for 
ESKD using a machine learning random forest model. The benefit of the machine learning approach is that it can 
use a data-driven approach to analyze a large number of variables. We then developed a final simplified predic-
tion model using the minimum number of selected important variables and Cox proportional hazard model, 
which may be useful for predicting ESKD in primary care. We also validated the performance of this model in 
an independent external cohort.

Results
Characteristics of study subjects in the development cohort.  A total of 2,549 patients (1,432 men 
and 1,117 women) were eligible for inclusion in the analysis. Table 1 shows the baseline characteristics of the 
enrolled patients. The median age was 57  years (interquartile range [IQR]: 47–63), and the mean follow-up 
was 5.6 ± 3.7 years. There were 176 ESKD events (6.2%) during the follow-up. The median time to ESKD was 
2.5 years (IQR: 0.9–4.8).

Table 1.   Baseline characteristics of study subjects (n = 2549). Data are presented as the mean ±standard 
deviation (SD) or the median (interquartile range: IQR). HbA1c hemoglobin A1c, eGFR estimated glomerular 
filtration rate, ARB angiotensin II receptor blocker, ACE angiotensin converting enzyme, GLP-1R glucagon-
like peptide 1 receptor, SGLT2 sodium-glucose cotransporter 2, ESKD end-stage kidney disease.

Variables

Age, years, median (IQR) 57.0 (47.0–63.0)

Gender, male, n (%) 1432 (56.2)

Smoking, n (%)

 Smoker 1133 (44.4)

 Missing 527 (20.7)

Body mass index, kg/m2, median (IQR) 24.2 (21.7–27.4)

Hypertension, n (%) 1462 (57.4)

Dyslipidemia, n (%)

Positive 1836 (72.0)

Missing 15 (0.6)

HbA1c, %, median (IQR) 7.0 (6.5–8.1)

mmol/mol, median (IQR) 53.0 (47.5–65.0)

Serum albumin, mg/dL, mean (SD) 4.0 (0.5)

Serum bilirubin, mg/dL, median (IQR) 0.7 (0.5–0.9)

Serum uric acid, mg/dL, mean (SD) 5.3 (1.5)

White blood cells, × 103/mL, mean (SD) 7.21 (2.26)

Red blood cells, × 106/mL, mean (SD) 4.44 (0.57)

Thrombocytes, × 104/mL, mean (SD) 23.4 (6.9)

eGFR, mL min−1 [1.73 m]−2, mean (SD) 81.8 (26.6)

Proteinuria, n (%)

Positive 475 (29.7)

Missing, n (%) 948 (37.2)

Statin use, n (%) 865 (33.9)

Fibrate-related drug use, n (%) 54 (2.1)

ARB use, n (%) 785 (30.8)

ACE inhibitor use, n (%) 263 (10.3)

Erythropoiesis stimulating agent use, n (%) 42 (1.6)

GLP-1R agonist use, n (%) 62 (2.4)

SGLT2 inhibitor use, n (%) 51 (2.0)

Metformin use, n (%) 517 (20.3)

Follow-up time, years

Median (IQR) 4.7 (2.3–8.8)

Mean (SD) 5.6 (3.7)

ESKD, n (%) 176 (6.2)

Time to ESKD, years

Median (IQR) 2.5 (0.9–4.8)

Mean (SD) 3.2 (2.9)
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Performance of prediction models in the development cohort.  The random forest model using 20 
variables showed an excellent predictive ability for ESKD (Harrell’s concordance statistic [C-statistic]; 0.935), 
and selected eGFR, proteinuria, HbA1c, serum albumin, and serum bilirubin as the most important predictors 
in descending order (Table 2). The Cox proportional hazard model also showed a similar performance in pre-
dictive ability (C-statistic: 0.905) and the upper 5 variables were the same as those in the random forest model 
(Table 2). Therefore, we developed a sequential series of models using these 5 selected variables and Cox propor-
tional hazard models, and then compared their performances. The hazard ratios for the variables and C-statistics 
for the models are shown in Table 3. The C-statistic was 0.736 for Model 1 (eGFR alone), 0.806 for Model 2 
(eGFR and proteinuria), 0.841 for Model 3 (eGFR, proteinuria, and HbA1c), 0.852 for Model 4.1 (eGFR, pro-
teinuria, HbA1c, and serum albumin), 0.881 for Model 4.2 (eGFR, proteinuria, HbA1c, and serum bilirubin), 
and 0.895 for Model 5 (eGFR, proteinuria, HbA1c, serum albumin, and serum bilirubin). Comparing with the 
basic model (Model 2, eGFR and proteinuria), the C statistic was significantly increased in Model 3 and Model 5 
(P = 0.030, P = 0.012, respectively), suggesting that Model 3 and 5 have a significantly better performance in the 
discrimination of ESKD than Model 2. In addition, there was no significant difference in the C statistic between 
these Models and Model 6 (all 20 variables), suggesting that Model 3 and 5 are highly efficient in the discrimina-
tion. Next, the prediction risk scores for ESKD using Models 3 and 5 from the Cox proportional hazard model 
were calculated as follows:

Using these risk scores, the 5-year risk of each individual in Models 3 and 5 was estimated as follows:

Risk score (Model 3) =
(

− 0.059 × eGFR in mL min−1[1.73m]−2
)

+ (0.415 × HbA1c in %) + (1.822 × 1 if positive for proteinuria).

Risk score (Model 5) =
(

− 0.052 × eGFR in mL min−1[1.73m]−2
)

+ (0.368 × HbA1c in %)

+
(

− 0.972 × albumin levels in mg/dL
)

+
(

− 1.410 × bilirubin levels in mg/dL
)

+ (1.270 × 1 if positive for proteinuria).

Table 2.   Relative importance of variables for predicting end-stage kidney disease (ESKD) using the 
random forest model and Cox proportional hazard model. eGFR estimated glomerular filtration rate, HbA1c 
hemoglobin A1c, ARB angiotensin II receptor blocker, GLP-1R glucagon-like peptide 1 receptor.

Random forest model C-statistic 0.935

Upper 12 variables Relative importance

eGFR 0.083

Proteinuria, positive 0.027

HbA1c 0.022

Serum albumin 0.020

Serum bilirubin 0.006

Serum uric acid 0.005

Red blood cell count 0.004

ARB use 0.003

Age 0.002

Hypertension, positive 0.001

Body mass index 0.001

Thrombocyte count 0.000

Cox proportional hazard model C-statistic 0.905

Upper 12 variables Hazard ratio 95% CI P value

eGFR 0.248 0.194–0.315  < 0.001

HbA1c 1.806 1.572–2.074  < 0.001

Proteinuria, positive 1.612 1.304–1.992  < 0.001

Serum albumin 0.603 0.505–0.720  < 0.001

Serum bilirubin 0.648 0.492–0.854 0.002

Age 0.656 0.547–0.787  < 0.001

ARB use 1.276 1.040–1.566 0.020

GLP-1R agonist use 0.819 0.678–0.991 0.040

Serum uric acid 1.164 0.967–1.401 0.109

Hypertension, positive 0.848 0.640–1.123 0.250

Gender, men 1.135 0.946–1.361 0.174

Smoking, positive 1.125 0.944–1.342 0.189
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Next, calibration was examined by comparing the observed vs predicted probabilities of ESKD at a 5-year risk 
for Models 3 and 5 (Fig. 1a,b). The predicted probabilities were calculated from the above 5-year risk equations 
for Models 3 and 5. The Nam and D’Agostino χ2 statistics were 22.4 and 7.7 for Models 3 and 5, respectively. 
These findings suggested that the calibration showed an appropriate agreement between observed vs predicted 
probabilities for both Models, but Model 5 was more accurate than Model 3. Therefore, we built the nomogram 
to predict the ESKD probability for each individual based on the Model 5 (Fig. 2), which may provide a practical 
tool for clinical application.

Performance of prediction models in the external validation cohort.  A total of 5153 patients 
were eligible for inclusion in the validation analysis. The baseline characteristics were shown in supplementary 
Table S1. The baseline risk in this cohort appeared to differ from those in the development cohort. The patients in 
the external cohort had complete data for the presence of proteinuria, but the rate of proteinuria was still lower 
in the external cohort than that in the development cohort with missing data (19.1% vs 26.6%). The rate of ESKD 
events in the external cohort was lower than that in the development cohort (3.1% vs 6.2%, P < 0.001). Despite 
the difference in baseline characteristics, the predictive performance of Model 5 was excellent in discrimination 
(C-statistic: 0.951) in the external cohort. In calibration, its performance was moderate without recalibration ( χ
2 statistic: 36.1 at a 5-year risk) (Fig. 1c) and there was a tendency to slightly overestimate risk. This was likely to 
be due to the lower baseline risk in the external cohort than that in the development cohort. For the high-risk 
subgroup of the individuals with CKD in the external cohort (eGFR < 60 mL min−1 [1.73 m]−2 and/or positive 
proteinuria) (n = 1,350), its performance was good in discrimination (C-statistic: 0.862) and adequate in calibra-
tion without recalibration ( χ2 statistic: 23.1 at a 5-year risk) (Fig. 1d), suggesting the clinical usefulness of this 
model for predicting ESKD.

Discussion
In this study, we first evaluated the relative importance of 20 possibly predictive variables for ESKD using a 
machine learning random forest model and a Cox proportional hazard model. Both models selected eGFR, 
proteinuria, hemoglobin HA1c, serum albumin, and serum bilirubin as the most important predictors. Then, we 
developed a simplified prediction model using these 5 variables and the Cox proportional hazard model. To the 
best of our knowledge, this is the first report to show that a 5-year risk model using these 5 commonly available 
variables has a good performance in the predictive ability for ESKD in patients with diabetes.

Previously, several prediction models for ESKD in patients with diabetes have also been reported11–15. Jar-
dine et al. reported a prediction model using 7-variables, including eGFR, urinary albumin-creatinine ratio, 
sex, systolic blood pressure, blood pressure-lowering agent use, presence of retinopathy, and education career 
from the ADVANCE trial (C-statistic: 0.847)12. A similar prediction model using 11 variables was reported in 

5-year risk (Model 3) : p(1, 825) = 1− exp (−H0(1, 825))
exp (risk score in Model 3)

= 1− exp (− 0.043)exp (risk score in Model 3)
= 1− 0.958exp (risk score in Model 3)

5-year risk (Model 5) : p(1, 825) = 1−exp (−H0(1, 825))
exp (risk score in Model 5)

= 1− exp (− 5.260)exp (risk score in Model 5)
= 1−0.005exp (risk score in Model 5).

Table 3.   Hazard ratios and C-statistics of various models for predicting end-stage kidney disease (ESKD) 
as evaluated by the Cox proportional hazard model. eGFR estimated glomerular filtration rate, HbA1c 
hemoglobin A1c, SD standard deviation.

Model Explanation variables Hazard ratio
95% CI
Lower–upper P value C-statistic (SD)

1 eGFR, per 5 mL min−1 [1.73 m]−2 0.690 0.663–0.717  < 0.001 0.736 (0.091)

2 eGFR, per 5 mL min−1 [1.73 m]−2

Proteinuria, positive
0.754
6.679

0.724–0.785
4.443–10.038

 < 0.001
 < 0.001 0.806 (0.090)

3
eGFR, per 5 mL min−1 [1.73 m]−2

Proteinuria, positive
HbA1c, per 1%

0.745
6.755
1.493

0.716–0.776
4.421–10.321
1.379–1.615

 < 0.001
 < 0.001
 < 0.001

0.841 (0.068)

4.1
eGFR, per 5 mL min−1 [1.73 m]−2

Proteinuria, positive
HbA1c, per 1%
Serum albumin, per 3 mg/dL

0.763
4.106
1.460
0.581

0.733–0.795
2.610–6.458
1.349–1.579
0.507–0.665

 < 0.001
 < 0.001
 < 0.001
 < 0.001

0.852 (0.070)

4.2
eGFR, per 5 mL min−1 [1.73 m]−2

Proteinuria, positive
HbA1c, per 1%
Serum bilirubin, per 0.1 mg/dL

0.766
6.199
1.443
0.797

0.736–0.798
4.033–9.528
1.336–1.560
0.732–0.867

 < 0.001
 < 0.001
 < 0.001
 < 0.001

0.881 (0.061)

5

eGFR, per 5 mL min−1 [1.73 m]−2

Proteinuria, positive
HbA1c, per 1%
Serum albumin, per 3 mg/dL
Serum bilirubin, per 0.1 mg/dL

0.773
4.019
1.432
0.626
0.865

0.742–0.805
2.540–6.361
1.325–1.548
0.543–0.722
0.797–0.938

 < 0.001
 < 0.001
 < 0.001
 < 0.001
 < 0.001

0.895 (0.065)

6 All variables 0.905 (0.050)
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Chinese patients with diabetes (area under the curves [AUC] of the 3-, 5-, and 8-year risk: 0.90, 0.86, and 0.81, 
respectively)14. However, these models lacked external validation and thereby may not be generalized well to 
other populations. The model reported by Elley et al. showed a good performance in the predictive ability in the 
development cohort and the external validation cohort (C-statistic: 0.89–0.92), but this model used 10 variables 
including sex, ethnicity, age, diabetes duration, albuminuria, serum creatinine, systolic blood pressure, HbA1c, 
smoking status, and previous cardiovascular disease status13. A recent study developed a machine learning 
based prediction model called the feed-forward neural network model15. In that model, 18 variables were used 
in patients with diabetes and nephropathy participating in past clinical trials, including RENAAL, IDNT and 
ALTITUDE studies (AUC: 0.82, 0.81, and 0.84, respectively). The machine learning approach appears to be 
superior to the traditional hypothesis-driven statistical methods in terms of its data-driven approach to analyze a 
large number of possibly predictive variables. Our random forest model using 20 variables also showed an excel-
lent predictive ability for ESKD (C-statistic 0.935). However, the main obstacle is that many predictive variables 
are not readily obtainable in primary care, thus limiting their usefulness to clinicians’ managing patients with 
diabetes. In contrast, Keane et al. reported a simple prediction model using four variables (serum creatinine, 
urine albumin-creatinine ratio, serum albumin, and hemoglobin) in a cohort from the RENNAL study11. They 
selected those four variables from 23 baseline variables using the Cox proportional hazard model with backward 
selection process, with P < 0.01 required for inclusion in a final model. However, our analysis using both the 
machine learning approach and the Cox proportional hazard model showed that HbA1c levels and bilirubin 
levels were more important predictors than hemoglobin levels for predicting ESKD. The mean follow-up period 
was much shorter in the RENNAL study than in our study (3.4 years vs. 5.6 years), and decreasing hemoglobin 
level is a generally late sign of renal impairment. Their model may be effective for risk prediction at a time shorter 
than 3 years. Thus, our simplified 5-year prediction model may be more useful than previous prediction models 
in clinical practice. Our model could guide clinicians in making clinical decision earlier regarding intensifica-
tion of monitoring and preventive therapies or referral to specialists. Risk information helps patients to become 
aware of their current risk, promote motivation on improving their lifestyle. In our study, the nomogram based 
on our model was built to predict the absolute ESKD probability for each individual. The 5-year risk equation 
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Figure 1.   Observed vs predicted probabilities of end-stage kidney disease (ESKD) events at a 5-year risk in 
the development cohort and the external validation cohort. The predicted (white bar) and observed (black bar) 
event probabilities represent the mean predicted probability calculated from 5-year risk equations and the mean 
observed probability from the patients divided into deciles of the predicted probability, respectively. (a) Model 3 
and (b) Model 5 in the development cohort. (c) Model 5 in the validation cohort and (d) Model 5 in the patients 
with chronic kidney disease (CKD) (eGFR < 60 mL min−1 [1.73 m]−2 and/or positive proteinuria) (n = 1350) of 
the validation cohort. Nam and D’Agostino χ2 statistics were 22.4 and 7.7 for Models 3 and 5 in the development 
cohort, and 36.1 and 23.1 for Models 5 in the external validation cohort and Model 5 in the patients with CKD 
of the external cohort, respectively.
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we showed can be also used as electronic applications. These tools may provide practical risk predictive tools 
for future clinical application.

The reason why serum bilirubin levels were so important among various predictive variables for predicting 
ESKD remained to be elucidated. Bilirubin is a product of heme catabolism by heme oxygenase, which is a major 
antioxidant enzyme. Bilirubin is thought to have a protective effect on oxidative stress-induced organ damage 
through its strong antioxidant activity22. We previously showed a lower prevalence of nephropathy and other 
vascular complications, as well as reduced oxidative stress, in patients with diabetes and Gilbert syndrome, 
which is a hereditary hyperbilirubinemia25. Accumulating evidence has also shown that serum bilirubin levels 
are negatively associated with the progression of DKD26–28. Taken together, it is most likely that serum bilirubin 
may prevent the progression of nephropathy via its anti-oxidative activities. This possibility is supported by an 
animal study, which showed that bilirubin prevented renal oxidative stress and dysfunction in type-1 diabetic 
rats and type 2 diabetic mice29. In addition, serum bilirubin levels have been reported to be affected by oxidative 
stress-related factors such as smoking, obesity, hypertension, metabolic syndrome, and cardiovascular diseases 
in addition to genetic factors30–34, all of which are possible risk facors for DKD. Therefore, serum bilirubin 
levels might represent a total susceptibility determined by such factors to the progression to ESKD. In line with 
these concepts, the effect of anti-oxidative properties of albumin on the progression to ESKD may be plausible, 
although the effect of serum albumin levels may be mainly explained by their association with the levels of 
albuminuria. Albumin is thought to be an important serum antioxidant in addition to serum bilirubin24,25. In 
serum, free thiol groups are one of the most important scavengers of hydroxy radicals and other oxidants and 
are largely located on albumin35. Serum albumin levels have been reported to be inversely associated with the 
cardiovascular disease risk and aging, supporting its possible causal relationships with the oxidative stress-related 
status and diseases36–38. The mechanisms underlying the close associations of serum bilirubin and albumin levels 
with the progression to ESKD should be clarified in future studies.

There are several limitations to this study. First, we might not have obtained ideal information regarding 
clinical data and timely assessment of endpoint, compared with controlled clinical trials. Second, the sample 
size may not have been sufficient to develop prediction models. Third, we used proteinuria by a conventional 
urine test rather than measurements of albuminuria because the rate of albuminuria measurements was low in 
the electronic medical record data, although proteinuria data are much more easily obtainable than those of 
albuminuria measurement in primary care. Forth, a competitive risk analysis of death was not performed because 
only 16 death cases occurred and the relationship between each death and kidney dysfunction was unknown 
in this study using electronic medical records. Despite these limitations, our prediction models showed a good 
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Figure 2.   Nomogram for end-stage kidney disease (ESKD)-free event probabilities of individuals with diabetes. 
To use the nomogram. Locate an individual’s value on each variable axis, and draw a line upward to obtain the 
point for each variable. Then, locate the sum of these points on the total points axis, and draw a line downward 
to the event-free axis to obtain the 5-year ESKD-free probability. eGFR estimated glomerular filtration rate, 
HbA1c hemoglobin A1c.
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performance in the independent external validation as well as the development cohorts. Lastly, although the 
excellent performance in discrimination of our prediction model was confirmed in an external cohort, the 
performance in calibration should be evaluated in more various populations including different ethnicities, and 
cohorts outside Japan for widespread adoption of this model, because patient characteristics, healthcare system, 
and treatment strategies vary between health centers, regions and countries, and such heterogeneity can affect 
risk estimates and their calibration39,40.

In conclusion, we developed a simplified and accurate 5-year prediction model using the commonly available 
clinical variables of eGFR, proteinuria, HbA1c, serum albumin and bilirubin levels, which are easy to measure. 
Prospective studies should be done to establish its clinical usefulness in reducing ESKD in patients with diabetes.

Methods
Study subjects in the development cohort.  We obtained data from the electronic medical record sys-
tem at Kyushu University Hospital (Japan) between January 1, 2008 and December 31, 2018. Eligible patients 
with diabetes were aged 20–69 years and had laboratory data, including the eGFR, and serum bilirubin and 
albumin levels at baseline. In this study, diabetes was defined as casual blood glucose levels ≥ 200 mg/dL, HbA1c 
levels ≥ 6.5%, or the use of glucose lowering agents. Other inclusion criteria were a follow-up ≥ 1 year, and at 
least 5 measurements of the eGFR during follow-up. Patients were excluded if they had an eGFR ≤ 15 mL min−1 
[1.73 m]−2, received dialysis or renal transplantation at baseline. Other exclusion criteria were co-occurrence of 
acute kidney injury or cancer during follow-up, or co-occurrence of liver cirrhosis, other hepatobiliary diseases 
with abnormal liver enzyme levels (alanine aminotransferase or alkaline phosphatase levels ≥ 2 fold of the upper 
limit of the normal range), or hemolytic anemia to evaluate the true contribution of serum bilirubin levels to 
ESKD events. Patients with missing data were also excluded in this analysis if the rate of missing data was very 
low (< 3%). A detailed flowchart of the patients’ selection is shown in the supplementary Fig. S1.

Study subjects in the validation cohort.  For the independent external validation cohort, we obtained 
data from the medical record data for patients (n = 5153) who were followed up at 5 hospitals or one disease 
management institute from January 1, 2008 to December 31, 2020 and had laboratory data, including the eGFR, 
HbA1c levels, proteinuria, serum albumin levels, and bilirubin levels, at baseline. The same exclusion criteria as 
those in the development cohort were used.

All procedures were performed in accordance with the relevant guidelines and regulations. Informed consent 
was obtained from all participants and/or their legal guardians. The study was approved by the ethics committees 
of Kyushu University Hospital and other related institutes.

Variables.  Twenty variables were used to select important variables for the prediction model for ESKD, 
including age, sex, body mass index (BMI), smoking status, presence of hypertension, presence of dyslipidemia, 
eGFR, HbA1c, serum albumin, serum bilirubin, serum uric acid, red blood cell count, white blood cell count, 
platelet count, presence of proteinuria, and medication use (angiotensin II converting enzyme inhibitors, angio-
tensin II receptor blockers, statins, fibrate-related drugs, and GLP-1 receptor agonists) (Table  1). eGFR was 
calculated with an equation from the Japanese Society of Nephrology41. HbA1c levels were presented as the 
National Glycohemoglobin Standardization Program value and the International Federation of Clinical Chem-
istry and Laboratory Medicine mmol/mol units converted using the National Glycohemoglobin Standardization 
Program converter for HbA1c, available at http://​www.​ngsp.​org/​conve​rt1.​asp. The presence of hypertension was 
based on the ICD code. Dyslipidemia was defined as serum low-density lipoprotein cholesterol levels ≥ 120 mg/
dL, triglyceride levels ≥ 150 mg/dL, or high-density lipoprotein cholesterol levels < 40 mg/dL, in accordance with 
the Japan Atherosclerosis Society criteria, or the current use of lipid-lowering agents. Proteinuria was defined as 
a positive result using US-3500 or US-1200 analyzer and Uropaper III Eiken (Eiken Chemical, Co., Ltd., Tokyo, 
Japan). A positive result was urinary protein concentrations of ≥ 30 mg/dL, which are the same as those using 
the Albustix dipstick method. In the enrolled patients, there were missing data for the smoking status (20.7%), 
dyslipidemia (0.6%), and proteinuria (37.2%). There were no missing data for the other variables.

Clinical outcomes.  The outcome of this study was a composite of ESKD events, which was defined as an 
eGFR < 15 mL min−1 [1.73 m]−2, chronic dialysis, or renal transplantation.

Statistical analysis.  To select important variables for predicting ESKD, we evaluated the relative impor-
tance of 20 variables using a random forest model (randomForestSRC package, http://​cran.r-​proje​ct.​org/​web/​
packa​ges/​rando​mFore​stSRC). In this study, we also evaluated the predictive value of these variables for ESRD 
using the Cox proportional hazard model to confirm the results of the random forest model. In the Cox pro-
portional hazard model, variables were standardized by subtracting the mean and dividing by the standard 
deviation, and they were then applied to the Cox proportional hazard model to compare the relative importance. 
Thus, we selected the important variables from both models, and then developed a sequential series of models 
using Cox proportional hazard analysis. We used Harrell’s concordance statistic (C-statistic) as a measure of 
discrimination for ESKD to evaluate the performance of the model42. Calibration was assessed using the Nam 
and D’Agostino χ2 statistic to examine how closely each model’s predicted probabilities agreed with the observed 
ESKD outcomes43. The prediction risk calculated from a Cox proportional hazard model at time t  can be written 
as follows:

pi(t) = 1− Si(t) = 1− exp(−H0(t))
exp(

∑

p βpxip)

http://www.ngsp.org/convert1.asp
http://cran.r-project.org/web/packages/randomForestSRC
http://cran.r-project.org/web/packages/randomForestSRC
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where Si(t) is a survivor function and H0(t) is a cumulative baseline hazard function44. The value of (
∑

p βpxip) 
( βp , coefficient for variable p ; xip,variable p for patient i  ) was defined as a prediction risk score, which was 
developed from the linear progression equation from the Cox hazard regression model. Given that the pre-
dicted absolute ESKD probability is clinically important, a nomogram was also built using the coefficients of 
the prediction model.

There were missing data for the smoking status, dyslipidemia, and proteinuria in this study. For our data impu-
tation approach, we used the random forest imputation algorithm, called missForest (missForest package version 
1.2, http://​cran.r-​proje​ct.​org/​web/​packa​ges/​missF​orest)45. To confirm that our missForest prediction models 
were robust and not sensitive to missing data, we also used another imputation method, where we imputed the 
missing data by multiple imputation method (mice package version 3.14.0, https://​cran.r-​proje​ct.​org/​web/​packa​
ges/​mice/​mice.​pdf) in this analysis. The results in this method were similar to those in the missForest models 
(supplementary Table S1). Two-tailed P < 0.05 was defined as statistical significance. Data are presented as the 
mean ± standard deviation or the median (IQR). The significance of differences was determined by the chi-square 
test for categorical variables and the unpaired t test or the Mann–Whitney U test for continuous variables. We 
performed statistical analyses using R (version 3.6.3, https://​www.r-​proje​ct.​org).

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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