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Abstract

Mitochondrial DNA (mtDNA) encodes protein subunits and translational machinery required 

for oxidative phosphorylation (OXPHOS). Using repurposed whole-exome sequencing data, in 

the present study we demonstrate that pathogenic mtDNA mutations arise in tumours at a rate 

comparable to those in the most common cancer driver genes. We identify OXPHOS complexes 

as critical determinants shaping somatic mtDNA mutation patterns across tumour lineages. Loss-
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of-function mutations accumulate at an elevated rate specifically in complex I and often arise 

at specific homopolymeric hotspots. In contrast, complex V is depleted of all non-synonymous 

mutations, suggesting that impairment of ATP synthesis and mitochondrial membrane potential 

dissipation are under negative selection. Common truncating mutations and rarer missense alleles 

are both associated with a pan-lineage transcriptional programme, even in cancer types where 

mtDNA mutations are comparatively rare. Pathogenic mutations of mtDNA are associated with 

substantial increases in overall survival of colorectal cancer patients, demonstrating a clear 

functional relationship between genotype and phenotype. The mitochondrial genome is therefore 

frequently and functionally disrupted across many cancers, with major implications for patient 

stratification, prognosis and therapeutic development.

Somatic mutations are the underlying drivers of cancer, with the discovery and 

characterization of recurrent, functional somatic events constituting the capstone goal of 

cancer genomics. Genomic searches for recurrent driver mutations have focused on the 

nuclear exome, motivated by the concentration of recurrent mutations in the coding regions 

of a subset of nuclear DNA-encoded genes. This targeted approach has powered the 

discovery of common and rare driver mutations in exonic regions, but by corollary has 

left the overwhelming majority of the genome underexplored, and the driver events it may 

harbour unidentified. Numerous examples now exist of the prevalence and function of 

oncogenic mutations beyond the nuclear exome, including mutations to the TERT promoter, 

non-coding RNAs, including ribosomal (r)RNAs, small nuclear RNAs and enhancers1. A 

fundamental challenge therefore is to discover new functional somatic alterations beyond the 

nuclear exome with a fixed and limited sequencing capacity.

Somatic mutations in tumours commonly affect mtDNA2-6, arising in both protein-

coding genes and non-coding RNA genes required for translation of essential, membrane-

bound subunits of four complexes required for OXPHOS (Fig. 1a). Despite abundant 

pharmacological, genetic and clinical data demonstrating that perturbation of different 

OXPHOS complexes (referred to from here on as complexes) produce distinct cellular 

adaptations7,8, the importance of each complex in shaping mtDNA mutation patterns in 

cancer is unknown. As mtDNA is not commonly targeted by whole-exome sequencing 

(WES) panels, previous analyses of mtDNA mutations have relied on cohorts profiled by 

whole-genome sequencing (WGS), with consequently diminished statistical power to detect 

recurrent patterns of mutation relative to exome sequencing studies8. However, due to the 

extremely high copy number and off-target hybridization rate of mtDNA, mtDNA reads are 

abundant in widely available exome sequencing of tumours9. Therefore, mtDNA represents 

an opportunity for discovery through repurposing of existing exome sequencing data.

In the present study, we assessed the determinants, functional consequences and clinical 

outcomes associated with mtDNA mutations in cancer. We report three discoveries: first, we 

observe that respiratory complex is a fundamental determinant of the burden and functional 

consequence of tumour-associated mtDNA mutations. Complex I (CI, NADH:ubiquinone 

oxidoreductase) subunits are strongly enriched for highly pathogenic mutations in specific 

tissue lineages, whereas complex V (CV, ATP synthase) subunits are broadly depleted of 

all non-synonymous mutations. Complex III (CIII, ubiquinol:cytochrome c oxidoreductase) 
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demonstrates increased rates of missense, but not truncating mutations. Second, we find that 

specific mutant alleles in mtDNA arise recurrently as hotspots, with six highly recurrent 

mtDNA mutation hotspots evident at specific homopolymeric loci encoding CI subunits, 

whereas rarer but recurrent mutations affect both protein-coding genes and RNA elements. 

Third, we report that specific mutant mtDNA alleles produce phenotypes of functional and 

clinical significance. Truncating mtDNA mutations are associated with a lineage-agnostic 

transcriptional programme implicating both metabolism and genes related to the immune 

response. Furthermore, in colorectal cancer, where both truncating and non-truncating 

mtDNA variants are common, we find that their presence is associated with superior clinical 

outcomes. These results argue that mitochondrial respiration is commonly and functionally 

perturbed in well-defined contexts across cancer, and that reanalysis of existing genomic 

data can yield new discoveries in underexplored genomic terrain.

Results

MtDNA mutations in tumours from off-target reads.

To study patterns of mtDNA mutations in tumours, we reasoned that the sheer amount of 

off-target reads aligning to mtDNA in WES data would be sufficient to call somatic mtDNA 

mutations in a large proportion of samples. To study mtDNA mutations in tumours with 

WES, we assembled a dataset of pan-cancer paired tumour and matched-normal exome 

sequencing samples from The Cancer Genome Atlas (TCGA; n = 10,132; Extended Data 

Fig. 1a). Individual cancer types varied widely in their mtDNA coverage from off-target 

reads, which we found to be driven by differences in the exome sequencing capture protocol 

implemented by different sequencing centres (Extended Data Fig. 1b). Such inconsistent 

sequencing coverage is an inherent limitation to mtDNA variant calling from exome 

sequencing, because variants located in regions without adequate sequencing coverage are 

not identifiable. We therefore developed a methodology to be cognizant of the sequencing 

coverage at each position in each sample (Methods), focusing our analysis on regions of 

mtDNA in protein-coding genes and genes coding for mitochondrial rRNAs and transfer 

(t)RNAs (Methods and Supplementary Table 1).

We implemented a variant-calling approach modelled after state-of-the-art methodologies 

for exome sequencing, in which we took the intersection of two variant callers (MuTect2 

(ref. 10)) and an in-house variant caller based on the SAMtools mpileup utility11 (Methods). 

Variants in mtDNA exhibited a strand-specific enrichment for C>T mutations on the heavy 

strand and T>C mutations on the light strand (Extended Data Fig. 2). Based on 789 tumour 

samples from TCGA with whole-genome sequences in the Pan-Cancer Analysis of Whole 

Genomes (PCAWG) cohort3, 95.6% of mutation calls from WES were validated against 

published mutation calls from the PCAWG data (Fig. 1c). We also evaluated the possibility 

that nuclear-encoded mitochondrial pseudogenes (NUMTs) could corrupt variant calling. 

As NUMTs do not show evidence of appreciable transcription, unlike mtDNA genes12, we 

reasoned that recapitulating mtDNA variants in RNA-sequencing (RNA-seq) from the same 

sample would be evidence that they arose in mtDNA and not in NUMTs. Indeed, we found 

that 96.9% of variants in samples with both DNA-seq and RNA-seq were validated in RNA. 

In addition, we observed a strong correlation between DNA and RNA heteroplasmy overall 
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(Pearson’s r = 0.918; Fig. 1d), confirming that the vast majority of observed mutations are 

expressed and providing further evidence that the mutations called by our approach are not 

attributable to NUMTs.

In total, we identified 4,381 mtDNA mutations from 10,132 tumour samples. Among a 

subset of 3,264 paired tumour/normal samples, with sufficient coverage to call mtDNA 

mutations in at least 90% of the mitochondrial genome (32% of tumour/normal pairs in our 

dataset overall, referred to throughout as ‘well-covered’ samples), 57% (95% confidence 

interval (CI) = 56–59%) had at least one mtDNA variant, in agreement with previous 

estimates for mtDNA mutation incidence in pan-cancer-sequencing data2. Consistent with 

independent mutagenic processes operating in the nuclear and mitochondrial genomes, we 

observed no correlation between nuclear and mitochondrial mutation burdens pan-cancer 

or within individual cancer types (Fig. 1e and Extended Data Fig. 3e). Furthermore, in 

colorectal and stomach cancers where microsatellite instability (MSI) is common, the 

presence of MSI affected mutation burden in the nuclear but not the mitochondrial genome 

(Extended Data Fig. 3f). Mitochondrial tumour mutation burden (TMB) was positively 

correlated with patient age at the time of diagnosis in multiple cancer types, including 

leukaemia, endometrial and renal cell cancers, and soft-tissue sarcomas; however, no 

correlation was observed with tumour pathological stage (Extended Data Fig. 4a,b).

The mutation rate in the coding region of mtDNA is roughly 67.8 mutations per Mb, 

roughly sixfold higher than the rate in 468 cancer-associated genes in the Memorial Sloan 

Kettering–Integrated Mutation Profiling of Actionable Cancer Targets (MSK–IMPACT) 

panel13 of 11.3 mutations per Mb (P < 10−308 (computational limit of detection), two-sided 

Poisson’s test). Only two genes (TP53, KRAS) exhibited rates higher than that of the 

most mutated mtDNA-encoded genes (Fig. 1f). Furthermore, the 13 protein-coding mtDNA 

genes exhibited a 4.2-fold higher rate of truncating variants that disrupt the reading frame 

(that is, nonsense mutations and frameshift insertions and deletions (indels)) compared 

with truncating mutations among 185 known tumour-suppressor genes (TSGs) in the MSK–

IMPACT panel (P = 9 × 10−5, two-sided Wilcoxon rank-sum test; Fig. 1g), and a 6.7-fold 

higher rate of non-truncating, non-synonymous than 168 MSK–IMPACT oncogenes (P = 6 × 

10−9; Fig. 1h). Notably, considering only variants with exceptionally high heteroplasmies of 

>80%, MT-ND4 and MT-ND5 exhibited truncating mutation rates of ~5 mutations per Mb, 

comparable to or exceeding that of most TSGs.

In total, 11.9% of tumours across all cancers (95% CI = 11.0–12.9%) harboured a truncating 

mtDNA variant absent in the patient’s matched-normal sample. In contrast, only 0.15% of 

normal blood samples exhibited a truncating variant (95% CI = 0.13–0.17%) based on a 

recent analysis of ~200,000 mtDNA genomes14 (Fig. 1i). The rate of truncating mutations in 

mtDNA genes in tumours therefore represents an 80-fold increase compared with truncating 

mutations observed in normal human genomes (Supplementary Table 2). Of the 619 

truncating mutations we observed, 196 (32%, 95% binomial CI = 28–35%) had >80% 

heteroplasmy despite underlying tumour impurity, indicating that systemic mitochondrial 

dysfunction is a common feature of tumours. Furthermore, high-heteroplasmy truncating 

variants were significantly more common than high-heteroplasmy silent mutations, expected 
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to be generally subject to neutral selection (139/555, 25%, 95% CI = 21–29%; P = 0.01, 

two-sided Fisher’s exact test).

Truncating mutations preferentially target CI at homopolymeric hotspots.

The physiological response to genetic or pharmacological inhibition of mitochondrial 

respiration is determined by which mtDNA-encoded complex is disrupted, implicating 

OXPHOS complex as a potential determinant of selective pressure for mutation. We 

therefore investigated the somatic mutation rate by complex, controlling for the relative 

length of mtDNA coding for genes in each complex and uneven coverage within each 

sequenced sample. Truncating variants arose at a twofold or greater rate in CI relative to the 

other complexes (P = 0.001 for least significant comparison, two-sided Poisson’s test; Fig. 

2a). No difference in mutation rate between complexes was observed for silent mutations (P 
= 0.5 for the most significant comparison). Unlike variants in other complexes, truncating 

variants in CI demonstrated higher heteroplasmy than silent variants (P = 1 × 10−6, CI; most 

significant for other complexes, P = 0.4, two-sided Wilcoxon’s rank-sum test), suggestive of 

specific positive selective pressure for truncating variants in CI subunits (Fig. 2c). Finally, 

CV genes (MT-ATP6 and MT-ATP8) demonstrated significantly lower rates of truncating 

but not synonymous mutations. The findings above were recapitulated in n = 1,951 tumours 

from the PCAWG WGS dataset, after excluding samples overlapping with our own cohort 

(Fig. 2b), and were recapitulated with more stringent mutation-calling thresholds (Extended 

Data Fig. 5a).

Tumours of different lineages exhibited wide variability in the incidence of truncating 

mutations, with ≤5% of some cancer types affected by truncating mutations (sarcomas, 

gliomas), to ≥20% of other cancer types (renal cell, colorectal, thyroid) in a manner that 

is consistent with previous work3 (Fig. 2d). In renal, thyroid and colorectal cancers, the 

truncating variant burden was defined by specific enrichment for mutations to CI but not 

other complexes (Q value < 0.01, two-sided McNemar’s test; Fig. 2e). Truncating variants 

in these three cancers affected ~20–30% of all samples, corresponding to a prevalence 

akin to common tumour suppressors in these diseases. Taken together with Fig. 2a-c, 

these data point to lineage-specific positive selective pressure for CI loss-of-function 

variants, and suggest that selection against disruption of CV, which could irreparably impair 

mitochondrial ATP production, cristae morphology and dissipation of membrane potential, 

is not tolerated. These findings indicate that the functional consequence of mtDNA variants 

is a key determinant of somatic mtDNA mutational patterns.

Unexpectedly, we observed that truncating mutations frequently arose at the same genomic 

locus, analogous to hotspot mutations that accumulate in cancer driver genes and often 

reflect selective pressure15,16. These recurrent alleles were exclusively indels characterized 

by a homopolymeric sequence context. We therefore developed an approach to detect 

recurrent mutations at homopolymeric loci by modelling incidence of frameshift indels at 

each locus as a function of their base-pair length (Methods). Six single-nucleotide repeat 

loci (out of 73 loci of ≥5 bp in length) in MT-ND1 (m.3566–3571, n = 32), MT-ND4 
(m.10947–10952, n = 25; m.11032–11038, n = 34; and m.11867–11872, n = 50) and 

MT-ND5 (m.12385–12390, n = 23 and m.12418–12425, n = 73) accumulated mutations 
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at a rate above null expectation (Q value < 0.01, Fig. 2f). Homopolymer hotspots arose 

only at single-nucleotide loci of at least 6 nt in length (P = 0.0002, two-sided Fisher’s 

exact test), which were composed of A or C homopolymer repeats, and exclusively encoded 

subunits of CI. Importantly, other homopolymers of equivalent length (≥6) and nucleotide 

content exist both in CI and in CIII/CIV/CV but did not exhibit recurrent mutations, 

indicating a high degree of specificity to hotspot positions (Fig. 2g and Extended Data 

Fig. 5f). These six homopolymeric repeat loci collectively accounted for 40% of all 

truncating variants observed in our data (95% binomial CI = 36–44%) and 57% (95% 

CI = 52–62%) of frameshift indels overall, and were a pervasive phenomenon across 

tumour lineages (Extended Data Fig. 5d). These hotspots overlapped with 100-bp-long 

windows previously reported to be enriched for frameshift mutations17 and with indels in 

rare, often benign, renal oncocytomas18. Homopolymeric hotspot mutations arose in the 

PCAWG WGS cohort (after excluding any samples overlapping with our cohort) at a rate 

highly consistent with TCGA cohort (Pearson’s r=0.95), and were ~75-fold more common 

in TCGA tumour samples than in the HelixMTdb database of 200,000 saliva-derived normal 

samples (Extended Data Fig. 5g), indicating that the indels detected in TCGA at hotspot 

loci were not artefacts due to calling variants in microsatellite regions with poor coverage. 

To further evaluate the recurrence of homopolymeric hotspots, we studied an independent 

cohort of 34,052 tumour samples from 30,575 patients with advanced and heavily treated 

pan-cancer tumours profiled by the MSK–IMPACT targeted sequencing platform13,19. We 

observed that five of six hotspots from TCGA were also significantly enriched for indels 

in the MSK–IMPACT dataset. This analysis revealed an additional two homopolymers with 

significantly enriched indels unique to MSK–IMPACT samples (Extended Data Fig. 6a), 

including one in CIV (MT-CO3, m.9532–9537), which arose in characteristically different 

cancer types (for example, prostate and non-small-cell lung cancer) than the CI hotspots that 

mainly arose in kidney, colorectal and thyroid cancers (Extended Data Fig. 6b). Although 

mutations at homopolymeric tracts have not been widely described in the germline literature, 

the most recurrent hotspot (MT-ND5 m.12418–12425) has been previously reported as the 

site of a germline frameshift deletion (A12425del) in a mitochondrial disease patient20.

Non-synonymous and RNA variants arise as rare recurrent pathogenic alleles.

The bulk of somatic variants in mtDNA were non-truncating, non-synonymous mutations, 

including tRNA/rRNA mutations, missense mutations, in-frame indels, translation start 

site mutations and non-stop mutations (collectively referred to as variants of unknown 

significance (VUSs), 73.2% of n = 4,381 variants, Fig. 3a). Somatic VUSs were twice 

as likely to be predicted pathogenic compared with germline polymorphisms observed 

among ~200,000 normal samples from the HelixMTdb dataset (APOGEE21 score, 39.5% 

of somatic-only variants compared with 20.4% of germline-arising; P=6 × 10−14, two-sided 

Wilcoxon’s rank-sum test; Fig. 3b). In addition VUSs that arose only as somatic mutations 

in tumours were predicted to be more pathogenic than those that never arose in tumours (P 
= 5 × 10−11). Finally, considering only the subset of possible somatic-only single-nucleotide 

variants (SNVs) with annotated clinical significance in ClinVar22, somatic-only VUSs were 

annotated as having significantly elevated pathogenicity compared to that of those never 

observed in tumours (P = 0.008, two-sided Cochran–Armitage trend test; Extended Data Fig. 
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7a). Together, these data suggest that somatic VUSs exhibit elevated pathogenicity relative 

to null expectation.

We next evaluated the tendency for VUSs to target specific complexes of the OXPHOS 

system. In contrast to truncating variants, protein-coding VUSs were most frequent in CIII 

(P = 1 × 10−7 for the least significant comparison, two-sided Poisson’s test; Fig. 3c), the 

functional integrity of which as a site for ubiquinol oxidation has recently been described as 

essential for tumour cell proliferation23. Consistent with the pattern in truncating variants, 

VUSs to CV subunits were still depleted compared with the other complexes (P = 0.01 

for least significant comparison). These observations were validated using data from the 

PCAWG (Fig. 3d) and were robust to a more conservative read-support threshold for variant 

calling (Extended Data Fig. 5b). Together, these findings suggest that tumours preferentially 

accumulate somatic missense mtDNA mutations in a manner dictated by the OXPHOS 

complex, possibly driven by their capacity to disrupt mitochondrial function. Furthermore, 

they support the hypothesis for purifying selection against variants that compromise the 

physiological functions of CV.

Specific alleles produced by SNVs were far less recurrent than homopolymer indels (P 
= 0.01, two-sided Wilcoxon’s rank-sum test among distinct variants mutated in three or 

more tumours; Fig. 3e). However, we still observed a number of loci with weakly recurrent 

non-truncating variants. We developed a statistical test for recurrence of these loci that 

controls for coverage and mutation sequence context, identifying seven SNV hotspots in 

the mitochondrial genome (Q < 0.01; Fig. 3f), including three in protein-coding genes (all 

in CI), three in rRNA (all in MT-RNR2) and one in a tRNA (MT-TL1; see Methods). In 

contrast to the high fraction of truncating mutations that are explained by a relatively small 

number of hotspot alleles, hotspot SNV mutations accounted for only 1.6% of all VUSs; the 

vast majority of VUSs were non-recurrent, usually arising in a single sample. Furthermore, 

0 of 33 mutations arising at the three protein-coding hotspot positions identified was a 

nonsense mutation, introducing an early stop codon, suggesting that either the mutagenic 

mechanism generating homopolymeric indel hotspots has a high degree of specificity 

(for example, replicative slippage) or truncating hotspots themselves may engender unique 

phenotypes beyond conventional loss of function.

Mitochondrial tRNAs (mt-tRNAs) are commonly mutated in the context of germline 

mitochondrial disease. It is of interest that the somatic hotspot m.3243 A>G in MT-TL1 
(somatically mutated in six patients) is also the causative variant of approximately 30% of 

all mtDNA disease24,25. We additionally observed mutations clustered in adjacent positions 

m.3242 (n = 5) and m.3244 (n = 4, recently described as a recurrent mutation in Hürthle 

cell carcinoma of the thyroid26), suggesting that recurrent mutations in MT-TL1 could 

affect a common secondary structure element required for either tRNA processing or 

regulation of transcription via mTERF1 binding27. The mt-tRNAs, with the exception of mt-

tRNASer(AGY), adopt a relatively conserved cloverleaf structure on folding, and mutations 

to mt-tRNAs are known to disrupt specific secondary structure elements with downstream 

impacts on, for example, stability or amino acid charging. We therefore statistically tested 

each position of the aligned canonical mt-tRNA structure for enriched somatic mutations 

(Methods). This analysis identified position 31 in the anti-codon stem of the folded tRNA 
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molecule as a site of recurrent mutation across mt-tRNAs (Q = 4.7 × 10−4; Fig. 3g), which 

we further validated using the non-TCGA subset of PCAWG samples (Q = 0.014, Extended 

Data Fig. 7b). It is interesting that position 31 was observed to be mutated at an eightfold 

higher rate in tRNAs encoded on the light strand (for example, MT-TC, n = 5; MT-TP, n 
= 4; MT-TA, n = 3) compared with heavy-strand-encoded tRNAs (P = 2 × 10−4; two-sided 

Fisher’s exact test). As a group, mutations at structural position 31 were predicted to be 

more pathogenic by MitoTIP relative to mutations at other tRNA positions (Fig. 3h), and 

in the case of m.5628 T>C in MT-TA (n = 3) are associated with the mitochondrial disease 

chronic progressive external ophthalmoplegia28. These data suggest that specific structural 

features of mt-tRNAs may undergo recurrent mutation and impair mitochondrial function.

To understand the potential function of rare protein-coding SNV hotspots in mtDNA, 

we focused on a recurrent mutation at MT-ND1R25, which was identified somatically in 

11/10,132 TCGA patients (0.11%) and 5/2,836 PCAWG patients (0.18%). All 16 instances 

resulted in a substitution of arginine with glutamine, encoded by a G>A substitution 

at position m.3380. MT-ND1R25Q was previously described in a case report as the 

causative variant in the development of severe mitochondrial disease29. Consistent with its 

pathogenicity, the Arg25Gln variant was never observed as a germline polymorphism among 

~200,000 normal samples in the HelixMTdb database, where the mutant alleles at residue 

Arg25 always produced synonymous mutations (m.3381 A>G, n = 57). Residue Arg25 is 

conserved across vertebrates29, and is part of a cluster of charged residues in CI that form 

a structural bottleneck in the ubiquinone-binding tunnel leading to the binding site30. We 

therefore modelled the effect of MT-ND1R25Q using a recent, high-resolution structure of 

mammalian CI, which revealed gross changes to the local charge environment due to loss 

of the relatively bulky, positively charged arginine side chain. Due to the location of this 

substitution within the Q-binding tunnel, this is predicted to substantially impact function 

(Fig. 3i). Focusing on colorectal cancer, which demonstrated the largest numbers of tumours 

harbouring MT-ND1R25Q (n = 8), we examined whether the presence of MT-ND1R25Q 

was associated with a particular transcriptional signature. Relative to mtDNA wild-type 

tumours, we observed that MT-ND1R25Q tumours were characterized by upregulation of 

MYC targets and OXPHOS genes, and downregulation of gene signatures associated with 

hypoxia, interleukin (IL)-2/STAT5 signalling, tumour necrosis factor α (TNF-α) signalling 

via nuclear factor κ-light-chain-enhancer of activated B cells (NFκB; Fig. 3j). These data 

suggest that MT-ND1R25Q promotes a transcriptional phenotype characterized by increased 

mitochondrial metabolism and suppressed expression of innate immune genes.

Mitochondrial genotype underlies a lineage-agnostic transcriptional programme.

Given the lineage specificity underlying both truncating variants and truncating/SNV 

hotspots, we studied the overall burden of distinct classes of mtDNA variants (that is, 

producing a truncating, missense, synonymous tRNA or rRNA variant) across cancer types. 

Restricting our analysis to well-covered samples (and in addition requiring coverage of all 

homopolymeric hotspots; see Methods), we found that the fraction of mutant samples across 

cancer types ranged from approximately 23% of leukaemias (95% binomial CI = 13–35%) 

to as high as 80% of thyroid cancers (95% CI = 63–92%; Fig. 4a). There was no correlation 

between the fraction of well-covered samples in a cancer type and the proportion of samples 
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with a somatic mtDNA mutation (Extended Data Fig. 1d), indicating that the highly variable 

incidence of different somatic variants across cancer types was not biased by their differing 

coverage.

Truncating mtDNA mutations approaching homoplasmy (>80% heteroplasmy) were 

identified in nearly all cancer types, suggesting that even cancers in which mtDNA 

mutations are uncommon may still contain rare instances of individual tumours with 

highly mutant mitochondria. In renal and thyroid tumours, truncating mutations are 

known to induce oncocytic neoplasia, whereby tumour cells accumulate dysfunctional 

mitochondria31,32. We therefore sought to evaluate whether truncating mutations induced 

functionally similar consequences across different tumour lineages, by comparing the 

gene expression profiles of tumour samples with truncating mtDNA variants with tumour 

samples with wild-type mtDNA (harbouring no non-synonymous somatic mutations in 

protein-coding or RNA genes; see Methods). In half of all cancer types, tumours 

harbouring truncating mutations exhibited a conserved expression programme characterized 

by upregulation of genes associated with OXPHOS and downregulation of genes associated 

with TNF-α via NFκB signalling (Fig. 4b and Extended Data Fig. 8a) in a manner that 

was robust to variation in tumour purity. Critically, these expression programmes were 

evident in cancer types such as glioma and mesothelioma, where the proportion of samples 

with a truncating variant was comparatively low (Fig. 4c). We then evaluated the degree 

to which this observation was dependent on heteroplasmy, by repeating the analysis using 

only truncating variants with variant allele frequency (VAF) ≥30% compared with wild-type 

tumours, or VAF < 30% compared with wild-type. This revealed that higher-VAF truncating 

variants were more commonly associated with a change in expression of genes related to 

OXPHOS and TNF-α via NFκB compared with low-VAF variants (Extended Data Fig. 

10b), suggesting the presence of a dosage effect by which an increase in the proportion of 

mitochondria in cells with pathogenic variants increases the transcriptional dysregulation 

observed in bulk tissue.

Given that the hotspot MT-ND1R25Q exhibited an expression programme resembling 

truncating variants, we investigated the generic transcriptional consequences of mtDNA 

VUSs (Methods). Compared with truncating variants, fewer genesets demonstrated lineage-

agnostic changes in samples with VUSs. As with truncating variants, the most upregulated 

gene set in VUS-harbouring tumours was OXPHOS (increased in 5/18 cancer types; 

Extended Data Fig. 8b), but the magnitude of this enrichment was attenuated relative to 

truncating variants. Notably, several cancer types, such as colorectal cancer, demonstrated 

a lineage-specific pattern of gene expression changes, suggesting that mtDNA VUSs are 

capable of eliciting a phenotype in specific cancer types.

To examine the translational value of mtDNA genotype, we determined the association 

between mtDNA mutation status and clinical outcome (overall survival (OS)) across 

cancer types. Using univariate Cox proportional hazards regression, for each cancer type 

we determined the effect size and significance of both mtDNA truncating variants and 

VUSs compared with samples with no somatic mtDNA variants (wild-type). Colorectal 

cancer demonstrated the largest (by effect size) significant association between OS time 

and mtDNA genotype (colorectal patients with VUSs had a hazard ratio (HR) of 0.47 
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(95% CI = 0.03–0.75)) compared with those with wild-type mtDNA (Q value = 0.02, 

Cox proportional hazards regression; Fig. 4d). Notably, VUSs in colorectal cancer are 

also associated with a unique transcriptional downregulation of multiple genesets including 

TNF-α via NFκB, hypoxia and complement (Fig. 3j and Extended Data Fig. 8b), further 

suggesting a cryptic phenotype of these variants in affected tumours. We additionally 

observed a weak association between mitochondrial genotype and underlying molecular 

subtype33, with some enrichment of mtDNA mutations in the canonical consensus molecular 

subtype (CMS) 2 of colorectal tumours (Extended Data Fig. 8c).

We therefore further evaluated whether mtDNA mutations may be prognostically 

meaningful in colorectal cancer. Among 344 stage I-III colorectal cancer patients in the 

TCGA, we found mtDNA VUSs to correlate with improved OS compared with wild-type 

(truncating variants had an intermediate effect), based on both a univariate analysis (P = 

0.002, Kaplan–Meier test; Fig. 4e) and a multivariate test controlling for clinically relevant 

prognostic covariates33,34 (VUS: HR = 0.18, 95% CI = 0.07–0.43, P = 1 × 10−4; truncating: 

HR = 0.36, 95% CI = 0.14–0.95; P = 0.04, Cox proportional hazards regression; Fig. 4f). 

This finding was validated in an independent set of 172 well-covered stage I–III colorectal 

cancer patients from the MSK–IMPACT cohort34, controlling for the same set of covariates 

(excluding CMS, which was not available): compared with patients with no somatic mtDNA 

variants, those affected with either VUS or truncating variants had improved OS (HR = 

0.42; 95% CI = 19–93%; P = 0.03; Extended Data Fig. 9b). As individual categories, VUSs 

and truncating variants trended towards improved OS compared with wild-type, but did not 

reach statistical significance (VUS: HR = 0.43; 95% CI = 0.18–1.00; P = 0.05; truncating: 

HR = 0.37; 95% CI = 0.07-1.9; P = 0.2; Extended Data Fig. 9a). Taken together with 

emerging data on the proliferative consequences of age-associated mtDNA mutations in 

colonic crypts35, these findings suggest that somatic mtDNA mutations are associated with a 

clinically and biologically distinct class of colorectal tumours.

Discussion

Although recent evolutionary data suggest that mtDNA mutations may be under positive 

selection in cancers of the kidney and thyroid5, the broader relevance of somatic mtDNA 

mutations in cancer remains a point of confusion and debate. Drawing inspiration from 

analyses describing hotspots of somatic mutations in the nuclear DNA of tumours, 

we studied the recurrence of mutant mtDNA alleles. The discovery that the OXPHOS 

complex shapes mtDNA mutation patterns in a manner that produces mutation hotspots, in 

connection with orthogonal data on the structural consequences, transcriptomic effects and 

clinical importance of these alleles in patients with germline mtDNA disease, supports the 

hypothesis that mitochondrial respiration is the target of mutations across many tumours.

Our results indicate that the OXPHOS complex, tissue lineage and mutation consequence 

collectively shape the incidence and putative function of mtDNA mutations. We find that 

truncating mutations preferentially impact CI and non-synonymous mutations of all classes 

are depleted in CV. Furthermore, the apparent selection for CI mutations is specific to 

thyroid, kidney and colorectal tumour lineages. This suggests that cancer cells in these 

lineages can better tolerate, or perhaps even utilize, loss of CI and associated metabolic 
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consequences (for example, NAD+:NADH changes), whereas loss of capacity for ATP 

synthesis, membrane potential dissipation and/or cristae morphology through CV mutations 

appears to be universally selected against. That CIII demonstrates elevated rates (relative to 

other complexes) of missense mutations, but not truncating mutations, is consistent with its 

essential role in ubiquinol oxidation, suggesting that mild disruption of CIII is preferential 

for clonal expansion in tumour cells23. Broad metabolic plasticity, permitting anabolism in 

the presence of loss-of-function mutations to various nuclear DNA-encoded tricarboxylic 

acid cycle enzymes and other metabolic challenges has been described previously in 

several cancer lineages36-38. Whether the mtDNA mutations described in this work result 

in similarly plastic metabolic outcomes is a major outstanding question, with the potential 

for development of rational, targeted therapies39. For example, it is probable that an altered 

cellular redox balance caused by CI loss-mediated decreases in NAD+:NADH ratio will 

affect cellular metabolism and phenotype differently to CIII loss-mediated changes in Q/

cytochrome c redox status and reactive oxygen species signalling23,40.

There is substantial evidence that, in particular subtypes of thyroid and kidney cancer, 

mtDNA mutations are the root cause of metabolic adaptations and morphological 

(oncocytic) changes associated with suppression of mitochondrial respiration41. What 

remains unclear is how to extrapolate the function of truncating mutations in otherwise 

essential mtDNA genes to cancer types where oncocytic tumours are rarely, if ever, 

observed, but in which the fraction of samples harbouring these mutations is nevertheless 

substantial (for example, colorectal cancers). Critically, our transcriptional data suggest that, 

even in cancer types where truncating mtDNA mutations are rare, they nevertheless promote 

a transcriptional programme characterized by increased expression of OXPHOS genes and 

downregulation of genes related to innate immune pathways. Extensive previous work has 

demonstrated that the integrity of mtDNA and mitochondrial respiration is essential for 

tumour growth and metastasis. In light of this, we interpret the lineage-agnostic upregulation 

of OXPHOS genes in response to truncating mutations as a compensatory, but likely 

inadequate, mechanism to maintain adequate respiratory capacity. The net quantitative effect 

on respiratory capacity is still uncertain.

The analytical approach we have employed utilizes off-target reads from large cohorts 

of exome and targeted sequencing data. Doing so vastly expands the number of tumour 

samples available for analysis, but comes at the cost of low coverage across the cohort 

(Extended Data Fig. 10). Indeed, although our study covers substantially more tumour 

samples than a recent analysis of mtDNA mutations in PCAWG (WGS based), the overall 

rate of mutations detected per sample is larger in the PCAWG analysis (1.28 mutations per 

sample (95% CI = 1.24–1.32) in PCAWG versus 0.43 (0.42–0.45) in TCGA). The high 

sensitivity of PCAWG is well suited to analysis of subclonal mtDNA mutations, tumour 

evolution and copy-number/structural variants. In contrast, mtDNA analysis from WES is 

more likely to identify rare tumour subtypes with elevated rates of mtDNA variants and/or 

recurrent variants, but with a sensitivity biased towards variants with elevated heteroplasmy. 

As pathogenic mtDNA variants elicit phenotypes in a dosage-dependent manner, with 

heteroplasmic loads of ~50% or higher potentially necessary for mitochondrial dysfunction 

to manifest, a bias towards high-heteroplasmy variants is more likely to enrich for variants 

of clinical and translational importance. Given these differences, the relative strengths 
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and weaknesses of the WGS and WES approaches should be carefully considered when 

designing future studies of somatic mitochondrial genetics.

Despite recent advances that have been made towards defining the pattern and prevalence 

of mtDNA mutations in cancer2-4, major challenges remain in determining the functional 

relevance of mtDNA mutations in promoting tumour development. Progress has been 

hindered by a lack of precise methods for engineering of mammalian mtDNA42. As a result, 

emphasis has been placed on limited mutagenesis approaches, such as the use of a mutant, 

error-prone form of the replicative mtDNA polymerase γ35,43. Beyond this, more refined 

tools to genetically engineer mtDNA are now finally emerging, which might permit the 

creation of defined mtDNA mutations to further interrogate these observations in appropriate 

model systems of cancer44.

The nuclear genome has, historically, been the focus of research into the genetic basis of 

cancer. Somatic alterations to mtDNA are, however, among the most common mutational 

events across tumour lineages, and specific patterns of mtDNA mutations define and 

prognostically stratify patient cohorts. These observations motivate a holistic investigation 

of the relationship between the spatially, heritably and evolutionarily distinct nuclear and 

mitochondrial genomes, and a redefinition of our understanding of cancer—not a disease of 

the genome, but a disease of the genomes.

Methods

Tumour and normal-sample sequencing cohorts.

Tumour and matched-normal sequencing data for TCGA samples were obtained from the 

Genomic Data Commons (GDC) Data Portal (https://portal.gdc.cancer.gov). Briefly, all 

tumour and matched-normal barcodes included in the MC3 MAF45 (https://gdc.cancer.gov/

about-data/publications/pancanatlas) file were converted to universally unique identifiers 

(UUIDs) using the TCGAutils R package (v.1.9.3), and these UUIDs were queried for 

WES BAM files sliced for chrM using the GDC Application Programming Interface. We 

then queried the GDC Data Portal for RNA-seq BAM files for TCGA tumours already 

with WES data. This process yielded paired tumour and matched-normal WES BAMs for 

10,132 TCGA patients, of whom 9,455 had additional RNA-seq data. In addition to the 

raw sequencing data for TCGA samples, from which we called mtDNA mutations (Calling 

mitochondrial variants), we obtained somatic mitochondrial mutation calls for 2,836 WES 

tumours from International Cancer Genome Consortium (ICGC)/PCAWG3, of which 885 

also had TCGA sequencing data. Nuclear somatic mutations for TCGA samples were 

obtained from the MC3 MAF subset for the samples for which mtDNA WES BAMs were 

available. Finally, mtDNA mutation calls for 195,983 normal samples were obtained from 

the HelixMTdb cohort of sequenced saliva samples from healthy individuals14.

MSK–IMPACT patient cohort and mutational data.

An additional 34,052 pan-cancer paired tumour and matched-normal samples were obtained 

from 30,575 patients with advanced and pre-treated solid cancers in the MSK–IMPACT 

clinical sequencing cohort. All MSK–IMPACT patients provided written informed consent 
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and were prospectively sequenced as part of their active care at Memorial Sloan Kettering 

Cancer Center (MSKCC) between January 2014 and July 2019 as part of an Institutional 

Review Board-approved research protocol (NCT01775072)13,46. Briefly, each patient’s 

solid tumour and blood specimens were sequenced using a customized hybridization, 

capture-based, next-generation sequencing assay called MSK–IMPACT, which targeted 

341, 410 or 468 known clinically relevant cancer-associated genes, depending on the 

version of the assay. Then, 498 distinct cancer histological subtypes were grouped into 

primary cancer diagnoses according to the OncoTree structured disease classifications 

(http://oncotree.mskcc.org). Primary diagnoses into which fewer than 50 tumours were 

classified, as well as histological subtypes without primary diagnosis classifications on 

OncoTree, were combined in an ‘Other’ classification, resulting in 42 main cancer types.

Annotating mtDNA regions included in our analysis.

Each mitochondrially encoded gene’s name, start/end positions and DNA strand were 

obtained from Biomart for human reference genome GRCh38 (release 95). Subsequently, 

each mtDNA position (1–16569) was annotated with its associated genetic information. Any 

mtDNA positions located at the overlap of two genes were annotated only as associated with 

whichever gene started first in numerical genomic position. Variants in non-genic mtDNA 

regions were excluded in our analyses. To this end, we excluded any variants in the mtDNA 

control region (positions 1–576, 16024–16569), as well as 89 other non-genic positions. We 

similarly excluded variants in hypermutated regions of mtDNA, including 302–316, 514–

524 and 3106–3109. After these measures, the genomic length of mtDNA retained in our 

analyses was 15,354 bp. (The complete list of 16,569 mtDNA positions and their annotated 

reasons for exclusion is provided in Supplementary Table 1.)

On average 6,100 tumours were sequenced at sufficient depth to call mutations at each 

mtDNA position (mean ± s.d. for 5,399–6,800 samples covered at a given position; 

Fig. 1b), compared with 2,836 whole-genome tumour sequences from the PCAWG WGS 

dataset. When further restricted to regions sequenced at sufficient depth in both tumour 

and matched-normal samples, each position was covered in 4,769 tumour/normal pairs on 

average (mean ± s.d. for 4,148–5,390 samples). Each genomic position was sequenced 

to sufficient depth in comparable numbers of tumour and normal tissue, indicating that 

differential sequencing coverage between tumour and normal samples did not result in a 

biased mutation-calling sensitivity in specific regions of the genome (Extended Data Fig. 

1c).

Calling mitochondrial variants.

Mutations to the mitochondrial genome were obtained from variants called by both of two 

independent variant-calling pipelines. In the first pipeline, Mutect2 (GATK v.4.1.2.0)47 was 

used to call variants in chrM in tumour and normal samples individually, the results of 

which were subsequently intersected to obtain variants called that were supported in a given 

patient’s tumour and matched-normal samples. Briefly, Mutect2 was run in mitochondrial 

mode for each patient’s tumour and normal sample independently against human reference 

genome GRCh38 (with minimum base quality score = 20, minimum mapping quality = 

10, aggressive pcr-indel model, and other standard-quality control arguments for paired-
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end reads). Artefacts were subsequently removed using GATK FilterMutectCalls (GATK 

v.4.1.2.0)47 and multi-allelic sites were split into individual variants using the norm function 

from bcftools (v.1.9)48. The resulting tumour and normal Variant Call Format (VCF) files 

were then merged using gatk HaplotypeCaller (GATK v.4.1.2.0)47, to annotate variants in 

the tumour VCF with their coverage in the normal sample. The resulting VCF was converted 

to a MAF file using vcf2maf (v.1.6.17, https://github.com/mskcc/vcf2maf). Finally, variants 

from the generated MAF file were then filtered out unless the variant allele was supported 

by at least one read in both forward and reverse directions. In the second pipeline, 

samtools mpileup (v.1.9)11 was used to generate a pileup file using variant-supporting 

reads with a minimum mapping quality of 20 and base alignment quality of 10. Reads 

failing quality checks or marked as PCR duplicates were removed. Variants were required 

to contain at least two variant-supporting reads in the forward and reverse directions. 

In each pipeline, variants were additionally filtered to ensure ≥5% VAFs in the tumour 

and ≥5 reads supporting the alternative allele. Variants identified by both pipelines were 

retained for further analysis. In rare cases, multiple indels were called in a sample within 

a homopolymeric region (single-nucleotide repeats of ≥5 bp), with distinct alt-read counts 

and VAF values and identical read-depth values. These multiple indels were collapsed to a 

single representative indel call. Briefly, using the Mutect2 variant calls, whichever indel had 

the highest VAF in the tumour sample was taken as the representative indel. The count of 

alt-reads in both tumour and normal samples was replaced with their corresponding summed 

counts across the original multiple indels, and the VAFs in both tumour and normal samples 

were re-calculated from the new summed alt-read counts divided by the original read-depth.

We investigated whether protein-truncating variants were detectable in patient germlines, 

hypothesizing that these should be significantly depleted due to the essentiality of functional 

OXPHOS in normal human cells. Indeed, whereas 11.9% (95% binomial CI = 11.0–12.9%) 

of pan-cancer tumour samples harboured truncating variants, only 0.34% (0.16–0.65%) of 

patients’ blood-derived, matched-normal samples harboured truncating variants (P = 1 × 

10−69, two-sided, two-sample z-test; Extended Data Fig. 3b), which was also similar to the 

rate seen in the HelixMTdb dataset (0.15% (0.13–0.17%); P = 0.02) and consistent with 

the hypothesis that polyclonal haematopoiesis and negative selection against pathogenic 

mtDNA mutations in certain haematopoietic lineages hinders clonal expansion of truncating 

variants in the blood. It is interesting that solid tissue-derived normal samples had a 

slightly elevated rate of truncating variants to blood-derived normals (1.2% (0.5–2.3%); 

P = 0.02), possibly due to somatic expansions of normal cells harbouring these variants 

heteroplasmically. Similarly, we observed normal tissue-derived truncating variants to have 

substantially depleted heteroplasmies compared with tumour-derived truncating variants 

(Extended Data Fig. 3a). These findings suggested that truncating mutations identified in 

tumours without concomitant coverage of the matched-normal tissue (that is, ‘rescued’ 

truncating mutations) could be assumed to be of somatic origin. We subsequently tested 

whether rescued truncating variants could represent technical artefacts by examining their 

incidence in a complementary sequencing modality, matched RNA-seq data. We observed 

that 98.3% of rescued truncating mutations validated in RNA (among n = 176 truncating 

mutations in samples with matched RNA-seq; Extended Data Fig. 3c), and that the 

heteroplasmies in DNA and RNA demonstrated strong correlation (Pearson’s r = 0.864; 
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Extended Data Fig. 3d). Based on these analyses, all protein-truncating mtDNA mutations 

of unknown somatic status due to insufficient normal sample coverage were retained as 

probable somatic mutations.

Mutations were therefore classified as of somatic origin according to the following criteria: 

non-truncating variants (that is, all variant classifications other than nonsense mutations and 

frameshift indels) were classified as somatic if the matched-normal sample had a minimum 

coverage of 5 reads and 0 normal reads called the alternative allele. Truncating variants in 

tumour samples were assumed to be of somatic origin. All other variants were not classified 

as somatic and were excluded from the present study, unless otherwise noted. As a result of 

inherently low mtDNA coverage in the MSK–IMPACT dataset (owing to its use of targeted 

sequencing), in the MSK–IMPACT clinical analysis we additionally included mutations 

on the basis of their likelihood to be somatic, if there was insufficient coverage in the 

matched-normal sample to determine somatic status. Mutations were classified as probably 

somatic if they were never observed as germline mutations in any TCGA or HelixMTdb 

samples, and arose with heteroplasmy <100%.

We then investigated the degree to which variant calling with off-target sequencing reads 

biased our sensitivity to detect mutations at lower heteroplasmies. We compared the absolute 

number of variants called in either the TCGA or the PCAWG datasets between mutations 

with heteroplasmy <30% and ≥30%. This revealed that, when considering mutations in 

genic regions with VAFs ≥ 30%, our approach (applied to a larger number of samples than 

PCAWG) increased the overall number of mutations called in all categories by at least 65% 

and, in the case of truncating variants, by nearly 300% (Extended Data Fig. 10a). In contrast, 

PCAWG detected far more variants at heteroplasmies <30% despite a markedly smaller 

number of samples sequenced. This analysis indicates that the sensitivity of our approach 

is inherently biased to detect mutations at higher heteroplasmy, which are more likely to 

detect dysfunctional phenotypes due to increased mutant load. This comes at the expense 

of decreased sensitivity for low-heteroplasmy variants, which are more appropriately studied 

using WGS-based approaches3 (Extended Data Fig. 10c).

Nuclear mutational data and annotation.

Somatic mutations in nuclear-encoded, cancer-associated genes for TCGA samples were 

obtained from the PanCanAtlas MC3 MAF file. Mutations in this file were subset for 

those among the 468 genes on the MSK–IMPACT clinical sequencing panel13. The MAF 

file was annotated for known, likely and predicted oncogenic driver mutations using the 

MAF-Annotator tool provided by OncoKB49 (https://github.com/oncokb/oncokb-annotator). 

Mutations annotated by OncoKB as ‘Oncogenic’, ‘Likely Oncogenic’ or ‘Predicted 

Oncogenic’ previously determined cancer hotspot mutations15,16, or truncating variants to 

TSGs (that is, frameshift indels, splice site and nonsense mutations) were classified as 

potential driver alterations.

Calculating TMB in mtDNA or nuclear DNA.

TMB was calculated for cohorts of tumour subsets for various genomic regions, including: 

(1) individual mitochondrially or nuclear-encoded genes; (2) mtDNA genes grouped by 
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OXPHOS CI, CIII, CIV or CV; (3) the entire mitochondrial genome (excluding non-genic 

and polymorphic regions); (4) a set of known nuclear-encoded TSGs; and (5) a set of known 

nuclear-encoded oncogenes. In each case, the TMB was calculated as the total number of 

somatic mutations among the relevant collection of tumours divided by the total genomic 

length sequenced in these tumours (in Mb s−1). For TMBs calculated from mutations called 

in off-target sequencing data (that is, mtDNA variants in TCGA samples), the total genomic 

length sequenced was the number of genomic positions with sufficient coverage to call 

somatic variants (5+ read coverage in both tumour and normal sample), summed across all 

samples. For TMBs calculated from targeted regions (nuclear DNA, mtDNA in PCAWG 

samples), the total genomic length sequenced was the length of the targeted region (entire 

gene for mtDNA, exonic regions for nuclear DNA) multiplied by the number of samples. 

Error bars for TMBs were calculated as 95% Poisson’s exact CIs for rates, using the total 

number of mutations as the count of events, and the genomic length sequenced in megabases 

as the time at risk.

Identifying hotspot positions for mitochondrial variants.

We identified mtDNA positions with statistically recurrent SNVs by comparing the observed 

proportion of mutations at an individual position (out of the total number of mutations 

acquired in its gene) with a rate of mutations at the position expected by chance with a 

one-sided binomial test. The probability for SNVs at each position of a gene, Ppos,gene, 

was modelled as a Bernoulli trial, where the likelihood of a mutation arising at a given 

position by its mutability (μ) relative to the mutability of all other bases in the gene is: 

Ppos,gene =
μpos
μgene

. Consistent with previous work15, we estimated the mutability for each 

position as a function of its trinucleotide context, that is, for each position, its mutability, 

μpos, was calculated as the count of SNVs matching the trinucleotide context of the position 

of interest, spos, out of the total count of SNVs anywhere in the mitochondrial genome, 

stotal (after excluding the control region and other blacklisted regions). Due to the highly 

strand-specific mutation signatures we observed for SNVs in mtDNA (Extended Data Fig. 

1c), we used the complete set of 64 unique trinucleotides to retain this information when 

calculating the mutability for each position, rather than collapsing the central nucleotide 

to C or T, resulting in the conventional 32 unique trinucleotides. As the proportion of 

patients for whom a given position had sequencing coverage in paired tumour and normal 

samples linearly affects the likelihood of observing a somatic mutation at the position, 

the mutability of a position was adjusted to control for this by multiplying it by the 

ratio of the number of samples with paired tumour–normal sequencing coverage at the 

position, Cpos, out of the total number of samples, Nsamples so that μpos =
spos
stotal

×
Cpos

Nsamples
. 

The mutability associated with the gene was calculated as the sum of each position’s 

trinucleotide mutability. Therefore, for a gene L bp in length: μgene = ∑pos = 1
L μpos. The final 

parameter for the binomial test (that is, the likelihood of a mutation in a gene arising at 

the given position by chance) was therefore Ppos,gene =
μpos
μgene

. Each position mutated in five 

or more samples in each gene was subsequently tested for statistically enriched mutations 

by comparing its observed number of mutations out of the total number of mutations in 
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the gene with this binomial parameter, using a right-tailed binomial test. The full list of 

generated P values across all genes was then corrected for multiple hypothesis testing.

Homo polymer hotspots for indels.

To identify homopolymer regions with statistically enriched rates of indels, we modelled 

the proportion of samples with indels across all homopolymers as a function of the 

homopolymer region’s length (that is, the number of repeated nucleotides, from five 

to eight). To this end, all single-nucleotide repeats of ≥5 bp were identified in the 

mitochondrial reference genome, resulting in n = 73 unique homopolymer loci in whitelisted 

coding mtDNA. We then modelled the fraction of frameshift indels across 73 homopolymers 

observed to arise at a specific homopolymer locus, h, as a binomial process, dictated by the 

length of the homopolymer, lh, divided by the summed length of all homopolymers, such 

that the expected likelihood of a frameshift indel arising at a homopolymer by chance is 

given by: pℎ =
lℎ

∑i = 1
73 li

. We then tested each homopolymer locus for enriched mutations with 

a one-sided binomial test, that is, for each homopolymer locus, the number of Bernoulli 

trials was the number of samples with complete sequencing coverage for the homopolymer 

region and two flanking base pairs; the number of successes was the number of samples with 

frameshift indels at (or immediately adjacent to) the given homopolymer, and the fraction 

of successful trials was compared with the expected probability, ph. Identical results for 

hotspot analysis were observed when considering indels with a minimum of 20 reads of 

support, ensuring that these results were not artefactually driven by low sequencing coverage 

(Extended Data Fig. 5c).

Hotspot positions in tRNA cloverleaf structure.

Positions of the tRNA cloverleaf secondary structure were individually tested for an 

enriched rate of SNVs at the equivalent aligned positions of the 22 mitochondrially 

encoded tRNAs. A map of genomic positions in mt-tRNAs to cloverleaf structure 

positions was provided by MitoTIP50 (https://github.com/sonneysa/MitoTIP/blob/master/

Output/tRNA%20data%20and%20scoring_scored.xlsx) and used to assign SNVs at tRNAs 

to structural positions. Under the null hypothesis that mutations accumulate at structurally 

aligned positions randomly, the proportion of SNVs aligning to a specific position in the 

tRNA cloverleaf should be approximately equal to the number of times the aligned position 

was sequenced at a sufficient depth in both tumour and matched-normal samples to call 

somatic mutations, out of the total number of tRNA base pairs sequenced at sufficient depth 

across all samples and at all structural positions. Therefore, for a given position of the 

tRNA cloverleaf structure, p, the number of SNVs observed across all tRNAs at this aligned 

position, tp, out of T SNVs across all positions of all tRNAs was tested for enrichment 

using a one-sided binomial test, compared with an expected rate equal to the number of 

tRNA bases aligned to this position sequenced at sufficient depth, bp, out of B tRNA bases 

sequenced at sufficient depth across all positions of all tRNAs.
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Classifying sample mtDNA variant status.

Each tumour sample was classified according to the presence and type of its somatic 

mitochondrial variants. As gaps in sequencing coverage may make existing variants 

undetectable and result in the incorrect classification of such samples as ‘wild-type’ for 

somatic variants, we attempted to classify only samples with sequencing coverage in both 

tumour and matched-normal samples of at least 90% of the included region of mtDNA 

(referred to as ‘well covered’ throughout). Furthermore, given the high incidence of 

truncating indels that we observed at six hotspot loci, we additionally required that these 

six loci be sequenced at sufficient coverage in the tumour sample, to ensure that samples 

potentially harbouring recurrent indels would be excluded and not misclassified. Samples 

not meeting either of these conditions were classified as having ‘Unknown’ mtDNA 

mutation status. The remaining samples were then classified according to a decision tree 

as follows: samples with any protein-truncating variants were classified as ‘Truncating’; 

remaining samples still unclassified with multiple mtDNA variants of different types 

(among missense, rRNA and tRNA variants) were classified as ‘2+ non-truncating types’; 

remaining samples with tRNA mutations were classified as ‘tRNA’; remaining samples with 

rRNA mutations were classified as ‘rRNA’; remaining samples with non-truncating, non-

synonymous, protein-coding mutations were classified as ‘missense’; remaining samples 

with silent mutations were classified as ‘silent’; and finally samples still unclassified were 

classified as ‘wild-type’. This logic prioritizes minimizing annotation bias over conserving 

sample size, to meaningfully compare the incidence of different variant types across 

samples. However, in our analysis of the effect of mtDNA variants on differential gene 

expression or survival, we modified the logic to prioritize conservation of sample size. To 

this end, in RNA-seq and survival analyses, samples with any observed truncating variants 

were classified as truncating, regardless of their sequencing coverage. For samples from the 

MSK–IMPACT cohort, a modified procedure was used to annotate sample mtDNA status: in 

the present study, we first excluded samples with tumour coverage of <60% of mtDNA (due 

to our inclusion of’likely somatic’ mutations (Calling mitochondrial variants), we required 

only tumour coverage rather than both tumour and matched normal). Among the remaining 

samples, we categorized samples with any truncating variants as ‘Truncating’, samples with 

any somatic or likely somatic VUSs but no truncating variants and no indel hotspots with 

missing coverage as ‘VUS’ and samples with no truncating or somatic/likely somatic VUS 

mutations as ‘wild-type’.

Testing genesets for transcriptional dysregulation due to mtDNA variants.

A matrix of estimated gene expression counts (RNA-seq by expectation-maximization 

values normalized to correct for batch effects) for TCGA samples was 

downloaded from TCGA PanCanAtlas45 supplementary data (http://api.gdc.cancer.gov/data/

3586c0da-64d0-4b74-a449-5ff4d9136611). Gene expression estimates were rounded to 

integer values, and subsequently genes with zero estimated counts in all samples were 

removed, as were genes with unknown gene symbols. To evaluate differentially expressed 

genes between two groups of samples with different mtDNA variant type (that is, truncating 

versus wild-type colorectal samples), the rounded gene expression matrix was subset 

for the relevant samples and input into the DESeq2 (ref.51) package in R using the 

DESeqDataSetFromMatrix utility, along with a table of tumour sample barcodes with 
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their associated mtDNA classification. Differentially expressed genes were tested and their 

log(fold-change) (log(FC)) values were shrunk using the apeglm52 package. P values for all 

genes tested were corrected for multiple hypothesis testing using the Benjamini–Hochberg 

method54. The resulting data from this analysis were used to calculate a statistic for each 

gene equal to log10(Q value) × sign(log(FC)). All genesets from the mSigDB Hallmark gene 

set collection54 (v.7.1) were then tested for significant up- or downregulation based on this 

statistic for each gene using the fgsea package55 in R, with a minimum gene set size of 10 

genes, a maximum size of 500 genes and 100,000 permutations.

Genomic and clinical annotations for colorectal cancer survival analysis.

Clinical data for TCGA colorectal cancer patients, including OS time/status, American 

Joint Committee on Cancer (AJCC) pathological tumour stage, age at diagnosis, sex 

and tumour tissue site were obtained from TCGA Firehose legacy data on cbioportal 

(https://www.cbioportal.org/study/summary?id=coadread_tcga). Clinical data were subset 

for patients with sequencing data in the MC3 MAF. These data were then annotated with 

MSI status (MSS, MSI-low, MSI-high) based on published data for patients where this 

was available56. AJCC pathological tumour staging data were collapsed into stages I, II, 

III and IV, and then stage IV patients were excluded. The tumour site was encoded as 

‘right-colon’ if the primary site was: ascending colon, caecum, hepatic flexure or transverse 

colon; or encoded as ‘left-colon’ for: descending colon, sigmoid colon or splenic flexure. 

Patients with tumour tissue from the rectum were encoded as ‘rectum’ for their tumour 

site. Tumour purity was obtained from the GDC for the PanCancer Atlas publication 

(http://api.gdc.cancer.gov/data/4f277128-f793-4354-a13d-30cc7fe9f6b5) and merged to the 

clinical data by tumour barcode. The clinical data for each sample were then annotated 

for the presence of known or probable nuclear-encoded driver alterations in KRAS/HRAS/

NRAS, BRAF, APC, SMAD4 and TP53, as based on mutation calls from the TCGA 

MC3 MAF57 (Nuclear mutational data and annotation). Each patient in the clinical data 

was then annotated as having a known/probable driver alteration in each of KRAS/HRAS/

NRAS (grouped into RAS), BRAF, APC, SMAD4 or TP53. The complete multivariate 

model used in the Cox proportional hazards regression was therefore: OS ~ mtDNA status 

+ Age + Stage + Site + RAS + RAF + APC + SMAD4 + TP53 + Sex + MSI status 

+ Tumour purity + CMS type; it was used to analyse the OS of n = 341 patients with 

non-missing values for all covariates. Multivariate survival analysis for the MSK-IMPACT 

cohort was performed using a similar workflow: curated clinical data for patient age 

at diagnosis, tumour stage, tumour location, sex and MSI status were obtained from a 

previously published subset of colorectal cancer patients from the MSK–IMPACT cohort34 

(https://www.cbioportal.org/study/summary?id=crc_msk_2017). OS time and status data 

were obtained from the MSK–IMPACT clinical sequencing cohort (queried March 2019). 

Samples were annotated as having driver mutations in KRAS/HRAS/NRAS, BRAF, APC, 

SMAD4 or TP53, as described above for TCGA. Tumour purity estimates were calculated 

using FACETS (v.0.5.6) with a C value of 100, and tumours for which the algorithm did not 

converge on a purity estimate were excluded from the survival analysis. For consistency with 

TCGA (which included only one tumour sample per patient), MSK–IMPACT patients with 

multiple colorectal cancer tumour samples were randomly assigned a single representative 

sample (among those with non-missing values for the aforementioned covariates), resulting 
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in n = 172 tumours for the same number of patients. CMS data were unavailable for MSK–

IMPACT, so the complete Cox proportional hazards regression model was OS ~ mtDNA 

status + Age + Stage + Site + RAS + RAF+ APC + SMAD4 + TP53 + Sex + MSI status + 

Tumour purity.

Structural impact of MT-ND1R25Q variant on CI.

The structural impact of the MT-ND1R25Q variant was investigated using an electron-

microscopy-derived structure of mitochondrial CI in Mus musculus (PDB accession no. 

6G2J)30. The UCSF Chimera software (v.1.13.1)58 was used to insert the Arg25Gln 

mutation using the swapaa command. The ubiquinone-binding tunnel was predicted using 

the CAVER Analyst (v.2.0b)59 software run on the wild-type Protein Data Bank (PDB) 

structure, starting from the side-chain oxygen atom in Ndufs2Y108, and using a minimum 

probe radius of 1.4 Å (0.14 nm) as described by the authors30. The surface electrostatic 

charge for wild-type and mutant structures was determined using the APBS software60 

(http://server.poissonboltzmann.org/pdb2pqr) with default parameters, after subsetting the 

PDB structure for Mtnd1 (chain H), and converting the resulting PDB file to PQR using 

PDB accession no. 2PQR (ref. 61). All structure visualizations were generated using UCSF 

Chimera.

Statistical analyses and figures.

All statistical analyses were performed using the R statistical programming environment 

(v.3.6.1). Protein structure figures were generated using UCSF Chimera. Cox proportional 

hazards regression was performed using the Survival library, and the Kaplan–Meier and 

multivariate survival forest plots were generated using the survminer library in R. The 

Cochran–Armitage test for trend was calculated using the DescTools R library. ETC 

schematic (Fig. 1a) was generated in Adobe Illustrator. All other figures were generated 

using the ggplot2 library in R. Unless otherwise noted, error bars for proportions are 

95% binomial CIs calculated using the Pearson–Klopper method; error bars for rates (for 

example, mutations per Mb) are Poisson’s exact 95% CIs calculated with the pois.exact 

function from the epitools library in R. In all boxplots, boxes show 25th and 75th percentile 

values centred at the median; upper and lower whiskers are the most extreme values within 

1.5× the interquartile range above the 75th percentile and below the 25th percentile values, 

respectively. Unless otherwise noted, P values for difference in proportions were calculated 

using Fisher’s exact tests or two-sample z-tests, and for difference in rates using Poisson’s 

exact tests. P values were corrected for multiple comparisons using the Benjamini–Hochberg 

method53 and reported as Q values when applicable.
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Extended Data

Extended Data Fig. 1 ∣. Baseline demographics of cohort and aspects of sequencing coverage.
a, The demographic distributions of patient age, race, gender, mtDNA somatic mutation 

status, history of neoadjuvant treatment, mtDNA coverage, and tumor sample type for each 

of the cancer types included in our analysis. Somatic mutation status is annotated among 

the subset of samples with ≥90% paired tumor-normal mtDNA sequencing coverage (see 

Methods: classifying sample mtDNA variant status); mtDNA status distributions are shown 

for cancer types >10 such samples. Cancer types are ordered by increasing proportions 
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of samples with VUS or truncating mtDNA mutations. b, Cancer type mtDNA coverage 

variation based on sequencing center. Center, the average percentage of mtDNA (among 

regions considered in our study) with sufficient coverage for calling mutations, compared 

between different cancer types in our cohort. Dot color indicates the sequencing center 

from which the exome sequencing data originate. Top, density histograms of the average 

% mtDNA coverage for each sequencing center. Samples sequenced at the Broad Institute 

are uniquely depleted for mtDNA off-target coverage. c, mtDNA coverage from off-target 

reads at each position. The number of samples for which the given mtDNA position was 

sequenced to at least 5 reads (top, the depth threshold used in our analyses) and 20 reads 

(bottom, for comparison). Red, the number of samples using unpaired tumor-only data, 

applicable only for protein-truncating variants which were always assumed to be of somatic 

origin; blue, the number using only matched-normal samples; green, the number of samples 

with coverage in both tumor and matched-normal samples at the given position (applicable 

for all non-truncating variants which required evidence that the variant was absent in 

the matched normal to be classified as somatic). Purple, the number of whole-genome 

sequenced samples available from ICGC/PCAWG for comparison. d, Proportion of samples 

with detectable mutations is not biased by cancer type sequencing coverage. There is no 

correlation between the fraction of well-covered samples in a cancer type and the proportion 

of well-covered samples with a detectable somatic mtDNA mutation. Cancer types with ≥30 

well-covered samples shown, P-value and 95% confidence intervals from linear regression.

Extended Data Fig. 2 ∣. Strand-specific mutational signatures in our dataset.
The frequency of somatic SNVs on the light or heavy mtDNA strand with each of the 

96 possible mutational signatures with trinucleotide contexts (among n = 3,872 SNVs). 

Blue bars indicate the prevalence of mutational signatures for heavy-strand encoded SNVs 

(substitutions at C or T central nucleotides); red bars indicate those for light-strand encoded 

SNVs (substitutions at G or T nucleotides, which were standardized to their C or T 

complementary nucleotide). The most prevalent mutational signatures are labeled. The 

underlined central position is mutated with the single nucleotide substitution labeled in the 

tile below.
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Extended Data Fig. 3 ∣. Analysis of mutation burden in normal tissues and of tumor mtDNA 
mutation burden with nuclear mutagenic processes.
a, Comparison of heteroplasmies between truncating variants detected in tumor tissue, 

adjacent normal tissue, and blood. P-values from two-sided Wilcoxon-rank sum test. 

Boxes are centered at the median and extended to from 25th-percentile to 75th-percentile; 

whiskers extend from 25/75th-percentiles to the largest value within 1.5 × IQR (interquartile 

range, 75th-percentile - 25th-percentile. b, Rate of truncating variants in TCGA tumors 

compared to matched non-malignant tissue, matched blood, and unmatched saliva samples 

from HelixMTdb. Truncating variants arise at 10-80-fold higher rate in tumors relative to 

normal tissues. Error bars are exact binomial 95% confidence intervals. P-values are from 

two-sided two-sample z-tests. c, The percentage of rescued truncating variants in TCGA 

that are recapitulated in orthogonal RNA sequencing from the same tumor sample. d, 

Correlation between heteroplasmies of rescued truncating variants in DNA and orthogonal 

RNA sequencing. Pearson correlation coefficient as shown. e, Mitochondrial and nuclear 

tumor mutation burdens (TMB, mutations/Mb) are shown for each well-covered tumor, 

among cancer types with n ≥ 100 samples. Nuclear TMBs are calculated based on mutations 

to 468 cancer-associated genes and their total exonic-sequence length. Pearson correlation 

coefficients r indicate no linear correlation between mitochondrial and nuclear TMBs 

were observed for any cancer type tested. f, TMBs for somatic mtDNA mutations and 

mutations to cancer-associated genes are compared between microsatellite stable (MSS) 

and microsatellite unstable (MSI-High) tumors, for both (n colorectal cancer: MSI=65, 

MSS=318; n stomach adenocarcinomas: MSI=75, MSS=256). Although MSI-High tumors 

have elevated TMB for nuclear cancer genes, there is no effect on mtDNA TMB. Moreover, 

mtDNA TMB is similar to (or exceeds) that of nuclear cancer associated genes in both 

cancer types. Error bars are 95% exact Poisson confidence intervals.
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Extended Data Fig. 4 ∣. Age- and tumor stage-associations of somatic mtDNA mutations across 
cancer types.
Heatmap shows tumor mutation burden (total mutations/total covered Mbps) for samples 

of each tumor type (a) combined across varying patient age at time of diagnosis and (b) 

tumor pathologic stage. Gray tiles indicate cancer type/age combinations with fewer than 

3 patients; cancer types shown had at least 2 non-gray tiles. Right column: Spearman 

correlation coefficient r indicating correlation between age or pathologic stage and tumor 

mutation burden. Asterisks denote statistically significant correlations based on FDR-

corrected P-values from a Student’s t-distribution.
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Extended Data Fig. 5 ∣. Molecular features of truncating variants at homopolymeric loci.
a,b, Enrichment for truncating variants in CI and non-truncating in CIII when restricted to 

mutations with 20+ reads supporting the alternate allele. Error bars are 95% Poisson exact 

confidence intervals; P-values from two-sided Poisson tests. c, Comparison of frameshift 

indel homopolymer hotspots detected among indels supported by a minimum of 20 alt-reads 

(Y-axis) to those with a minimum support of 5 alt-reads (X-axis). d, Percentage of cases 

per cancer type with truncating frameshift indels at any of 6 indel hotspot loci. Plotted 

cancer types had ≥ 20 well-covered samples (n=4,432 paired tumor and matched-normal 

samples total). Bar height indicates the fraction of samples with any indels at homopolymer 

hotspot out of the total number of well-covered samples for the given cancer type; numbers 

above bars indicate the total number of cases. e, Validation of homopolymeric indel hotspot 

loci. The proportion of samples in TCGA (X-axis) or PCAWG (excluding samples also in 

TCGA, Y-axis) with frameshift indels at 73 homopolymeric regions. The 6 indel hotspot loci 

are colored red and labeled. y=x is shown as a dashed line. Pearson correlation coefficient 

r as indicated. f, Breakdown of homopolymer loci and their hotspot incidence rates by 

mitochondrial complex. Heatmap tile shading indicates overall mutation rate (total number 

of mutants across homopolymer loci divided by the total number of samples with sufficient 

sequencing coverage). Fractions in tile labels are the number of homopolymer hotspots 
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divided by the total number of homopolymer loci. Right, histogram of the total number 

of loci with each homopolymer length. g, The percentage of all truncating variants which 

arose at 6 homopolymer hotspot loci in TCGA tumor samples and in saliva-derived normal 

samples from HelixMTdb. Error bars are 95% binomial confidence intervals.

Extended Data Fig. 6 ∣. Homopolymer hotspots for frameshift indels in TCGA and MSK-
IMPACT cohorts.
a, Analysis of 73 homopolymer loci for enrichment of protein-truncating indels in TCGA 

samples in shown on X-axis, and in MSK-IMPACT samples on Y-axis. 5 out of 6 originally 

reported hotspot loci are enriched in both TCGA and MSK-IMPACT (green), while 1 

was only enriched in TCGA samples (orange). Two additional candidate hotspot loci are 

unique to the MSK-IMPACT dataset (recurrently observed in TCGA, but not reaching 

statistical significance). b, Heatmap indicates the proportion of truncating indels at each 

of the 8 homopolymer hotspots to affect samples of different cancer types (that is rows 

are proportion of samples with indels at a given homopolymer summing to 1; clustered 

by hierarchical clustering). Right, histogram of the total number of affected samples in 

TCGA and MSK-IMPACT data. Note that the CIV hotspot discovered in MSK-IMPACT 

data preferentially arises in lung and prostate cancers.

Extended Data Fig. 7 ∣. Validation of VUS pathogenicity and tRNA mutation recurrence.
a, VUSs only observed in tumors are more likely to be pathogenic. Bars compare the 

clinical significance (annotated by ClinVar) of SNVs observed somatically in tumors but 

never in patients’ matched-normal samples against SNVs never observed in either tumor 

or matched-normal samples. P-value from a two-sided Cochran-Armitage trend test. b, 
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Validation of tRNA structural hotspots in PCAWG. The number of samples with SNVs in 

tRNAs at the indicated cloverleaf structural position, bottom; top, the statistical enriched of 

the given position for mutations. Position 31 Q-value=0.014, n=196 tRNA mutations among 

1,951 PCAWG samples.

Extended Data Fig. 8 ∣. mtDNA mutations produce transcriptional phenotypes.
a,b, Transcriptional dysregulation attributed to truncating (a) and VUS (b) mtDNA variants. 

Heatmaps shows directional significance of dysregulation of a given geneset in tumors 

with truncating or VUS mtDNA variants among the given cancer type; −log10(Q-value) 

> 2 indicates significant up-regulation in mutated compared to wild-type samples, < −2 

indicates significant down-regulation. Histograms on the right show the number of wild-

type samples and mutated samples used in calculating differentially expressed genes and 

dysregulated genesets. c, Difference in mtDNA mutation status between colorectal cancer 

consensus molecular subtypes. Left, the proportion of samples with wild-type mtDNA (that 
is no somatic mutations), VUS (any non-truncating) or truncating variants among colorectal 

tumors with each consensus molecular subtype (CMS) is shown. Right, histogram of the 

number of well-covered colorectal tumors. There was a statistically significant difference 

in mtDNA mutation status between different CMS classifications (P=0.03, Chi-squared test, 

n=415 samples total, error bars are 95% exact binomial confidence intervals).
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Extended Data Fig. 9 ∣. mtDNA mutations are protective in colorectal cancer patients in the 
MSK-IMPACT cohort.
a, Multivariate survival analysis based on Cox proportional hazards regression 

demonstrating the effect of VUS or truncating mtDNA mutations (relative to wild-type) 

on colorectal cancer patient overall survival in the MSK-IMPACT cohort. b, Same as in (a) 

but treating VUS and truncating mtDNA mutations as a single class compared to wild-type. 

Error bars are 95% confidence intervals from Cox proportional-hazards regression, n=172 

MSK-IMPACT patients.
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Extended Data Fig. 10 ∣. Repurposing whole-exome and clinical sequencing data optimizes 
sample size at the expense of sensitivity for low-heteroplasmy variants.
a, The number of different classes of mtDNA variants detected from either repurposed 

TCGA samples using our approach, or using only whole-genome sequenced tumors from 

PCAWG, stratified by heteroplasmy < 30% or ≥ 30%. Labels above bars indicate the exact 

number. b, Comparison of the difference in gene expression between (1) high-heteroplasmy 

truncating mutations and wild-type tumors (X-axis) and (2) low-heteroplasmy truncating 

mutations and wild-type tumors (Y-axis). c, Strengths and use-cases of three common 

tumor DNA sequencing modalities for mtDNA mutation analysis. WGS-based approaches 

are optimal for studying low-heteroplasmy variants and identifying structural variants 

and mtDNA copy number, while whole-exome and targeted gene-panel-based approaches 

optimize sample size, detection of recurrent variants, and clinical associations.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. MtDNA mutations are among the most frequent genomic alterations in cancer.
a, Schematic of OXPHOS system and project workflow. Top row: CI–CV and their 

reactions; centre row: mtDNA genomic regions encoding protein subunits of the associated 

OXPHOS complex; bottom row: overview of project workflow, in which somatic mutations 

in mtDNA genes are used to explore intercomplex differences, mutational recurrence and 

transcriptional phenotype associated with mitochondrial dysfunction. b, Average number of 

tumours with sufficient coverage to call variants at a mtDNA position. Truncating mutations 

were assumed to be somatic and therefore allowed for tumour-only variant calling (dark 

blue), whereas non-truncating (protein-coding, non-truncating tRNA and rRNA mutations) 

required sufficient coverage in both tumour and matched-normal samples (light blue). Grey 

shows the number of WGS samples from PCAWG for comparison. c, The percentages 

of variants called from off-target reads, which were validated in either RNA-seq or WGS 

data from the same tumours. d, The correlation between variant heteroplasmy as observed 

in RNA- and DNA-seq (n = 2,575 mutations with coverage ≥30 reads in both DNA and 

RNA). e, The correlation between TMB (mutations per Mb) among mtDNA (y axis) and 

nuclear-encoded, cancer-associated genes (referred to simply as cancer genes; x axis), (n = 

3,624 well-covered pan-cancer tumours). f, Mutation rates (mutations per Mb) of individual 

mtDNA-encoded genes (blue) and nuclear-encoded, cancer-associated genes (grey). Inset 

plot: mutation rates among 504 genes with mtDNA genes highlighted. Outer plot: close-up 

of the inset plot in the region containing all 37 mtDNA genes; commonly mutated nuclear 
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cancer genes in this region are labelled for reference. g, Comparison of truncating mutation 

rates (truncating variants per Mb) between 13 mtDNA-encoded protein-coding genes and 

185 nuclear-encoded TSGs. The P value was from a two-sided, Wilcoxon’s rank-sum test. h, 

Same as in g but comparing non-truncating mutation rate (non-synonymous, non-truncating 

variants per Mb) between 13 mtDNA protein-coding genes and 168 nuclear oncogenes. i, 
Percentage of patients with truncating mtDNA variants either somatically (in TCGA tumour 

samples) or germline (among ~200,000 normal samples). Error bars are 95% binomial CIs; 

the P value is from a two-sided, two-sample z-test.
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Fig. 2 ∣. Truncating variants preferentially target CI.
a, Comparison of truncating mutation rate (truncating variants per Mb) across OXPHOS 

complexes CI, CIII, CIV and CV. Synonymous mutation rates are shown below for 

comparison (truncating mutations, n = 352; synonymous mutations, n = 475). The P values 

are from two-sided Poisson’s exact test. *P < 0.1; **P < 0.01; NS, not significant. b, 

Validation of analysis in a using data from n = 1,951 WGS tumours from ICGC/PCAWG 

after removing samples that are also in TCGA (truncating mutations, n = 198; synonymous 

mutations, n = 263; P values as in a). c, Distributions of truncating and silent mutation 

heteroplasmy (estimated by VAF) among variants in OXPHOS CI, CIII, CIV or CV. The 

difference in heteroplasmy between truncating and silent mutations is calculated by two-
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sided Wilcoxon’s rank-sum test (CI, P = 1 × 10−6, not significant for other complexes). d, 

Percentage of tumours with truncating mtDNA variants per cancer type, among well-covered 

samples. Right: number of well-covered samples per cancer type. e, Percentage of samples 

per cancer type with truncating variants affecting OXPHOS CI or CIII–CV. The asterisk 

indicates cancer types with enriched truncating variants targeting CI compared with CIII–

CV (Q < 0.01, two-sided McNemar’s test). f, Circular mtDNA genome annotated with 73 

homopolymer repeat loci ≥5 bp in length. Dot height from the circular mtDNA genome 

indicates the number of affected samples, dot colour indicates the identity of the repeated 

nucleotide (A, C, G, T) and dot width indicates the length of the repeat region (5–8 bp). 

It includes putatively somatic truncating variants with tumour-only sequencing coverage. 

The six solid-colour homopolymer loci highlighted were found to be statistically enriched 

hotspots for frameshift indels in tumours. g, The 73 homopolymer repeat loci arranged by 

gene and repeat size. Dot width indicates −log10(Q value) for enriched frameshift indels in 

tumours. The six hotspot loci are labelled.
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Fig. 3 ∣. Non-truncating mtDNA mutations arise as rare recurrent alleles in protein-coding and 
RNA elements.
a, The proportion of truncating, synonymous and VUS somatic mtDNA mutations in the 

present study (VUSs further classified by gene type). b, The percentage of unique VUSs 

predicted to be pathogenic by APOGEE21, among variants that: (1) were ever germline 

variants among ~200,000 normal samples from HelixMTdb; (2) were never observed 

somatically mutated in tumours; or (3) were observed only as somatic mutations (P values 

from two-sided, two-sample z-tests (top to bottom): 5 × 10−11, 6 × 10−14, 3 × 10−5). 

c, Comparison of missense mutation rate across OXPHOS CI, CIII, CIV and CV (n = 
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1,718 missense mutations; P values from two-sided Poisson’s exact tests; *P < 0.1; **P < 

0.01; NS, not significant). d, Validation of a among n = 1,951 WGS tumours from ICGC/

PCAWG after removing samples also in TCGA (n = 1,073 missense mutations; P values 

and asterisks as in a). e, Top: number of samples with each unique mutation arising in 

three or more tumours. Bottom: variant consequence. f, Individual positions in mtDNA with 

SNVs in three or more tumours, and their enrichment (statistical test described in Methods). 

Positions with Q < 0.01 are coloured by gene type. g, The number of samples with SNVs 

at the equivalent position of the tRNA’s folded-cloverleaf structure across all tRNAs (left), 

and the position’s statistical enrichment (right; statistical test described in Methods). N/A, 

not available. h, Predicted pathogenicity (based on MitoTIP50) of position 31 variants 

compared with all possible mutations at other positions (only 5% are shown to reduce image 

size). Variants affecting three or more tumours are highlighted (P value from a two-sided 

Wilcoxon’s rank-sum test calculated using all mutations). i, The structure of mammalian CI 

(grey) highlighting Mtnd1 (blue), and the ubiquinone-binding tunnel (green); the black box 

indicates a close-up region. Close-ups: the predicted surface electrostatic potential of Mtnd1 

wild-type (top) and Arg25Gln mutant (bottom) samples, leading to its binding site at Ndufs2 

Tyr108. j, Differentially expressed mSigDB Hallmark genesets between colorectal tumours 

with MT-ND1R25Q and those without non-silent somatic mtDNA variants (that is, wild-type 

(WT)). Normalized enrichment score and adjusted P values based on gene set enrichment 

analysis using the fgsea R package55. IFN, interferon.
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Fig. 4 ∣. Mitochondrial genotypes associated with transcriptional and clinical phenotypes.
a, Percentage of well-covered tumours with different types of somatic mtDNA variants per 

cancer type. Right: number of well-covered samples per cancer type. NSC, non-small-cell 

cancer. b, Differential expression of mSigDB Hallmarks genesets, between samples with 

truncating mtDNA variants and those with no non-synonymous somatic mutations (that is, 

wild-type samples). Differential expression is quantified by directional −log10(Q value): 

>0 denotes upregulation in samples with truncating variants; <0 denotes downregulation. 

Each dot is a single cancer type’s level of dysregulation. Bars show the median level of 

dysregulation across 15 cancer types; bar shading shows the number of cancer types with 
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significant dysregulation (Q < 0.01) in either direction. IFN, interferon; TGF, transforming 

growth factor. c, Differential expression of TNF-α via NFκB signalling (left) and OXPHOS 

(right) genesets in individual cancer types. The x axis: percentage of samples with truncating 

variants; y axis matches the y axis in b. Dot width denotes number of well-covered samples. 

d, Effect size and statistical significance of mtDNA truncating variants (left) and VUSs 

(right) on OS among individual cancer types. Effect sizes (quantified as log(hazard ratios)) 

are from univariate Cox proportional hazards models run for each cancer type independently. 

The Q values are adjusted P values from the model coefficients for each cancer type. e, 

Kaplan–Meier plot showing difference in OS among n = 344 TCGA colorectal cancer 

patients with somatic VUSs (n = 152), truncating variants (n = 84) or no non-synonymous 

mutations (that is, wild-type, n = 108). f, Multivariate analysis of the effect of mtDNA 

variants on OS among n = 344 TCGA colorectal cancer patients (stages 1–3). Truncating 

variants and VUSs are each compared with wild-type samples, while controlling for known 

prognostic clinical and genomic covariates using Cox proportional hazards model. Hazard 

ratios are shown on a log scale and error bars are 95% CIs from Cox proportional 

hazards regression. Point size indicates the number of samples with the associated covariate 

value (except for age, which was coded as a continuous variable, and therefore the size 

corresponds to the total number of samples). Blue points are statistically significant (P < 

0.05); black points are not significant; grey points are reference categories. EMT, epithelial-

to-mesenchymal transition.
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