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Abstract

Platform trials have become increasingly popular for drug development pro-

grams, attracting interest from statisticians, clinicians and regulatory agencies.

Many statistical questions related to designing platform trials—such as the

impact of decision rules, sharing of information across cohorts, and allocation

ratios on operating characteristics and error rates—remain unanswered. In

many platform trials, the definition of error rates is not straightforward as clas-

sical error rate concepts are not applicable. For an open-entry, exploratory

platform trial design comparing combination therapies to the respective mono-

therapies and standard-of-care, we define a set of error rates and operating

characteristics and then use these to compare a set of design parameters under

a range of simulation assumptions. When setting up the simulations, we aimed

for realistic trial trajectories, such that for example, a priori we do not know

the exact number of treatments that will be included over time in a specific

simulation run as this follows a stochastic mechanism. Our results indicate

that the method of data sharing, exact specification of decision rules and a

priori assumptions regarding the treatment efficacy all strongly contribute to

the operating characteristics of the platform trial. Furthermore, different oper-

ating characteristics might be of importance to different stakeholders. Together

with the potential flexibility and complexity of a platform trial, which also

impact the achieved operating characteristics via, for example, the degree of

efficiency of data sharing this implies that utmost care needs to be given to

evaluation of different assumptions and design parameters at the design stage.
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1 | INTRODUCTION

The goal to test as many investigational treatments as possible over the shortest duration, which is influenced by both
recent advances in drug discovery and biotechnology and the ongoing global pandemic due to the SARS-CoV-2 virus,1–6

has made master protocols and especially platform trials an increasingly feasible alternative solution to the time-consuming
sequence of classical randomized controlled trials.7–12 Platform trial designs allow for the evaluation of one or more investi-
gational treatments in the study population(s) of interest within the same clinical trial, as compared to traditional random-
ized controlled trials, which usually evaluate only one investigational treatment in one study population. When cohorts
share key inclusion/exclusion criteria, trial data can easily be shared across such sub-studies. In practice, setting up a plat-
form trial potentially may require additional time due to operational and statistical challenges. However, simulations have
shown that platform trials can be superior to classical trial designs with respect to various operating characteristics which
include the overall study duration. In a setting where only few new agents are expected to be superior to standard of care,
Saville and Berry13 investigated the operating characteristics of adaptive Bayesian platform trials using binary endpoints
compared with a sequence of “traditional” trials, that is, trials testing only one hypothesis, and found that platform trials
perform dramatically better in terms of the number of patients and time required until the first superior investigational
treatment has been identified. Using real data from the 2013 to 2016 Ebola virus disease epidemic in West Africa,
Brueckner et al.14 investigated the operating characteristics of various multi-arm multi-stage and two-arm single stage
designs, as well as group-sequential two-arm designs, and found that designs with frequent interim analyses outperformed
single-stage designs with respect to average trial duration and sample size when fixing the type 1 error and power. When
having a pool of investigational agents available, which should all be tested against a common shared control, and using
progression-free survival as the efficacy endpoint, Yuan et al.15 found that average trial duration and average sample size
are drastically reduced when using a multi-arm, Bayesian adaptive platform trial design using response-adaptive randomi-
zation compared with traditional two-arm trials evaluating one agent at a time. Hobbs et al.16 reached a similar conclusion
when comparing a platform trial with a binary endpoint and futility monitoring based on Bayesian predictive probabilities
with a sequence of two-arm trials. Tang et al.17 investigated a phase II setting in which several monotherapies are com-
bined with several backbone therapies and tested in a single-arm manner. Assuming different treatment combination
effects, they found that their proposed Bayesian platform design with adaptive shrinkage has a lower average sample size
in the majority of scenarios investigated and always a higher percentage of correct combination selections when compared
with a fully Bayesian hierarchical model and a sequence of Simon's two-stage designs. Ventz et al.18 proposed a frequentist
adaptive platform (so called “rolling-arms design”) design as an alternative to sequences of two-arm designs and Bayesian
adaptive platform designs, which is much simpler than the Bayesian adaptive platform designs in that it uses equal alloca-
tion ratios and simpler and established decision rules based on group sequential analysis. The authors found that perfor-
mance under different treatment effect assumptions and a set of general assumptions was comparable to, if not slightly
better than Bayesian adaptive platform designs and much better than a sequence of traditional two-arm designs in terms of
average sample size and study duration. For a comprehensive review on the evolution of master protocol clinical trials and
the differences between basket, umbrella and platform trials, see Meyer et al.11 In this article, we explore the impact of both
decision rules and assumptions on the nature of the treatment effects and availability of treatments on certain operating
characteristics of an open-entry, cohort platform trial with multiple study arms. Such a platform design makes sense in any
context in which multiple pair-wise comparisons are necessary to advance a compound, whereby some comparisons are
based on treatments unique to different cohorts and some comparisons are based on treatments common to all cohorts
(and any mixture thereof). An example for such a context would be a drug development program in Nonalcoholic
steatohepatitis (NASH) trying to advance two-compound combination therapies with a common backbone therapy.

The article is organized as follows: In Section 2, we describe the trial design under investigation, the different testing
strategies as well as the investigated operating characteristics. In Section 3, we discuss the simulation setup and present
and discuss the results of the different simulation scenarios. We conclude with a general discussion in Section 4.

2 | METHODS

2.1 | Platform design

We investigated an open-entry, exploratory cohort platform study design with a binary endpoint evaluating the efficacy
of a two-compound combination therapy compared to the respective monotherapies and the standard-of-care (SoC).
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After an initial inclusion of one cohort, we allow new cohorts to enter the platform trial over time until a maximum num-
ber of cohorts is reached. We assume different cohorts share common key inclusion/exclusion criteria and patients are
always drawn from the same population, such that all eligible patients can be randomized to any cohort. Each cohort con-
sists of four arms: combination therapy, monotherapy A, monotherapy B and SoC. Monotherapy A is the same for all
cohorts (further referred to as “backbone monotherapy”), while monotherapy B (further referred to as “add-on mon-
otherapy X”) is different in every cohort X. The combination of monotherapies A and B is called combination therapy. See
Figure 1 for a schematic overview of the proposed trial design. To show that the backbone and SoC treatments do not
change during the platform trial, we use the same color coding of gray and green for all cohorts, respectively. The x-axis
shows the calendar time. At any point in time, new cohorts could enter the platform trial. In contrast to a simulation of a
classical RCT, here different response rates for the same treatment arms in different cohorts can be assumed. The assign-
ment of response rates to treatment arms is described in more detail in Appendix A.3. We conduct one interim analysis
for every cohort (indicated by the vertical yellow line in Figure 1), on the basis of which the cohort might be stopped early
for either futility or efficacy. The platform trial ends if there is no active, recruiting cohort left. The proposed trial design
is suggested for phase II trials. Subsequent phase III studies would follow if a combination therapy is graduated success-
fully. Following a rigorous interpretation of the current FDA and EMA regulatory guidelines,19,20 superiority of the com-
bination therapy over both monotherapies and superiority of both monotherapies over SoC needs to be demonstrated.
Therefore, we test the combination therapy against both of the monotherapies and both of the monotherapies against
SoC, resulting in four comparisons (indicated by the red “testing strategy” lines in Figure 1).

2.2 | Bayesian decision rules

As we discussed in Section 2.1, for testing the efficacy of the combination therapy, four pair-wise comparisons are per-
formed. In this article, for every one of the comparisons, we consider Bayesian decision rules based on the posterior

FIGURE 1 Schematic overview of the proposed platform trial design. New cohorts consisting of a combination therapy arm, a

monotherapy arm using the same compound in every cohort (referred to as “backbone monotherapy”), an add-on monotherapy arm which

is different in every cohort and a SoC arm are entering the platform over time. While the add-on monotherapy and therefore the

combination therapy is different in every cohort (as indicated by the differently shaded colors), the backbone monotherapy and SoC are the

same in every cohort (as indicated by the same colors). Each cohort has an interim analysis after about half of the initially planned sample

size, after which the cohort can be stopped for early efficacy or futility. The red brackets indicate the testing strategy within each cohort, that

is, comparison of combination therapy against both monotherapies and both monotherapies against SoC. We differentiate between per-

cohort and per-platform operating characteristics (OCs)
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distributions of the response rates of the respective study arms.21 In principle, any other Bayesian (e.g., predictive prob-
abilities, hierarchical models, etc.) or frequentist rules (based on p-values, point estimates or confidence intervals) could
be used. While these decision rules are based on fundamentally different paradigms, they might translate into the exact
same stopping rules, for example, with respect to the observed response rate.22,23 Decision rules based on posterior dis-
tributions used vague, independent Beta(1/2, 1/2) priors for all simulation results presented in this article; however,
please note that independence of the vague priors is a strong assumption and its violation can lead to selection bias as
pointed out by many authors.24–26 We differentiate two types of decisions for cohorts: “GO” (graduate combination
therapy, that is, declare combination therapy successful) and “STOP” (stop evaluation of combination therapy and do
not graduate, that is, declare the combination therapy unsuccessful). Generally, we consider decision rules of the fol-
lowing form:

GO,if P πC > πAþδE,TCA jData
� �

> γE,TCA

� � ^
P πC > πBþδE,TCB jData
� �

> γE,TCB

� � ^
P πA > πSþδE,TAS jData
� �

> γE,TAS

� � ^
P πB > πSþδE,TBS jData� �

> γE,TBS

� �

STOP,if P πC > πAþδF,TCA jData
� �

< γF,TCA

� � _
P πC > πBþδF,TCB jData
� �

< γF,TCB

� � _
P πA > πSþδF,TAS jData
� �

< γF,TAS

� � _
P πB > πSþδF,TBS jData� �

< γF,TBS

� �

ð1Þ

whereby πx denotes the response rate in treatment arm x (x �{C, A, B, S}) and T � 1, 2 denotes the analysis time point.
At interim (T = 1), if neither a decision for early efficacy or futility is made, the cohort continues unchanged. At final
(T = 2), if the efficacy boundaries are not met, the cohort automatically stops for futility. The initial letters E or F in the
superscript of the thresholds δ and γ indicate if this boundary is used to stop for efficacy (E) or futility (F). The sub-
scripts refer to the treatment arms (C (combination), A (monotherapy A), B (monotherapy B) and S (SoC)) and allow
for different thresholds for the individual comparisons. Choosing, for example, γE,1CA ¼ γE,1CB ¼ γE,1AS ¼ γE,1BS ¼ 1 corresponds
to not allowing early stopping for efficacy at interim. If at interim both stopping for early efficacy and futility is allowed,
parameters need to be chosen carefully such that GO and STOP and decisions are not simultaneously possible.

2.3 | Data sharing and allocation ratios

The advantage of platform trials is that they can use the data from all cohorts, which potentially increases the power in
every individual cohort. We can specify whether we want to share information on the backbone monotherapy and SoC
arms across the study cohorts. Several different methods have been proposed to facilitate adequate borrowing of non-
concurrent (these can be internal or external to the trial) controls.27–32 We consider four options, all applying to both
SoC and backbone monotherapy: (1) no sharing, using only data from the current cohort (see first row of Figure 2),
(2) full sharing of all available data, that is, using all data 1-to-1 (see second row of Figure 2), (3) only sharing of concur-
rent data, that is, using concurrent data 1-to-1 (see third row of Figure 2), and (4) using a dynamic borrowing approach
further described in Appendix A.1, in which the degree of shared data increases with the homogeneity of the observed
data in the current cohort and the pooled observed data of all other cohorts, that is, discounting the pooled observed
data of other cohorts less, if the observed response rate is similar (see fourth row of Figure 2). Whenever a new cohort
enters the platform trial, a key design element is the allocation ratio to the newly added arms (combination therapy,
add-on monotherapy, backbone monotherapy and SoC) and whether the allocation ratio of the already ongoing cohorts
should be changed as well, for example, randomizing less patients to backbone monotherapy and SoC in case this data
is shared across cohorts. The platform trial advances dynamically and as a result the structure can follow many different
trajectories (it is unknown in the beginning of the trial how many cohorts will enter the platform, how many of them
will run concurrently, whether the generated data will stem from the same underlying distributions and should there-
fore be shared, etc.). As the best possible compromise under uncertainty, we aimed to achieve a balanced randomiza-
tion for every comparison in case of either no data sharing or sharing only concurrent data. Depending on the type of
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data sharing and the number of active arms, this means either a balanced randomization ratio within each cohort in
case of no data sharing (i.e., 1:1:1:1, combination: add-on mono (monotherapy B): backbone mono (monotherapy A):
SoC), or a randomization ratio that allocates more patients to the combination and add-on monotherapy arm for every
additional active cohort in case of using only concurrent data. As an example, if at any point in time k cohorts are active
at the same time and we share only concurrent data, the randomization ratio is k: k: 1: 1 in all cohorts, which ensures
an equal number of patients per arm for every comparison. This allocation ratio is updated for all active cohorts every
time the number of active cohorts k changes due to dropping or adding a new cohort. As an example, assume
30:30:30:30 patients have been enrolled in cohort 1 before a second cohort is added. Then, until, for example, an interim
analysis is performed in cohort 1, both cohorts will have an allocation ratio of 2:2:1:1. If the interim analysis is sched-
uled after 180 patients per cohort, this would mean another 20:20:10:10 patients need to be enrolled in cohorts 1 and
2, since we can use the 10 concurrently enrolled backbone monotherapy and 10 concurrently enrolled SoC patients in
cohort 2 for the interim analysis in cohort 1, leading to a balanced 50:50:50:50 patients for the comparisons. In case of
either full sharing or dynamic borrowing, we use the same approach as when using concurrent data only.

2.4 | Definition of cohort success and operating characteristics

As discussed in section 2.1, for testing the efficacy of the combination therapy, four pair-wise comparisons are con-
ducted. If we were running a single, independent trial investigating a combination therapy, we would consider the trial
a success if all of the necessary pair-wise comparison were successful. Consequently, we would consider it a failure if at

FIGURE 2 Schematic overview of the different levels of sharing. No sharing happens if only “cohort” data are used. If sharing “all”
data, whenever in any cohort an interim or final analysis is performed, all SoC and backbone monotherapy data available from all cohorts

are used. If sharing only “concurrent” data, whenever in any cohort an interim or final analysis is performed, all SoC and backbone

monotherapy data that was collected during the active enrollment time of the cohort under investigation are used. If sharing “dynamically,”
whenever in any cohort an interim or final analysis is performed, the degree of data sharing of SoC and backbone monotherapy data from

other cohorts increases with the homogeneity of the observed response rate of the respective arms. A solid fill represents using data 1-to-1,

while a dashed fill represents using discounted data (for more information see Appendix A.1). If at any given time there are k active cohorts,

the allocation ratio is 1:1:1:1 in case of no data sharing and k:k: 1:1 otherwise (combination: add-on monotherapy: backbone monotherapy:

SoC). This allocation ratio is updated for all active cohorts every time the number of active cohorts k changes due to dropping or adding a

new cohort
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least one of the necessary pair-wise comparison was unsuccessful. For clearer understanding, we call these two options,
respectively, a positive or negative outcome. Depending on the formulated hypotheses, these might be either true or
false positives or negatives. To allow evaluation of the decision rules in terms of frequentist type 1 error and power, for
each of the four pair-wise comparisons we formulate a set of hypotheses of the following sort (exemplary for combina-
tion vs. monotherapy A, but analogously for all other comparisons): H0: πC ≤ πA + ζCA versus H1: πC > πA + ζCA.
Please note that as we are drawing the response rates randomly for every new cohort entering the platform trial, it is
unknown a priori whether this null hypothesis holds. Furthermore, please note while for our simulations this is not the
case, ζCA can be different from δCA chosen in Section 2.2 (in our simulations, for all pair-wise comparisons ζ = δ = 0).
We will elaborate more on what happens in this case in Appendix A.2. If all such pair-wise alternative hypotheses
within a cohort hold, we call the cohort truly efficacious (and any decision made is either a true positive or a false nega-
tive), otherwise we call it truly not efficacious (and any decision made is either a true negative or a false positive). The
latter implies that this includes scenarios where for some of the pair-wise hypotheses of interest the alternative and for
some the null holds. Depending on the decision rules used, it could be debated if other definitions are more meaningful
(e.g., if the comparisons of the combination therapy to the monotherapies are both true alternatives the cohort may be
considered as efficacious). While for a single, independent trial this would yield a single outcome (true positive, false
positive, true negative, false negative), for a platform trial with multiple cohorts this yields a vector of such outcomes,
one for each investigated cohort. In order to evaluate different trial designs, operating characteristics need to be chosen
that take into account the special features of the trial design, but are at the same time interpretable in the classical con-
text of hypothesis testing. In more simple trial designs evaluating one treatment against a control, power and type
1 error rates are used to judge the design under consideration. For platform trials, similarly to multi-arm multi-stage
trials,33 the choice of operating characteristics is not obvious.34–38 Furthermore, for the particular trial design under
consideration, many operating characteristics based on the pair-wise comparisons of the different monotherapies, SoC
and combination therapy could be considered. We decided to investigate cohort-level and platform-level operating char-
acteristics (see Figure 1). As described previously, when simulating platform trials we might allow the same treatment
arms to have different response rates in different cohorts. Even if we allow for a mix of true null and alternative hypoth-
eses, for a single simulated platform trial, it could happen by chance that only efficacious or only not efficacious cohorts
are added. Consequently, for the platform-level operating characteristics, a definition challenge arises when by chance
either no true positive and false negative (in case all cohorts are truly not efficacious) or true negative and false positive
(in case all cohorts are truly efficacious) decisions are possible. To make sure that the operating characteristics reflect
this situation (which depends on the prior on the treatment effects), we differentiate between counting all simulation
iterations (which implicitly takes into account the prior on the treatment effect, “BA” [“Bayesian Average”] operating
characteristics, FWER BA and Disj Power BA) or only those simulation iterations where a false decision could have
been made towards the type 1 error rate and power (FWER and Disj Power). An overview of the operating characteris-
tics used in this article and their definitions can be found in Table 1.

3 | SIMULATIONS

3.1 | Simulation setup

We investigate the impact of a range of different design parameters and assumptions on the operating characteristics.
In total, we investigated 14 different settings with respect to the treatment efficacy assumptions for the combination
arm, the monotherapy arms and the SoC arm. In the main text, with one exception, only results of one treatment effi-
cacy setting (setting 1) are shown as in this scenario both truly efficacious and not efficacious cohorts can enter the plat-
form trial (see section 2.4). In the investigated setting (setting 1), for every new cohort entering the platform trial, the
backbone monotherapy (response rate 20%) is superior to SoC (response rate 10%). The add-on monotherapy efficacy is
random with 50% probability to be as efficacious as the backbone monotherapy (response rate 20%) and 50% probability
to be not efficacious (response rate 10%). Adding to the monotherapies, the combination therapy interaction effect is
additive, meaning the combination therapy is superior to both monotherapies if the add-on monotherapy is efficacious
(response rate 40%) and not superior to the backbone monotherapy otherwise (response rate 20%). In terms of sample
sizes, we vary the final cohort sample size from 100 to 500 in steps of 100 and fix the interim sample size at half of the
final sample size. The maximum number of cohorts entering the platform trial over time is varied between 3 and 7 in
steps of 2 and the probability to include new cohorts in the platform after every patient is set to either 1% or 3%. For the
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Bayesian decision rules (see section 2.2), by default we set all δ = 0, all γ E,T = 0.9 and all γ F,T = 0.5 in Equation (1). An
overview of the simulation setup can be found in Table 2. It should be obvious that the chosen decision rules will yield
dramatically different power and type 1 errors across different simulation parameters and treatment efficacy settings. It
was our primary goal to investigate the relative impact of the simulation parameters and treatment efficacy settings on
the operating characteristics. Of course, for any given combination of simulation parameters and treatment efficacy
assumptions, the decision rules could be adapted to, for example, achieve a per-cohort power of 80%. We will investi-
gate the impact of the decision rules in more detail in section 3.2.1.

For every configuration of design parameters and assumptions, 10,000 platform trials were simulated. Unless other-
wise specified, simulation results presented in this article use treatment effect scenario 1, the above mentioned Bayesian
decision rules, a final sample size of 500 per cohort, a maximum number of cohorts per platform trial of up to 7 and a
probability of including a new cohort after every patient of 3%. Results of all further treatment efficacy assumptions, as
well as a table summarizing all different treatment efficacy settings are presented in the supplements (Table 3). For a
detailed overview of the general simulation assumptions, as well as all possible simulation parameters for the R soft-
ware package and Shiny App, see the R package CohortPlat vignette on GitHub. The R software package can be down-
loaded from GitHub or CRAN. Further results not discussed in the main text can be found in the Supplemental
material. For a complete overview of all simulation results, we developed a Shiny App facilitating self-exploration of all
of our simulation results. The purpose of this R Shiny app is to quickly inspect and visualize all simulation results that
were computed for this paper. We uploaded the R Shiny app, alongside all of our simulation results used in this paper
to our server.39

TABLE 1 Operating characteristics used in this paper and their definitions

Name Definition

PCP “Per-Cohort-Power,” the ratio of the sum of true positives among the sum of truly efficacious cohorts (i.e., the sum of
true positives and false negatives) across all platform trial simulations, that is, the probability of a true positive decision
for any new cohort entering the trial. This is a measure of how wasteful the trial is with superior therapies.

PCT1ER “Per-Cohort-Type-1-Error,” the ratio of the sum of false positives among the sum of all truly not efficacious cohorts
across all platform trial simulations, that is, the probability of a false positive decision for any new cohort entering the
trial. This is a measure of how sensitive the trial is in detecting futile therapies.

FWER “Family-wise type 1 Error Rate”, the proportion of platform trials, in which at least one false positive decision has been
made (i.e., probability of at least one false positive decision across all cohorts), where only such trials are considered,
which contain at least one cohort that is in truth futile. Formal definition: 1

jI�0 j
P

i � I�0
1 FPi >0f g, where

I�0 ¼ i� 1,…iterf g : nH0
i >0

� �
, where iter is the number of platform trial simulation iterations, FPi denotes the number of

false-positive decisions in simulated platform trial i and nH0
i is the number of not efficacious cohorts in platform trial i.

FWER BA “Family-wise type 1 Error Rate Bayesian Average”, the proportion of platform trials, in which at least one false positive
decision has been made (i.e., probability of at least one false positive decision across all cohorts), regardless of whether
or not any cohorts which are in truth futile exist in these trials. Formal definition: 1

iter

P iter
i¼11 FPi >0f g, where iter is the

number of platform trial simulation iterations and FPi denotes the number of false-positive decisions in simulated
platform trial i. This will differ from FWER in scenarios where—due to a prior on the treatment effect—in some
simulation runs, there are by chance only efficacious cohorts in the platform trial (see Appendix A.3 for more details
on the different treatment efficacy scenarios).

Disj Power “Disjunctive Power”, the proportion of platform trials, in which at least one correct positive decision has been made (i.e.,
probability of at least one true positive decision across all cohorts), where only such trials are considered, which
contain at least one cohort that is in truth superior. Formal definition: 1

jI�1 j
P

i � I�1
1 TPi >0f g, where

I�1 ¼ i� 1,…iterf g : nH1
i >0

� �
, where iter is the number of platform trial simulation iterations, TPi denotes the number

of true-positive decisions in simulated platform trial i and nH1
i is the number of efficacious cohorts in platform trial i.

Disj Power
BA

“Disjunctive Power Bayesian Average”, the proportion of platform trials, in which at least one correct positive decision
has been made (i.e., probability of at least one true positive decision across all cohorts), regardless of whether or not
any cohorts which are in truth superior exist in these trials. Formal definition: 1

iter

P iter
i¼11 TPi >0f g, where iter is the

number of platform trial simulation iterations and TPi denotes the number of true-positive decisions in simulated
platform trial i. This will differ from Disj Power in scenarios where—due to a prior on the treatment effect—in some
simulation runs, there are by chance no efficacious cohorts in the platform trial (see Appendix A.3 for more details on
the different treatment efficacy scenarios).

MEYER ET AL. 677



3.2 | Simulation results

In Figure 3, we investigate the impact of the data sharing and maximum number of cohorts per platform on PCT1ER
and FWER (Figure 3A) and PCP and disjunctive power (Figure 3B). We observe that the PCP does not increase with
the platform size (maximum number of cohorts) in case of no data sharing, while it does increase with the magnitude
of data sharing. For the disjunctive power we observe a similar relationship, that is, it increases regardless of the data
sharing with increasing number of investigated cohorts. Furthermore, we see that the PCT1ER stays more or less con-
stant with respect to the platform size, however is lowest for the dynamic borrowing approach. We believe that this is
due to the following: A type 1 error in a cohort happens only if either the observed combination therapy and add-on
monotherapy efficacy are on a random high or if the observed backbone and SoC response rates are on a random low.
In the former case, the degree of data sharing will have no impact on the decisions made. In the latter case, if dynamic
borrowing is used, all other cohorts will discount this data, leading to fewer type 1 errors in the other cohorts compared
to if complete pooling was used. On the other hand, for the cohort that had observed backbone and SoC response rates
on a random low, there is a chance to not make a type 1 error when any sort of data sharing is used. As a result of the
PCT1ER behavior, the FWER increases with increasing platform size and is again lowest in the case of dynamic
borrowing.

TABLE 2 Simulation Setup Overview. For different simulation parameters, we differentiate between parameters that are considered a

design choice and parameters that are considered an assumption regarding the future course of the platform or treatment effects. For the

investigated values, we state in bold which value was considered the default value, that is, unless stated otherwise in a particular figure, the

parameters was set to this value. For some parameters there is no default (e.g., when shown as a simulation dimension in every figure or if

chosen as a fixed design parameter in section 2)

Name Type
Investigated
values Description

Maximum
number of
cohorts

Assumption 3, 5, 7 Assumed maximum number of cohorts per platform (can be less in individual
simulations)

Cohort
inclusion
rate

Assumption 0.01, 0.03 Probability to include a new cohort in the ongoing platform trial after every
simulated patient (unless maximum number of cohorts is reached). The
default value leads to reaching the assumed maximum number of cohorts in
nearly every simulation for nearly every sample size.

Treatment
efficacy
setting

Assumption 1, 2–14 Assumed treatment effects of the different study arms. For more information,
see Table 3.

Final cohort
sample size

Design
choice

100, 200, 300, 400,
500

Number of patients after which final analysis in a cohort is conducted (interim
analysis always after half the final sample size)

Data sharing Design
choice

All, concurrent,
dynamic, cohort

Different methods of data sharing used at analyses, ranging from full pooling
to not sharing at all. For more information, see section 2.3.

Allocation
ratios

Design
choice

Balanced or
unbalanced
(depends on data
sharing)

Allocation ratio to treatment arms within a cohort. Depending on the method
of data sharing, the allocation ratio is set to either balanced or unbalanced
(i.e., randomizing more patients to combination and add-on monotherapy).
For more information, see section 2.3.

Bayesian
decision rule

Design
choice

δ � [0, 0.2], γ �
[0.65, 0.95] (0.9)

Thresholds used in the Bayesian decision making at interim and final. Values
other than the default values are used only in Figure 6. For more
information, see section 2.2.

Interim
analysis

Design
choice

Early stopping for
futility, no early
stopping for
futility

Binding rules on whether or not a cohort can be stopped at interim for early
futility (note: cohorts can always stop for early efficacy). For more
information, see section 2.2. Further extensions investigated in the
supplements include using a surrogate short-term endpoint for interim
decision making.
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In Figure 4, we investigate the impact of optimistic/pessimistic assumptions regarding the expected platform size,
cohort inclusion rate and final cohort sample size on per-cohort, and per-platform power. We observe that the PCP is
independent of the assumptions regarding the maximum number of included cohorts and the cohort inclusion rate.
When the sample size is increased, both PCP and disjunctive power increase, however the increase is faster when using
more optimistic assumptions regarding the expected platform size and cohort inclusion rate, as firstly more data can be
shared and secondly more cohorts will be included on average, thereby increasing the chance for any true positive
decision.

Next, we removed the 50:50 chance for new cohorts entering the platform trial to have an efficacious add-on mon-
otherapy and increased this probability to 100% (i.e., we are using treatment efficacy setting 7 instead of setting 1). We
also wanted to investigate the impact of an increase in SoC response rate, so we increased the SoC response rate from
10% to 20% but kept the incremental increases in response rate the same (i.e., 10% points increased for the mono-
therapies and 30% points increased for the combination therapy; setting 14). Results for the power are presented in Fig-
ure 5. While all the relative influences of level of data sharing, use of decision rules, and so on, appear to be unchanged,
we observed consistently slightly lower power for increased SoC response rate, which could be due to increased vari-
ance in the observed response rates. Another phenomenon that is particularly pertinent in this figure: While the PCP is
always lowest when sharing no data, the disjunctive power is only the lowest when sharing no data when using small
sample sizes. With increasing sample size the disjunctive power is greatest when sharing no data. While this might
seem not intuitive at first, we believe it is due to random highs in the SoC (leading to unsuccessful comparisons of
monotherapies vs. SoC) and backbone monotherapy (leading to unsuccessful comparisons of the combination therapy
vs. backbone monotherapy) arms. When these occur, sharing this data across cohorts might negatively impact all other
truly efficacious cohorts leading to simultaneously only false negative decisions. As a result, the disjunctive power
drops. This cannot happen when no data is shared.

FIGURE 3 Impact of the data sharing (linetype and point shape) and maximum number of cohorts per platform (x-axis) on the per-

cohort and per-platform type 1 error (Figure 3A) and power (Figure 3B) in treatment efficacy setting 1. Please note that different scaling of

the y-axis is used in the two subfigures. With increasing number of cohorts in the platform, the chance to make at least one correct positive

or negative decision increases. When data is shared, the per-cohort power increases, while it stays constant when no data sharing is planned
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3.2.1 | Impact of modified decision rules

We further investigated the impact of parameters required for the Bayesian GO decision rules on the error rates. Every
individual comparison includes a superiority margin δ and a required confidence γ (e.g., posterior (P(πComb > πMonoA +

δjData) > γ)). In the decision rules in section 2.2 we fixed δ = 0 and γ = 0.90. We now varied γ from 0.65 to 0.95 and δ
from 0 to 0.2. The impact on the operating characteristics is presented in Figure 6. Figure 6A reveals that both when
sharing no or all data, the FWER can increase beyond 0.05 and even far beyond 0.10. Similarly, Figure 6B reveals that
when choosing more lenient decision rules and increasing the data sharing, a PCP of close to 1 is attainable. Such con-
tour plots will help to fine tune the Bayesian decision rules in order to achieve the desired operating characteristics. For
γ, one would usually expect values equal to or larger than 80%. The choice of δ also relies on clinical judgment. Gener-
ally, as a result of the combined decision rule, operating characteristics are rather conservative with respect to type
1 error rates.

3.2.2 | Summary of main results

Planning a platform trial is much more complex than planning a traditional full development trial. Firstly, both
power and type 1 error might have to be controlled on the platform or cohort level. A platform trial that replaces
sponsors' individual trials with the aim of advancing as many compounds as possible will try to control error rates on
the cohort level. However, a platform trial with the goal of making sure that at least one efficacious compound is
advanced would rather control error rates on the platform level. As seen in Figure 4, the per-cohort power depends
on the assumptions regarding the cohort inclusion rate and number of cohorts that will enter over time. In case there
is substantial uncertainty regarding how fast and how many new cohorts will enter the platform trial over time when

FIGURE 4 Per-cohort and per-platform power with respect to data sharing (linetype and point shape), assumptions regarding the

maximum number of cohorts (rows), cohort inclusion rate (columns) and final cohort sample size (x-axis) in treatment efficacy setting

1. Generally, both types of power increase with increasing final cohort sample size. In case of no data sharing, the per-cohort power is

independent of assumptions regarding the expected platform size and cohort inclusion rate
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determining the sample size, conservative lower bounds for the per-cohort power can be used by assuming no data
sharing will take place. In this case, further simulations revealed that a final cohort sample size of around 600 would
be needed to achieve a PCP of 0.8. In order to achieve a disjunctive power of 0.8, a final cohort sample size in the
range of 300–500 is needed (depending on the assumptions; for few cohorts and a lower probability of cohort inclu-
sion roughly 500 and for more cohorts and a higher probability of inclusion slightly below 300). In the fortunate event
that the platform will attract many cohorts, the power for future cohorts would only increase with data sharing while
guaranteeing a certain power for the first cohorts. If the priority is PCP and we are extremely confident about new
cohorts entering the platform over time, by simply pooling all data we might achieve a PCP of 0.8 with a final cohort
sample size of around 340 and a disjunctive power of 0.8 with a final cohort sample size of around 220. However, the
above results are only true for the chosen treatment efficacy assumptions. When we are more optimistic about the
treatment efficacy, the best choice for maximizing disjunctive power might be to not share any data at all (as seen in
Figure 5, where in the left panel a disjunctive power of 0.8 is achieved with a final cohort sample size below 200 and
no data sharing).

4 | DISCUSSION

To our knowledge, we conducted the first cohort platform simulation study to evaluate combination therapies with an
extensive range of simulation parameters that reflect the potential complexity and a priori unknown trajectory of plat-
form trials. The design under investigation is an open-entry, cohort platform study with a binary endpoint evaluating
the efficacy of a number of two-compound combination therapies with a common backbone monotherapy compared to
the respective monotherapies with putative individual efficacy over SoC. For example, the SoC arm could include a pla-
cebo add-on to achieve blinding. A range of treatment effect scenarios, as well as types of data sharing were

FIGURE 5 Impact of SoC response rate (columns; treatment efficacy settings 7 vs. 14), final cohort sample size (x-axis) and data sharing

(linetypes and point shapes) on per-cohort and per-platform power. We observed consistently lower power for increased SoC response rate.

We also observed that while for lower sample sizes the per-platform power is increased with increasing amount of data sharing, this is not

true anymore for larger sample sizes
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investigated, from no sharing to full sharing. In our simulations, no a priori knowledge is required regarding the possi-
ble trajectories of the platform trials, as in every simulation, different trajectories are dynamically simulated based on
randomly generated events such as patients, outcomes, cohort inclusions, and so on. This means in one simulation, the
platform trial might be stopped after including only one cohort and in another simulation run, it might stop after evalu-
ating 7 cohorts. This is also a major difference compared to simulation programs for multi-arm multi-stage studies,
which usually assume a fixed number of different arms or compute only arm-wise operating characteristics. Within
each simulation in our program, periods of overlap between cohorts are recorded. We believe that especially this
dynamic simulation is one of the key strengths of our simulation study, as it produces different realistic trajectories and
computes operating characteristics across all such possible trajectories. We developed an R package and Shiny app
alongside that facilitate easy usage and reproducibility of all simulation code, while the Shiny app for result exploration
facilitates reproduction of our extensive simulation results, which we could not all discuss in this paper. Development
of software for platform trial simulation is not straightforward and time spent on programming increases rapidly when
more realistic features such as staggered entry, adding and dropping of treatment arms or data sharing across treat-
ments/cohorts are included.40

Our results indicate that—apart from the treatment efficacy assumptions—the method of data sharing, exact specifi-
cation of decision rules and complexity of the platform trial (expressed as maximum number of cohorts and cohort
inclusion rate) are most influential to the operating characteristics of the platform trial. As expected, in nearly all cases,
pooling all data leads to the largest power and type 1 error rates, whereas no data sharing leads to the lowest power.
Methods that do not pool all data, but either discount them or use only concurrently enrolled patients, might signifi-
cantly increase the power while only marginally increasing or even decreasing the type 1 error. Furthermore, definition
of error rates in the context of a cohort platform trial with a combined decision rule per cohort is not straightfor-
ward.36,37,41–44 As an example, whether or not to include simulated platforms that—as a result of random sampling of
treatment efficacy from a specified prior distribution—do not contain truly efficacious cohorts in the calculation of the
disjunctive power can lead to discrepancies of up to 15% points in our simulations. In terms of type 1 error rates, we
defined a type 1 error via a target product profile and focused on interpreting the per-cohort type 1 error and the
family-wise error rate in this paper. Other authors have recently suggested that FDR control might yield better

FIGURE 6 Impact of the Bayesian GO decision rules on (A) per-cohort and per-platform type 1 error rates and (B) per-cohort and per-

platform power in treatment efficacy setting 1. The black dot corresponds to the decision rules chosen in section 2.2. For every error rate, we

set the data sharing (rows) to either full (“all”) or none (“cohort”). The x-axis shows the required confidence (“gamma”) and the y-axis the

required superiority (“delta”) used in the Bayesian decision making in section 2.2. It is apparent that by choice of δ and γ, a wide range of

different error rates can be obtained
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properties than family-wise error rate control in the multi-arm context.45 The control of error rates such as the FDR
might be appropriate for exploratory platform trials, which are less of a regulatory concern. Furthermore, in our investi-
gations we treat configurations of “partial” superiority (e.g., the case where the combination is declared superior to the
two monotherapies, but one or both of these are not declared superior to SoC) as non-rejections of the null hypothesis.
Reversely, when for any of the four pair-wise comparisons conducted the null hypothesis holds, we consider any suc-
cessful decision on the cohort level a false positive decision. For some configurations of null and alternative hypotheses
within a cohort (e.g., when the combination therapy is superior to both monotherapies and SoC, but one of the compo-
nents is not superior to SoC), the per-cohort type 1 error and the family-wise error rate are much higher than in the
global null settings. For these configurations, partial power concepts might be more appropriate, or more relaxed testing
strategies or thresholds than the one implemented could be considered, for example, if superiority of the backbone over
SoC does not have to be shown within the platform trial. In this case, three instead of four pairwise comparisons would
be required. Also it might make sense to use more relaxed thresholds for the comparisons of monotherapies versus SoC
than for the comparisons of combination therapy versus the monotherapies. A further simplification would be to only
test the combination therapy against the monotherapies (two pairwise comparisons) or against SoC (one pairwise com-
parison), in which case also the number of arms per cohort and allocation ratio would have to be adapted. For example
in oncology, sometimes it is sufficient to demonstrate synergistic effects of the combination therapy, because mono-
therapies cannot separate from SoC. Such a combination therapy trial would be a success if combination therapy is
superior to both monotherapies and SoC, even if the monotherapies do not separate from SoC.

As for any simulation program, especially in a highly complex and dynamic context such as platform trials, we had to
make simplifications. The following restrictions must be acknowledged: (1) Patients are simulated in batches to achieve
the targeted allocation rate. In more detail, for every time interval a batch of patients is simulated, all entering the study
at the same time (imitating a block randomization). This led to potentially slightly different sample sizes at interim and
final than planned. However, this is also not uncommon in reality. By simulating the outcomes this way, the overall run
time could be significantly reduced, thereby allowing us to investigate more than ten thousand combinations of simula-
tion parameters and simulating more than one hundred million individual platform trajectories. For more information on
the exact patient sampling mechanism, see the R package vignette. (2) The dynamic borrowing approach we used is
rather straightforward and heuristic. While based on a well-known and accepted method described by Schmidli et al.28

we had to adapt the approach to be compatible with our cohort platform design and simulation structure, leading to some
heuristic adaptations for the sake of computational efficiency. (3) Furthermore, in the simulations individual patient
demographic or baseline characteristics were not considered. We assumed that patients were always drawn from the same
population and different cohorts shared common inclusion/exclusion criteria. All newly simulated patients under such
assumptions were eligible for randomization to any cohort ongoing at the time the patient was simulated, which enabled
naive borrowing of data across cohorts during the analyses. In practice, separate cohorts could have some different inclu-
sion / exclusion criteria due to scientific (e.g., treatments of different modes of action) or operational considerations. Nev-
ertheless, the schematic approaches in this simulation study for assessing trial operating characteristics could remain
instrumental. Otherwise, partial instead of complete data sharing could be planned for when designing a platform study.
In such practical scenarios, prior epidemiological and clinical knowledge on the disease of interest also plays a critical role
for appropriate data borrowing hence for the reliable assessment of power and error rates. (4) As we would expect in real
life, our simulations show variations in the final sample size. Especially when performing more data sharing, the origi-
nally planned final sample size tends to be exceeded. Further simplifications included not simulating variations in recruit-
ment speed due to availability of centers, external and internal events such as approval of competitor drugs or
discontinuation of drug development programs. While the software does facilitate stopping treatments due to safety
events, we did not use this parameter in the presented simulation study. As the best possible compromise under uncer-
tainty, we aimed to achieve a balanced randomization for every comparison in case of either no data sharing or sharing
only concurrent data and refrained from investigating response-adaptive randomization, which might increase the effi-
ciency of the platform trial.13,46 We only investigated platform trials with a maximum number of cohorts between 3 and
7. We believe this is sufficient in the initial planning step. If less cohorts are expected, a platform trial is not warranted. If
more cohorts are expected to be included over time, simulations would need to be re-run.

To evaluate combination therapies the proposed platform design will be an efficient way to evaluate potential drugs
and the resulting therapies. When exploring Bayesian decision rules, a key factor is fine-tuning of decision parameters
(e.g., δ and γ) in case operating characteristics should be controlled at a certain level. In the Bayesian decision rules, we
tried to demonstrate superiority for the comparison of the monotherapies versus SoC. However, in some therapeutic
areas, SoC could be an active drug with a different mechanism of action. In such instances, it could be sufficient to
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demonstrate non-inferiority for some of the pairwise comparisons using pre-specified non-inferiority margins δ < 0.
Furthermore, if drugs have more than one dose level, the platform trial can be extended to allow for more dose levels
per cohort. This may result in even more complex models and decision rules, depending on which data sharing models
are to be used when calculating the posteriors. Considering dose–response relationships in combination trials will be a
part of future research, as well as investigation of non-inferiority decision rules and impact of different allocation ratios
on the operating characteristics.
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APPENDIX A

A.1 | Dynamic borrowing
Assume at any given time during the course of the platform trial we want to compute the posterior probability for either
the backbone monoterhapy or SoC response rate θc in cohort c using a “dynamic borrowing” approach, in particular
using a robust mixture prior (see Schmidli et al.28), in which we both use the cumulative observed data of cohort
c (denoted by (nc, kc)), as well as the cumulative pooled observed data from other cohorts in the platform trial (denoted
by npc ,k

p
c

� �
), where n denotes the sample size and k the number of responders. The data npc ,k

p
c

� �
might include pooled

data from both earlier cohorts of the same platform trial, or concurrent data from concurrent cohorts of the same plat-
form trial, but does not include data that has not yet been observed. For example when looking at Figure 2, (nc, kc) is
the data from cohort 3 and np

c ,k
p
c

� �
is the pooled data from cohorts 1 and 2 (for the backbone monotherapy and SoC

arms, respectively). Ultimately our goal is to have a posterior for θc that consists of two weighted Beta distributions, one
informed by both (nc, kc) and npc ,k

p
c

� �
with weight w1 and the other informed only by (nc, kc) with weight w2

(w1+w2 = 1), in other terms

π θcð Þ¼w1 � f y,kpc þkcþαpc ,n
p
c þnc�kpc �kcþβpc

� �þw2 � f y,kcþαc,nc�kcþβcð Þ, ðA1Þ

where f(�, α, β) denotes the probability density function of a Beta distribution with parameters α and β and π(θc) denotes
the density of the posterior distribution of θc. The weights then represent the degree of “borrowing.” Furthermore, the a
priori unknown degree of borrowing (i.e., w1 and w2) should be based on (nc, kc) and np

c ,k
p
c

� �
.

Our robust mixture prior for θc conditional on this data is given by

πRMP θcjnp
c ,k

p
c

� �¼w� f θc,k
p
c þαc,npc �kpc þβc

� �þ 1�wð Þ � f θc,αc,βcð Þ¼

¼w
θk

p
cþαc�1

c � 1�θcð Þnpc�kpcþβc�1

B kpc þαc,n
p
c �kpc þβc

� � þ 1�wð Þθ
αc�1
c � 1�θcð Þβc�1

B αc,βcð Þ ,
ðA2Þ

where B(α, β) denotes the Beta function at (α, β) and αc and βc are the parameters reflecting the current information
about θc (both set to 0.5 through our simulations). Please note that this posterior is not iteratively derived, but rather
“rebuilt” from scratch every time an analysis is conducted. Please further note that w1 and w2 (Equation (A1)) depend
on w (Equation (A2)) and w needs to be chosen a priori. The posterior distribution of θc is now derived as:

π θcð Þ/ πRMP θcjnpc ,kpc
� ��θkcc � 1�θcð Þnc�kc ¼

¼w
θk

p
cþkcþαc�1

c � 1�θcð Þnpcþnc�kpc�kcþβc�1

B kpc þαc,n
p
c �kpc þβc

� � þ 1�wð Þθ
kcþαc�1
c � 1�θcð Þnc�kcþβc�1

B αc,βcð Þ :
ðA3Þ

In order for this to be a distribution, we need to make sure it integrates to 1. An option which captures the idea of
dynamic borrowing in the sense that the more similar the posterior of θc based on (nc, kc) is to the posterior of θc based
on np

c ,k
p
c

� �
, the more borrowing should be done - is to set
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w1 ¼
w

B kpcþkcþαc,n
p
cþnc�kpc�kcþβcð Þ

B kpcþαc,n
p
c�kpcþβcð Þ

w
B kpcþkcþαc,n

p
cþnc�kpc�kcþβcð Þ

B kpcþαc,n
p
c�kpcþβcð Þ þ 1�wð ÞB kcþαc,nc�kcþβcð Þ

B αc,βcð Þ

ðA4Þ

and

w2 ¼
1�wð ÞB kcþαc,nc�kcþβcð Þ

B αc,βcð Þ

w
B kpcþkcþαc,n

p
cþnc�kpc�kcþβcð Þ

B kpcþαc,n
p
c�kpcþβcð Þ þ 1�wð ÞB kcþαc,nc�kcþβcð Þ

B αc,βcð Þ

: ðA5Þ

This corresponds to the case in which we divide the unscaled posterior in Equation (A2) by the factor

w
B kpc þkcþαc,npc þnc�kpc �kcþβc
� �

B kpc þαc,n
p
c �kpc þβc

� � þ 1�wð ÞB kcþαc,nc�kcþβcð Þ
B αc,βcð Þ : ðA6Þ

The posterior distribution is now given by

π θcð Þ¼
w θ

k
p
cþkcþαc�1

c � 1�θcð Þn
p
cþnc�k

p
c�kcþβc�1

B kpcþαc,n
p
c�kpcþβcð Þ þ 1�wð Þθkcþαc�1

c � 1�θcð Þnc�kcþβc�1

B αc,βcð Þ

w
B kpcþkcþαc,n

p
cþnc�kpc�kcþβcð Þ

B kpcþαc,n
p
c�kpcþβcð Þ þ 1�wð ÞB kcþαc,nc�kcþβcð Þ

B αc,βcð Þ

: ðA7Þ

Since w1 + w2 = 1, we can be sure that this yields a proper distribution. Choosing the weights w1 and w2 in this way
now leads to the borrowing being dynamic. In Figure 7 we investigate the impact of the sample sizes and observed
response rates in the cumulative observed cohort and cumulative pooled observed data from other cohorts in the plat-
form trial, as well as the prior w on the weight w1.

Finally, the parameters of the Beta posterior are derived as

αeff ¼w1 � kpc þkcþαc
� �þw2 � kcþαcð Þ ðA8Þ

βeff ¼w1 � ncþnpc
� �� kpc þkc

� �þαc
� �þw2 � nc�kcþαcð Þ ðA9Þ

Despite not being investigated in this manuscript, the simulation software also features frequentist decision rules
based on 2 � 2 contingency tables and therefore expects the effective sample size and number of responders to be inte-
gers. We therefore simplify and assume the effective sample size to be bαeff + βeffe and the effective number of
responders to be bαeffe. The whole procedure is applied for backbone monotherapy and SoC separately.

A.2 | Different target product profiles
All considered pair-wise decision rules are of the form “GO,” if P(πy > πx + δjData) > γ (see section 2.2). In section 2.4,
we assumed that the target product profile would always require the response rate of drug y to be greater than the
response rate of drug x by any margin to consider the alternative hypothesis to hold. This can be extended to allow the
target product profile to specify any required margin ζ, such that if and only if the response rate of drug y is truly better
than the response rate of drug x by a margin of at least ζ do we consider the alternative hypothesis to hold. For every
pair-wise comparison, this margin ζ can, but does not have to, coincide with the δ used. This is visualized for a single
pair-wise comparison in Figure 8. As a reminder, for all of the pair-wise comparisons in our simulations, we set ζ = 0.
In the CohortPlat package, a different margin ζ can be chosen both for the comparison of combination against the
monotherapies and the comparison of the monotherapies against SoC.
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A.3 | Treatment efficacy scenarios
In the main text, we showed nearly exclusively selected results of one set of assumptions regarding the treatment effect
of the monotherapies and the combination treatment (setting 1). In general, we only investigated treatment effect
assumptions based on risk-ratios, whereby we randomly and separately draw the risk-ratio for each of the mono-
therapies with respect to the SoC treatment. For the combination treatment, we randomly draw from a range of interac-
tion effects, which could result in additive, synergistic or antagonistic effects of a specified magnitude. Some scenarios
might be more realistic for a given drug development program than others, however we felt that the broad range of sce-
narios will allow to investigate the impact and interaction of the various simulation parameters and assumptions on the
operating characteristics. Let πx denote the probability of a patient on therapy x to have a successful treatment outcome
(binary), that is, the response-rate, and Tx denote a discrete random variable.

In detail, every time a new cohort enters the platform, we firstly fix the SoC response-rate:

πSoC � 0,1½ �

Then we assign the treatment effect in terms of risk-ratios for the backbone monotherapy (monotherapy A), which
is the same across all cohorts:

FIGURE 7 Impact of the sample sizes and observed response rates in the cumulative observed cohort and cumulative pooled observed

data from other cohorts in the platform trial (nc, πc ¼ kc
nc
and np, πp ¼ kpc

npc
respectively), as well as the prior w on the weight w1. Please note in

the figure the label “pi_c” is used for πc, “pi_p” is used for πp, “nc” is used for nc and “np” is used for np. When the observed response rates

in the two groups are the same, the amount of data sharing increases with w and increasing sample size in both groups. When the observed

response rates are different, the amount of data sharing decreases with decreasing w and increasing sample size in both groups. When the

observed response rates are very different, the amount of data sharing is nearly 0, even when the sample sizes are small and the prior w was

chosen to be 0.9. When, for example, the prior w is set to 0.1, even in case of equality of πc and πp, the actual borrowing w1 does not increase

beyond approximately 0.7 for the chosen sample sizes. For all results, the Beta prior parameters were set to 0.5. Visualization is based on the

looplot package,47 which implements the visualization presented by Rücker and Schwarzer.48 Please note that, for example, in the plot in

the bottom left corner, most lines are overlapping
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πMonoA ¼ πSoC � γMonoA,γMonoA �TMonoA

Then we randomly draw the treatment effect in terms of risk-ratios for the add-on monotherapy (monotherapy B):

πMonoB ¼ πSoC � γMonoB,γMonoB �TMonoB

Finally, after knowing the treatment effects of both monotherapies, we randomly draw an interaction effect for the
combination treatment:

πCombo ¼ πSoC � γMonoA � γMonoBð Þ � γCombo,γCombo �TCombo

Depending on the scenario, the distribution functions can have all the probability mass on one value, that is, the
assignment of treatment effects and risk-ratios is not necessarily random. Please further note that while the treatment
effects were specified in terms of risks and risk-ratios, the Bayesian decision rules were specified in terms of response
rates. Two settings characterize global null hypotheses, six settings characterize an efficacious backbone monotherapy
with varying degrees of add-on mono and combination therapy efficacy, two settings characterize an efficacious back-
bone with varying degrees of random add-on mono and combination therapy efficacy, two settings characterize either
the global null hypothesis or efficacious mono and combination therapies, but with an underlying time-trend, and two
settings were run as sensitivity analyses with increased standard-of-case response rates. The different treatment efficacy
settings are summarized in Table 3.

(A) (B)

FIGURE 8 After a pair-wise comparison of treatment x against treatment y, whereby the decision rules required the response rate of

treatment y (πy) to be superior to the response rate of treatment x (πx) by a margin of δ (i.e., πy ≥ πx + δ), treatment y was either declared

superior (subfigure B) or not superior (subfigure A) to treatment x. A target product profile was defined for treatment y, whereby the aim

was for the response rate of treatment y to be superior to the response rate of treatment x by a margin of ζ (i.e., πy ≥ πx + ζ). For simplicity,

we assume δ ≥ ζ, although this approach also works when δ < ζ. When in truth πy < πx + ζ, the decision is either a correct negative decision

(subfigure A) or a false positive decision (subfigure B). When in truth πy ≥ πx + ζ, the decision is either a false negative decision (subfigure

A) or a correct positive decision (subfigure B). Please note that in the usual definition of a type 1 error, ζ = 0
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