Table 3.
Different studies of isosorbide production from liquid‐ and vapor‐phase sorbitol dehydration in continuous‐flow systems using different solid acid catalysts.
|
Catalyst |
Solvent |
T [K] |
Isosorbide yield [%] |
Isosorbide productivity [gisosorbide kgcatalyst −1 h−1] |
Ref. |
|---|---|---|---|---|---|
|
H‐β (75) |
H2O (liquid phase) |
503 |
83 |
60 |
[48a] |
|
H‐β (75) |
H2O (liquid phase) |
503 |
54[a] |
6.1[a] |
[48a] |
|
H‐β (38) |
MeOH (liquid phase) |
473 |
60 |
377 |
[48b] |
|
H‐β (38) |
MeOH (liquid phase) |
443 |
28 |
176 |
[48b] |
|
Cu2O(SO4) |
H2O (vapor phase) |
473 |
68 |
126 |
[47b] |
|
PW/SiO2 |
H2O (vapor phase) |
523 |
54 |
216 |
[36e] |
|
SnPO |
H2O (vapor phase) |
573 |
47 |
89 |
[47a] |
|
H3PO4 Ta2O5 |
H2O (vapor phase) |
498 |
47 |
240 |
[47c] |
|
H3PO4 Nb2O5 |
H2O (vapor phase) |
498 |
63 |
311 |
[36e] |
|
NbOPO4 |
H2O (vapor phase) |
493 |
50[a] |
35[a] |
[49] |
[a] Isosorbide yield and its productivity obtained starting from glucose as a starting reactant, whereas the other entries are obtained starting from sorbitol as a starting reactant.