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ABSTRACT: Due to the enormous increase in the number of
metal-organic frameworks (MOFs), combining molecular simu-
lations with machine learning (ML) would be a very useful
approach for the accurate and rapid assessment of the separation
performances of thousands of materials. In this work, we combined
these two powerful approaches, molecular simulations and ML, to
evaluate MOF membranes and MOF/polymer mixed matrix
membranes (MMMs) for six different gas separations: He/H2,
He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. Single-
component gas uptakes and diffusivities were computed by grand
canonical Monte Carlo (GCMC) and molecular dynamics (MD)
simulations, respectively, and these simulation results were used to
assess gas permeabilities and selectivities of MOF membranes. Physical, chemical, and energetic features of MOFs were used as
descriptors, and eight different ML models were developed to predict gas adsorption and diffusion properties of MOFs. Gas
permeabilities and membrane selectivities of 5249 MOFs and 31,494 MOF/polymer MMMs were predicted using these ML models.
To examine the transferability of the ML models, we also focused on computer-generated, hypothetical MOFs (hMOFs) and
predicted the gas permeability and selectivity of 1000 hMOF/polymer MMMs. The ML models that we developed accurately
predict the uptake and diffusion properties of He, H2, N2, and CH4 gases in MOFs and will significantly accelerate the assessment of
separation performances of MOF membranes and MOF/polymer MMMs. These models will also be useful to direct the extensive
experimental efforts and computationally demanding molecular simulations to the fabrication and analysis of membrane materials
offering high performance for a target gas separation.
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1. INTRODUCTION
Metal-organic frameworks (MOFs) have become a well-known
class of materials to solve energy-related gas separation
challenges due to their high porosities, large surface areas,
and easy-to-modify structural properties.1,2 Due to the virtually
unlimited combinations of metal parts and organic ligands, an
enormous number of MOFs (>105,000) have been synthe-
sized to date.3 MOFs have been widely investigated for gas
storage and separation applications such as H2 storage, CH4
storage, CO2 capture, H2 purification, and separation of CO2
from natural gas and flue gas.4−7 Due to the environmental and
economic advantages of membrane-based gas separations,8

MOFs have been studied as membrane materials.9 Exper-
imental fabrication and testing of each MOF membrane for a
target gas separation are not practical in terms of time and
cost; thus, computational screening plays an important role in
assessing the gas separation performances of a large number of
MOFs to identify the top promising membranes.10−12 Several
computational screening studies, which use molecular
simulations to assess MOF membranes for various gas

separations, CO2/N2, CO2/CH4, H2/CO2, O2/N2, and Xe/
Kr, have been reported.13−17 However, performing computa-
tionally demanding grand canonical Monte Carlo (GCMC)
and molecular dynamics (MD) simulations for several
thousands of MOFs, analyzing and interpreting the very
large amount of simulated data while keeping up with the fast
progress of discovery of new MOFs are the current challenges
in this field.

Machine learning (ML) is an excellent approach to analyzing
a large amount of simulated material data since establishing
structure−performance relations for MOFs can lead to the
design and development of new MOF materials with better
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performances.18 In the last several years, ML algorithms have
been used to study MOFs for various adsorption-based gas
separations such as CO2 capture,19−21 H2O/(O2 + N2),22 H2S/
CH4,23 propane/propylene,24 and Xe/Kr25 separations. On the
other hand, ML has been used to study MOF membranes in a
very limited number of studies due to the difficulty of
generating gas permeability data using computationally
demanding MD simulations. Zhou et al.26 used different ML
algorithms to predict the D2/H2 selectivity of MOF
membranes at infinite dilution, 77 K, and found that the D2/
H2 membrane selectivity of the best MOFs is one order of
magnitude higher than those previously reported in the
literature. Qiao et al.27 used the ML approach to compute
the relative importance of MOF features on the predicted
membrane selectivities and showed that porosity and the
largest cavity diameter (LCD) have high importance. Zhong et
al.28 developed an ML model to predict i-C4H8 permeability
and i-C4H8/C4H6 selectivity of 601 covalent organic frame-
work (COF) membranes at 1 bar, 298 K, and showed that
porosity and pore limiting diameter (PLD) are key factors
controlling the selectivity and permeability of COF mem-
branes. Bai et al.29 recently developed eight different ML
algorithms to predict H2 permeability, H2/CH4 membrane
selectivity, and trade-off multiple selectivity and permeability
(TMSP) of MOFs and showed that two ML models are the
most suitable ones for predicting the H2 separation perform-
ances of MOFs. In our recent study, ML models were trained
to predict O2/N2 adsorption, diffusion, and membrane
selectivities of 5632 MOFs and 137,953 hypothetical MOFs
(hMOFs) at 1 bar, 298 K, to identify the hMOFs with high
O2/N2 selectivity.30

Compared to MOF membranes, a much larger variety of
MOF/polymer mixed matrix membranes (MMMs) have been
fabricated and the incorporation of MOFs as fillers into
polymers to generate MMMs has been shown to improve the
gas permeability and/or selectivity of the pure polymer in

several experimental and computational studies.31,32 The gas
adsorption and diffusion data of MOFs obtained from GCMC
and MD simulations have been used to estimate the gas
permeability of the MOF/polymer MMMs in computational
studies,14,33 and this approach has been shown to provide
accurate predictions for CO2/N2,32 CO2/CH4,34 and H2/N2

35

separation performances of MOF/polymer MMMs. Although a
large number of MOF/polymer MMM studies exist in the
literature, no ML study has been reported to predict the gas
permeabilities of these MMMs to date.

In this study, we combined the ML and large-scale molecular
simulation approaches to assess the potential of both MOF
membranes and MOF/polymer MMMs for six different gas
separations, He/H2, He/CH4, He/N2, H2/CH4, H2/N2, and
N2/CH4. We first performed GCMC and MD simulations to
obtain the adsorption and diffusion properties of He, H2, N2,
and CH4 gases for the total of 5249 MOFs at 1 bar, 298 K. We
then developed ML models that can accurately predict the
uptake and diffusivities of the gases in MOFs. By using the
ML-predicted gas uptake and diffusivity, we calculated the gas
permeabilities and selectivities of the total of 5249 MOF
membranes and 31,494 different MOF/polymer MMMs
composed of six polymers for six different gas separations.
We finally investigated the transferability of our ML models to
unseen computer-generated, hMOF data set for predicting the
gas permeability and selectivity of 1000 hMOF/polymer
MMMs composed of 500 hMOFs and 2 polymers. The ML
models that we developed in this work will be very useful to
accurately and rapidly predict gas permeabilities and
selectivities of MOF membranes and MOF/polymer MMMs
without performing computationally demanding molecular
simulations. These predictions will be useful to accelerate
both the identification and fabrication of the best-performing
MOF membranes and MOF/polymer MMMs for various types
of gas separations. The ML models that we developed also
revealed the most important MOF features for high gas

Figure 1. Computational workflow of this study: (1) selection of the MOFs based on the pore sizes and accessible surface areas; (2a) performing
molecular simulations to obtain the adsorption and diffusion data of He, H2, CH4, and N2 in MOFs; (2b) analyzing features and determining the
physical and chemical descriptors of MOFs; (3) comparing the ML-predicted uptake, diffusion, and permeability of gases with the simulated results
of MOF membranes and MOF/polymer MMMs; (4) predicting the uptake, diffusion, and permeability of gases for the unseen hMOF data set
using the ML models generated; and (5) evaluating the accuracy of ML models for the unseen hMOFs by comparing ML-predicted data with the
simulated data of unseen hMOF.
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permeabilities and selectivities so that they will shed light on
the design of new high-performing membrane materials that
have not been fabricated yet.

2. METHODS
Our computational methodology combining molecular simulations
and ML to examine gas separation performances of MOF-based
MMMs is illustrated in Figure 1. We first filtered the MOF database
by setting two criteria related to pore size and surface area of MOFs
to enable the adsorption of gases in the MOFs’ pores (step 1). Gas
adsorption and diffusion in MOFs were then investigated by
performing molecular simulations, GCMC and MD, respectively
(step 2a), which were used as target data in our ML models. The
physical, chemical, and energetic features of MOFs such as pore size,
pore geometry, atom types, metallic percentage, and heat of
adsorption of gases in MOFs were analyzed (step 2b), and these
features were used as input variables for training ML models to
predict the target data, gas uptake, and diffusivity in MOFs. Using
input variables and target data, we trained and developed ML models.
ML-predicted gas adsorption and diffusion data were compared with
the simulated data of MOFs to determine the accuracy of these ML
models (step 3).

We then obtained gas permeability and selectivity of MOF
membranes and MOF-based MMMs using the gas adsorption and
diffusion data computed from molecular simulations and predicted
from ML models (step 3). The ML models were finally used to
predict the gas adsorption and diffusion properties of unseen
hypothetical MOFs (hMOF) (step 4) by repeating the same steps
(steps 1−3) for them. Molecular simulation results were compared
with the ML predictions for hMOF membranes and hMOF/polymer
MMMs. More details about the data refinement, molecular
simulations, and generation of ML models are given below.

2.1. Curation of the MOF Data Set. In this study, we used the
most recent collection of experimentally synthesized MOF database
(CoRE MOF 2019), which consists of 12,020 materials.36 As shown
in Figure 1, we narrowed down the CoRE MOF data set by focusing
on the MOFs with PLD > 3.8 Å and accessible surface area (SA) >0
m2/g so that all gas molecules that we studied (He, H2, N2, and CH4)
can pass through the MOFs’ pores. Since the output of GCMC
simulations (loading and positions of the gas molecules in MOFs) was
used as the initial states of MD simulations, we only studied the
MOFs for which GCMC simulations resulted in at least one molecule
of adsorbed gas per structure. After MD simulations, we only
considered the MOFs exhibiting gas self-diffusivities >10−8 cm2/s, the
limit to accurately characterize molecular diffusion in MOFs using
MD.37 In training ML models, we defined the cutoff threshold values
for uptakes and diffusivities of He, H2, N2, and CH4, as shown in
Table S1, to refine the data and increase the accuracy of ML models.
Using these threshold values, a small number of MOFs (0.2, 0.6, 0.8,
and 1.7% of all MOFs for He, N2, CH4, and H2, respectively) was
identified as outliers and eliminated. For the ML models developed
for He and H2 diffusion, we calculated the difference between the
simulated and ML-predicted diffusivities and computed the standard
deviation for each MOF. If this difference was greater than double of
the standard deviations of the training data for any MOF, then this
MOF was not used in the training of models. We finally note that the
MOF set used to train ML models for adsorption and diffusion was
identical for a given gas. Having gone through these steps, we ended
up with 677 MOFs for training ML models for He, 2715 MOFs for
H2, 5215 MOFs for CH4, and 5224 MOFs for N2.

2.2. Molecular Simulations and Membrane Calculations. We
computed gas uptakes (Ni) and self-diffusivities (Di) of He, H2, N2,
and CH4 by performing GCMC and MD simulations, respectively, at
1 bar, 298 K. All simulations were performed using RASPA
software.38 Dispersion interactions between MOF−gas and gas−gas
were described with Lennard-Jones 12-6 (LJ) potentials. The
universal force field (UFF)39 parameters were used for the framework
atoms. While CH4,40 H2,41 and He40 were modeled as single,
spherical, and nonpolar atoms, N2 was modeled as three-site

molecules: two N atoms and a dummy atom as the center of
mass.42 N2 has quadrupole moments for which electrostatic
interactions between the gas and the MOFs were considered. The
charge equilibration method (Qeq)43 as implemented in RASPA was
used to estimate the partial atomic charges of MOFs. The Ewald
summation was used to calculate the long-range electrostatic
interactions.44 The potential parameters of gases are listed in Table
S2. In GCMC simulations, we used 2 × 104 cycles for initialization
and another 2 × 104 cycles for taking the ensemble averages. In MD
simulations, NVT ensemble was used, where the step size and total
simulation time were 1 fs and 5 ns at 298 K, respectively. We run MD
simulations for 5 × 106 cycles, using 103 cycles for initialization and
104 cycles for the equilibration of each MOF. More details of
simulations can be seen in our previous works.14,33 By using simulated
gas adsorption and diffusion data, gas permeabilities of MOFs were
calculated using Pi = ci× Di/f i, where ci, Di, and f i represent the
adsorbed concentration, self-diffusivity, and feed side pressure of gas i,
respectively. The feed (permeate) side of the membrane was assumed
to be at 1 bar (under vacuum).45 Then, ideal membrane selectivities
were calculated as the ratio of single-component gas permeabilities,
Si/jmem = Pi/Pj.

MOF-based MMMs were studied for six different separations, He/
H2, He/N2, He/CH4, H2/N2, H2/CH4, and N2/CH4. For each
separation, we selected at least three polymers representing
membranes with high, medium, and low gas permeabilities, which
defined Robeson’s upper bound.46 Experimentally reported gas
permeabilities of these polymers are listed in Table S3. To predict
the gas permeabilities of the MOF-based MMMs, we used the
Maxwell model47 since it was previously shown that the simulated gas
permeability of MOF-based MMMs calculated by this model agrees
well with the experimental data.14,33 Maxwell model uses simulated
gas permeability data of MOFs and experimentally measured gas
permeability data of polymers to compute the gas permeability of
M O F / p o l y m e r M M M a s f o l l o w s , P i

M M M = P i
P ×

[ ]× + + ×
+ + ×

P P

P P

2 (1 ) (1 2 ) ( / )

(2 ) (1 ) ( / )
i i

i i

MOF P

MOF P . Here, Pi
MMM, Pi

MOF, and Pi
P represent

the gas permeability of MMM, MOF, and polymer, respectively. ϕ is
the volume fraction of MOF fillers in the polymer and was used as 0.2
throughout this study. We calculated the He permeabilities of 2031
MMMs, H2 permeabilities of 10,860 MMMs, CH4 permeabilities of
26,075 MMMs, and N2 permeabilities of 31,344 MOF-based MMMs.
The ratio of gas permeabilities was used to compute the selectivities of
MMMs, Si/jMMM = Pi

MMM/Pj
MMM.

2.3. Feature Analysis of MOFs. The ML models aim to establish
the relations between MOF descriptors and the target data, which are
the gas uptake and diffusivity data of MOFs at 1 bar, 298 K. Ideally,
descriptors should be easy to obtain/calculate and have low
dimensionality and correlation with the target data to some extent.
We extracted 20 different features as potential descriptors in Table 1.
LCD, PLD, and their ratios (LCD/PLD) were shown to affect the
adsorption and diffusion of gases in MOFs.15,32,48,49 We also
considered the features of the pore geometry such as pore volume,
porosity, density, and SA, which are commonly used in ML
studies.50−53

To further improve the predicting power of ML models, we also
used the atom types in the frameworks, which is the number of
specified elements divided by the number of total atoms in a unit cell
of MOF multiplied by 100, such as C%, H%, and metal%. Degree of
unsaturation (DU), which indicates the total number of π bonds and
rings, total degree of unsaturation (TDU), metallic percentage (MP),
and oxygen-to-metal ratio (O-to-M) are essential chemical descriptors
describing the molecular structures.54 While the descriptors related to
pore size and geometry such as PLD, LCD, and porosity were
calculated using Zeo++ software,55 atom type and chemical
descriptors were extracted from the crystallographic information
files (CIFs) of MOFs taken from the CoRE MOF database. A
nitrogen probe with a radius of 1.86 Å and 2 × 103 trials were used for
the surface area calculations. Geometric pore volumes were computed
using a probe radius of 0 Å and 5 × 104 trials. We finally used the
isosteric heat of adsorption values (Qst

0 ) of gases computed at infinite
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dilution, 298 K, using the Widom insertion method as the energy
descriptor in ML models developed for N2 adsorption and diffusion.37

Details for computing Qst
0 using molecular simulations can be found in

our previous work.14

The Pearson correlation coefficient (r) was used to determine the
f e a t u r e c o r r e l a t i o n s , w h i c h c a n b e e x p r e s s e d a s

= =

= =
r

x x y y

x x y y

( )( )

( ) ( )

i
n

i i

i
n

i i
n

i

1

1
2

1
2

, where x and y are the features, and x̅

and y̅ are the means of x and y. If the two descriptors are strongly
correlated, it can cause problems such as multicollinearity and
overtraining of ML models.56 To avoid these, we computed the r
values between each descriptor and removed the one having a strong
correlation (r > 0.90).

2.4. Machine Learning. We used the tree-based pipeline
optimization tool (TPOT)57 in auto-machine learning58 to efficiently
select the best algorithm and optimize the model parameters. TPOT
is based on the evolutionary algorithm (EA) optimization and
includes three steps of ML: feature engineering, model generation,
and model evaluation. In TPOT, a random principal singular value
decomposition variant called randomized principal component
analysis (PCA)59 is used for feature extraction. Comparison of a
CH4 working capacity of 403,959 hypothetical COFs predicted using
the algorithms defined by TPOT and traditional ML models such as
decision tree (DT), random forest (RF), and support vector machine
(SVM) showed that the accuracy of ML predictions obtained from
TPOT is higher than those of traditional ML models.56 For the model
selection in TPOT, the regression algorithms in the scikit-learn
toolkit59 were used. A stratified sampling method was implemented to
keep the feature distribution in training and test data as consistent as
possible. The data was split into two sets, 80% as a training set and
20% as a test set. We also used a fivefold cross-validation to avoid
overfitting. TPOT parameters listed in a table were provided on
GitHub (https://github.com/hdaglar/MOF-basedMMMs_ML). We
compared the range of descriptors in the training and test sets for He,
H2, N2, and CH4 in Figures S1 and S2 and showed that the feature
distribution in the training and test sets is similar for each gas species.
Results also highlighted that the MOFs in the training set are
representative of the entire MOF set, providing more accurate
predictions for the test set with similar characteristics.

To evaluate the model accuracy, we used the coefficient of
determination (R2), mean absolute error (MAE), and root-mean-
square error (RMSE) as follows

= = =R y y y y1 ( ) / ( )
M m

M
M m

M2 1
1

2 1
1

2,

= | |= y y MMAE /m
M

1 , = = y y MRMSE ( ) /m
M

1
2 Here, M

represents the number of samples, y and ŷ represent the simulated
(true) value and predicted value, respectively, and y̅ denotes the
average of the simulated value by the model. As RMSE and MAE
increase, the accuracy of models decreases. We also used the
Spearman rank correlation coefficient (SRCC) to calculate the
ranking correlation between simulated and ML-predicted data using

=SRCC 1 (6 D )/(n(n 1))2 2 , where D is the difference
between paired ranks and n is the number of observations. SRCC is an
important tool to understand how well the two rankings agree. As the
value of SRCC increases, the similarity between the two rankings and
the accuracy of models increase. Based on RMSE, MAE, and R2, the
results of the ML algorithms with their optimized parameters are
presented in Table S4. The best ML algorithms for predicting the
adsorption and diffusion properties of He, H2, CH4, and N2 in MOFs
were found as LassoLarsCV, Extra Trees Regressor, Gradient
Boosting Regressor, and Random Forest Regressor. The last three
are tree-based ensemble methods, while LassoLarsCV is a regulated
linear regression model implemented using the least angle regression
(Lars) algorithm and cross-validation (CV). We note that these
models (Lasso,7 Random Forest,24,30 Gradient Boosting20) have been
commonly used to train ML models for MOFs.

After developing the ML models for predicting the gas separation
performances of the MOF membranes and MOF/polymer MMMs,
we focused on the hypothetical MOF (hMOF) database,60 which
includes 137,593 computer-generated materials to test the trans-
ferability of our ML models to a different material database. We
eliminated the hMOFs with nonaccessible SA and PLD < 3.8 Å and
ended up with 102,926 hMOFs. Performing molecular simulations for
that many materials is computationally very expensive. Therefore, we
ranked 102,926 hMOFs based on their LCDs and created a
representative subset composed of 500 materials, which involve 1st
hMOF and every 205th hMOF thereafter. Figure S3 shows that the
ranges of all features of our representative hMOF set (500 hMOFs)
are similar to those of the complete hMOF set (102,926 hMOFs).
Then, we predicted He, H2, N2, and CH4 uptakes and diffusivities in
500 hMOFs using the ML models that we developed for MOFs.
GCMC and MD simulations were then performed to compute He,
H2, N2, and CH4 adsorption and diffusion in 500 hMOFs following
the simulation methods described in Section 2. ML-predicted
(simulated) gas permeabilities of hMOFs were obtained using the
ML-predicted (simulated) gas uptakes and diffusivities. Finally, we
compared the simulated and ML-predicted gas permeabilities and
selectivities of 1000 hMOF/polymer MMMs composed of 2 polymers
and 500 hMOFs.

3. RESULTS AND DISCUSSION
3.1. Feature Correlation and Univariate Analysis.

After the descriptors were determined, relations between these
descriptors and the simulated gas adsorption and diffusion data
of MOFs were examined. We focused on two features in each
group of the descriptors: LCD and PLD for the pore size, pore
volume, and density for the pore geometry, C% and metal% for
the atom types, and O-to-M and TDU for the chemical
descriptors. Figure 2 illustrates the correlations between these
features and uptakes for He and CH4. Figure 2a shows that the
He uptake in MOFs generally increases as the LCDs and PLDs
expand. Not surprisingly, the MOF density and He uptake
have an inverse relationship, implying that high pore volume
generally leads to high He uptake, as shown in Figure 2b.
Figure 2c,d shows that He adsorption is typically favored in the
MOFs having high C% and low metal%. Figure 2e represents

Table 1. Descriptors Used to Construct a Feature Vector for
ML Models

groupa feature (unit) symbol

A largest cavity diameter (Å) LCD
pore limiting diameter (Å) PLD
pore size ratio LCD/PLD

B density (g/cm3) ρ
pore volume (cm3/g) PV
porosity φ
surface area (m2/g) SA

C carbon percentage C%
hydrogen percentage H%
nitrogen percentage N%
oxygen percentage O%
halogen (Br, Cl, F, I) percentage halogen%
metalloid (As, B, Ge, Te, Sb, Si) percentage metalloid%
ametal (Se, S, P) percentage ametal%
metal percentage metal%

D total degree of unsaturation TDU
degree of unsaturation DU
metallic percentage (#of metal/#of C atoms) MP
oxygen-to-metal ratio O-to-M

E heat of adsorption (kJ/mol) Qst
0

aThe features are separated into five groups. A−E represent features
of the pore size, pore geometry, atom types, and chemical and energy-
based descriptors, respectively.
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that the MOFs with narrow pore sizes are favorable for high
CH4 uptake. For many MOFs, CH4 uptake increases as the
framework density increases up to 1.5 g/cm3 and generally
decreases in denser MOFs (>1.5 g/cm3), as shown in Figure
2f. While CH4 uptake generally increases as the C% increases,

there is an inverse relation between the metal% and CH4

uptake, as shown in Figure 2g. There is almost no observable
correlation between the CH4 uptake and chemical descriptors
in Figure 2h. We observed similar results for H2 and N2

uptakes, as shown in Figure S4. Overall, some features

Figure 2. Effect of features on gas adsorption: simulated He uptakes in 677 MOFs as a function of (a) pore size (LCD, PLD), (b) pore geometry
(density, pore volume), (c) atom types (C%, metal%), and (d) chemical descriptors (O-to-M, TDU). Simulated CH4 uptakes in 5215 MOFs as a
function of (e) pore size (LCD, PLD), (f) pore geometry (density, pore volume), (g) atom types (C%, metal%), and (h) chemical descriptors (O-
to-M, TDU).
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correlate with the gas uptake of MOFs, but many exceptions
exist complicating the explanation of the structure−perform-
ance relations.

Figure S5 represents the relations between He and CH4
diffusion in MOFs and material features. He self-diffusivity in
MOFs increases as PLD and LCD increase in Figure S5a.
While there is a linear correlation between the pore volume
and He diffusion, an inverse relation between density and
diffusivity is observed in Figure S5b. Atom types and chemical
descriptors weakly correlate with He diffusivity in Figure S5c,d.
High CH4 diffusion is generally observed in MOFs having large
PLD, large LCD, low density, high pore volume, low-medium
C%, and high metal%, as shown in Figure S5e−g.

There is almost no correlation between the chemical
descriptors and CH4 diffusivity, as shown in Figure S5h.
Similar results were obtained for self-diffusivities of H2 and N2,

as shown in Figure S6. We inferred that, compared to the gas
uptake, there is a weaker relation between MOF features and
gas diffusivities since the movement of the gas molecules
through the MOFs’ pores is generally more complicated than
the adsorption of gas molecules in the pores of MOFs.

3.2. Predictions of ML Models for MOF Membranes.
Considering the results of the previous section, we employed
the pore size, pore geometry, chemical descriptors, and atom
types (shown in Table 1) to train eight ML models to describe
the uptakes and diffusivities of He, H2, N2, and CH4 in MOFs.
Figure S7 shows the heatmap with the Pearson correlations
across different features of MOFs. Although there are strong
correlations between some features such as pore volume and
porosity (r: 0.82), LCD and PLD (r: 0.77), no pair of features
is overly correlated (r > 0.9), suggesting that all features can be
used as input variables while training the ML models.56

Table 2. Selection of Descriptor Groups for ML Models

training set test set

RMSE MAE SRCC R2 RMSE MAE SRCC R2

Descriptor Groups He Uptake

A 1.12 × 10−2 7.35 × 10−3 0.816 0.688 1.12 × 10−2 8.32 × 10−3 0.711 0.56
A+B 2.06 × 10−3 1.68 × 10−3 0.985 0.989 2.20 × 10−3 1.78 × 10−3 0.979 0.98
A+B+C 1.55 × 10−3 1.20 × 10−3 0.992 0.994 1.75 × 10−3 1.34 × 10−3 0.984 0.99
A+B+C+D 1.54 × 10−3 1.18 × 10−3 0.992 0.994 1.70 × 10−3 1.30 × 10−3 0.984 0.99

He Diffusion
A 4.00 × 10−4 3.11 × 10−4 0.859 0.751 6.06 × 10−4 4.79 × 10−4 0.592 0.41
A+B 3.53 × 10−4 2.85 × 10−4 0.87 0.805 4.81 × 10−4 4.05 × 10−4 0.719 0.63
A+B+C 3.20 × 10−4 2.56 × 10−4 0.902 0.84 4.63 × 10−4 3.89 × 10−4 0.758 0.64
A+B+C+D 3.29 × 10−4 2.63 × 10−4 0.894 0.831 4.76 × 10−4 3.90 × 10−4 0.747 0.65

H2 Uptake
A 1.0 × 10−6 1.0 × 10−6 0.999 0.999 1.65 × 10−2 1.20 × 10−2 0.576 0.38
A+B 4.57 × 10−3 2.63 × 10−3 0.976 0.954 1.03 × 10−2 6.56 × 10−3 0.818 0.75
A+B+C 2.67 × 10−3 1.26 × 10−3 0.993 0.985 9.71 × 10−3 5.82 × 10−3 0.846 0.78
A+B+C+D 4.21 × 10−3 2.03 × 10−3 0.986 0.962 9.23 × 10−3 5.45 × 10−3 0.862 0.80

H2 Diffusion
A 5.62 × 10−4 4.43 × 10−4 0.602 0.499 6.35 × 10−4 4.94 × 10−4 0.542 0.35
A+B 2.26 × 10−4 1.71 × 10−4 0.952 0.919 4.73 × 10−4 3.67 × 10−4 0.734 0.64
A+B+C 2.50 × 10−4 1.99 × 10−4 0.936 0.901 4.41 × 10−4 3.47 × 10−4 0.773 0.69
A+B+C+D 1.79 × 10−4 1.35 × 10−4 0.973 0.951 4.40 × 10−4 3.43 × 10−4 0.768 0.70

CH4 Uptake
A 5.25 × 10−1 4.04 × 10−1 0.587 0.322 6.03 × 10−1 4.68 × 10−1 0.39 0.14
A+B 2.34 × 10−1 1.60 × 10−1 0.94 0.865 4.12 × 10−1 2.86 × 10−1 0.792 0.60
A+B+C 4.67 × 10−2 2.75 × 10−2 0.998 0.995 3.38 × 10−1 2.11 × 10−1 0.872 0.72
A+B+C+D 8.57 × 10−2 4.79 × 10−2 0.995 0.981 3.39 × 10−1 2.12 × 10−1 0.874 0.73

CH4 Diffusion
A 9.17 × 10−5 6.19 × 10−5 0.793 0.59 1.17 × 10−4 7.97 × 10−5 0.62 0.31
A+B 3.56 × 10−5 2.11 × 10−5 0.974 0.938 7.46 × 10−5 4.66 × 10−5 0.861 0.72
A+B+C 1.22 × 10−5 6.76 × 10−6 0.997 0.993 6.72 × 10−5 4.10 × 10−5 0.889 0.77
A+B+C+D 2.62 × 10−5 1.43 × 10−5 0.987 0.967 6.70 × 10−5 4.09 × 10−5 0.89 0.78

N2 Uptake
A 2.44 × 10−1 1.50 × 10−1 0.461 0.18 2.51 × 10−1 1.56 × 10−1 0.288 0.01
A+B 1.35 × 10−1 6.42 × 10−2 0.926 0.749 2.11 × 10−1 1.17 × 10−1 0.671 0.34
A+B+C 3.29 × 10−2 1.38 × 10−2 0.994 0.985 1.83 × 10−1 8.90 × 10−2 0.792 0.49
A+B+C+D 8.06 × 10−2 2.96 × 10−2 0.985 0.911 1.89 × 10−1 9.49 × 10−2 0.768 0.47
A+B+C+D+E 2.99 × 10−2 1.84 × 10−2 0.991 0.988 1.04 × 10−1 5.62 × 10−2 0.936 0.84

N2 Diffusion
A 1.13 × 10−4 7.34 × 10−5 0.738 0.538 1.22 × 10−4 8.30 × 10−5 0.623 0.40
A+B 5.71 × 10−5 3.34 × 10−5 0.935 0.882 9.33 × 10−5 5.75 × 10−5 0.791 0.65
A+B+C 2.39 × 10−5 1.13 × 10−5 0.993 0.979 7.29 × 10−5 4.80 × 10−5 0.843 0.76
A+B+C+D 2.40 × 10−5 1.08 × 10−5 0.994 0.979 7.38 × 10−5 4.72 × 10−5 0.844 0.76
A+B+C+D+E 3.75 × 10−5 2.35 × 10−5 0.966 0.949 7.05 × 10−5 4.46 × 10−5 0.860 0.80
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Therefore, we considered all of the features given in Table 1 to
investigate how the descriptor selection affects the accuracy of
ML models.

Table 2 lists R2, MAE, RMSE, and SRCC of the training and
test sets based on the feature groups. While our simplest ML
model was established using only pore size (group A), other
features were added to build extended, more predictive/
accurate models such as A+B, A+B+C, A+B+C+D, and A+B
+C+D+E. For example, when pore size and pore geometry (A
+B) were used to predict the CH4 uptake in MOFs, R2 of the
test set was computed as 0.6. When atom types and chemical
descriptors were added to the feature list, R2 of the test set
increased to 0.73. This shows the supportive effect of the atom
types and the chemical descriptors in multivariate analysis,
while they have almost no correlation with the gas uptake and/
or diffusivity in univariate analysis, as previously shown in
Figure 3. Table 2 also shows that pore size and pore geometry
are the dominant features determining the accuracy of ML
models for the gas uptake and diffusivity predictions.
Incorporating the atom types and chemical descriptors into
the ML models improved the accuracy of predictions only
marginally. There can be slightly different trends (increase or
decrease) in the calculated SRCC and R2 values of the training
and test sets given in Table 2, which can be considered
acceptable. The most pronounced change was observed for the
H2 uptake model where SRCC and R2 values were decreasing
from 0.999 to 0.986 and from 0.999 to 0.962 in the training
set, while these values were increasing from 0.58 to 0.86 and
from 0.38 to 0.80 in the test set, respectively. This might be
due to the overfitting in the ML model using only A group of
descriptors for H2 uptake. As shown in Table 2, when we used

the A+B+C+D group of descriptors, R2 and SRCC of ML
models for N2 uptake and diffusivity are not as high as those
obtained for other gases. Therefore, we also included Qst

0 in
ML models for N2 uptake and diffusivity to improve the
accuracy. We note that since experimental measurements and
molecular simulations to determine Qst

0 require more time and
more inputs compared to other structural properties that we
used, we did not use Qst

0 in ML models for He, H2, and CH4
uptakes and diffusivities. Based on the analysis presented in
Table 2, we used A+B+C+D (A+B+C+D+E) descriptor
groups to train the ML models for predicting the uptake and
diffusivity of He, H2, and CH4 (N2) in MOFs.

We then compared the ML-predicted adsorption and
diffusion properties of He, H2, and CH4 (N2) with the
simulation results using the 19 (20) descriptors, as listed in
Table 1. Figure 3 represents the scatter plots with marginal
histograms for the gas adsorption properties of MOFs. The
predicting power of ML models is generally good. Figure 3a
shows the highest accuracy observed for He adsorption with
SRCC: 0.98 and R2: 0.99. Figure 3b also shows a quite good
agreement between the ML-predicted and simulated H2
adsorption data of MOFs with SRCC: 0.86 and R2: 0.80 in
the test set. Although the lowest R2 and SRCC values in the
test set were observed for CH4 uptake, the predicting power of
the ML model can be considered as good (R2: 0.73) in Figure
3c. In the case of CH4 uptake, the ML models overpredicted
(underpredicted) the simulation results at low (high) uptakes
of <1.5 mol/kg (>1.5 mol/kg). Figure 3d represents the high
accuracy of the ML model for N2 uptake prediction with an R2

of 0.84 and an SRCC of 0.94 in the test set. Overall, with the
lowest SRCC value of 0.86, the rankings of MOF based on the

Figure 3. Comparison of the ML-predicted adsorption of (a) He, (b) H2, (c) CH4, and (d) N2 in MOFs with the simulation results. Blue (red)
symbols represent the training (test) data.
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ML-predicted gas uptakes are strongly correlated with those
based on the simulation results in the test set for all gases.

We then trained ML models to predict the gas diffusion in
MOFs. R2 and SRCC values of the test set for He, H2, N2, and
CH4 gases were computed to be in the ranges of 0.65−0.80
and 0.75−0.89, respectively, as shown in Figure 4. Some R2

and SRCC values that we collected from the literature are as
follows: R2 values for the three ML models developed for
predicting N2 diffusivity (O2/N2 adsorption selectivity) in
MOFs were reported to be in the range of 0.74−0.80 (0.32−
0.55).61 R2 (SRCC) values of ML models trained for
predicting the C3H8 uptake, Henry’s constant of C3H8, and

adsorption selectivity for C3H8/C3H6 separation were reported
as 0.82 (0.89), 0.93 (0.96), and 0.73 (0.76) in the test set,
respectively.24 As discussed before, gas diffusivity depends on
more complex parameters compared to gas uptakes; thus, ML
models predicting diffusivity in MOFs have not been widely
studied. In our recent work, R2 of ML models were reported as
0.74 for N2 diffusivity in MOFs and 0.76 for O2 diffusivity in
MOFs for O2/N2 separation.30 Overall, we showed that
although the level of agreement between the ML predictions
and simulation results is lower for the gas diffusivities
compared to that for the gas uptakes, the accuracy of ML
models is still acceptable based on the previous literature. The

Figure 4. Comparison of the ML-predicted diffusion of (a) He, (b) H2, (c) CH4, and (d) N2 in MOFs with the simulated ones. Blue (red) symbols
represent the training (test) data.

Figure 5. Feature importance for the gas adsorption and diffusion properties of MOFs. The width range of each color shows the importance of the
related feature. The colors were taken from the same palette for each group.
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predicting power of ML models for He and H2 diffusivities
shown in Figure 4a,b is lower than that for N2 and CH4
diffusivities, as shown in Figure 4c,d. Among the diffusivities of
He, H2, N2, and CH4 gases, the best prediction was made for
N2 diffusivities (Figure 4d), resulting in a high R2 of 0.80, an
SRCC of 0.86, and a low RMSE of 7.1 × 10−5. This can be
attributed to the fact that gas molecules with smaller kinetic
diameters (He, H2) diffuse easily, with less dependency on the
pore geometry of the MOF, compared to molecules with larger
kinetic diameters (N2, CH4).

Figure 5 shows the feature importance analysis for all target
variables. The relative importance of the features varies across
the ML models developed to predict the adsorption and
diffusion properties of gases in MOFs. While the pore size and
geometry are more important for training ML models for H2
adsorption, atom types and chemical descriptors significantly
affect CH4 and N2 adsorption. For the development of the ML
model to predict N2 uptake, Qst

0 was also considered as the
energy descriptor and played the most important role in
describing the N2 uptake. The importance of the pore size and
geometry in the models predicting gas diffusivities is generally
higher compared to those predicting gas uptakes. Especially,
the importance of the pore size ratio (LCD/PLD) used in the
ML models to predict N2 and CH4 diffusivities is generally
more pronounced than those used to estimate the gas uptakes.
Porosity is the most important descriptor to accurately predict
N2 diffusivities, and Qst

0 also has an impact. Overall, we
concluded that physical features such as pore size and
geometry of MOFs are important to train the ML models
for both gas adsorption and diffusion data. Compared to the

gas diffusivity, predictions for gas uptakes are much more
affected by the inclusion of chemical descriptors, atom types,
and energy descriptors in the ML models. We finally note that
He uptake was not shown in Figure 5 because ML models for
all target data except He uptake were trained with tree-based
algorithms, which were constructed using the Gini index that
determines the relative importance of features.

Next, we calculated the ML-predicted gas permeabilities and
compared them with the simulated permeabilities in Figure 6.
We note that the term “ML-predicted permeability” was used
for the permeability that was calculated using ML-predicted
adsorption and diffusion data and “simulated permeability” was
used for the permeability that was calculated using simulated
gas adsorption and diffusion data. To the best of our
knowledge, these are the first ML models developed to predict
He, H2, N2, and CH4 permeabilities of MOFs at realistic
conditions, 1 bar, 298 K. Figure 6a,b shows that there is a good
agreement between ML-predicted and simulated permeabil-
ities, especially for He and H2. Figure 6c,d presents that ML-
predicted N2 and CH4 permeabilities are generally lower than
simulated ones in the high gas permeability range (>106

Barrer), but the agreement is good in the low permeability
range. We also showed the ratios of the ML-predicted gas
uptakes, diffusivities, and permeabilities to the simulated ones
for the training and test sets in Figure S8. The average ratio is
close to unity for gas uptakes, indicating the good agreement
between ML and simulations. The range of the ratios (0.11−
47.5) is larger for gas diffusivities; therefore, deviations
between ML-predicted and simulated gas permeabilities were

Figure 6. Comparison of the ML-predicted (a) He, (b) H2, (c) CH4, and (d) N2 permeability of the MOFs with the simulated ones. Blue (red)
symbols represent the training (test) data. The inset figures represent the data in the dashed boxes in the log−log scale.
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more observable compared to those between uptakes and
diffusivities.

In addition to the gas permeability, selectivity is an
important metric to assess membranes’ separation perform-
ances. We calculated He/H2, He/N2, He/CH4, H2/N2, H2/
CH4, and N2/CH4 membrane selectivities of MOFs. Since two
different gas permeability data are needed to calculate the
membrane selectivity of an MOF, we calculated selectivities
only for the MOFs commonly existing in the test sets of both
gases. Figure S9 shows that there is good agreement between
the ML-predicted and simulated membrane selectivities of
MOFs for six different gas separations that we considered.
Overall, the results so far suggest that ML models that we
developed in this work for predicting gas adsorption and
diffusion properties of MOFs can accurately estimate gas
permeabilities and selectivities of MOF membranes and
therefore they would be very useful for the initial assessment
of MOF membranes for a target gas separation before the
experimental efforts.

3.3. Predictions of ML Models for MOF/Polymer
MMMs. Motivated by the good agreement between the ML-
predicted and simulated gas permeabilities of pristine MOFs,
we calculated the permeability and selectivity of MOF/
polymer MMMs using both the ML models and results of
molecular simulations. Figure 7 shows that there is good
agreement between the ML-predicted and simulated gas
permeabilities and selectivities of MMMs. ML predictions
were found to be in strong agreement with the simulations for
the MMMs composed of polymers having low or medium gas
permeability (polypropylene, PBOI-2-Cu+). On the other

hand, the accuracy of ML predictions was found to be lower
for the MMMs composed of highly permeable polymers
(TeflonAF-2400, PTMSP). Figure 7a shows that ML-predicted
permeabilities of MMMs are in a wider range when the
polymers having high gas permeabilities (>103 Barrer) are used
compared to those having polymers with relatively low
permeabilities (<103 Barrer). The most significant difference
between the ML-predicted and simulated permeabilities was
observed for MMMs composed of two highly permeable
polymers, TeflonAF-2400 and PTMSP. Thus, we focused on
MOF/TeflonAF-2400 and MOF/PTMSP MMMs in Figure
7c.

For He-related separations (He/H2, He/N2, and He/CH4),
the ML-predicted and simulated selectivities of MMMs are in
strong agreement. For example, the ratios of the ML-predicted
He/CH4 selectivity over the simulated one for MOF/
TeflonAF-2400 MMMs in the test set were 0.98−1.07,
suggesting that our ML models can accurately predict the
He/CH4 selectivity of these MMMs. The ratios of the ML-
predicted N2/CH4, H2/CH4, and H2/N2 selectivities over the
simulated selectivity in the test set were calculated to be in a
wider range, 0.70−1.33, 0.72−1.29, and 0.72−1.31, respec-
tively, for MOF/PTMSP MMMs. The ML-predicted selectiv-
ity of MMMs for most MOFs in the test set was generally
lower than the simulated selectivity when the polymer having a
high gas permeability was used. This is expected due to the
overestimation of the gas permeabilities by the ML models, as
discussed in Figure 7a,b. We note that we considered the
common MOFs in training and test sets for each gas pair;
therefore, the number of MOFs used for selectivity predictions

Figure 7. Comparison of the ML-predicted and simulated (a) He and H2 and (b) N2 and CH4 permeabilities of MOF-based MMMs. (c)
Comparison of the ML-predicted and simulated selectivities of MOF/polymer MMMs for He/H2, He/N2, He/CH4, H2/CH4, H2/N2, and N2/CH4
separations. Blue (red) symbols represent the training (test) set. The data for the test set are shown with smaller symbols than those for the training
set in panels (a−c) to make all data visible.
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is lower than those used for permeability predictions. For
example, 677 and 2715 MOFs were used to develop ML
models for predicting He and H2 permeabilities but a much
smaller number of MOFs, 382 and 28 MOFs (in the training
and test sets, respectively), was used for the evaluation of the
ML models to predict the He/H2 selectivity of the MMMs.

3.4. Comparing ML Predictions with Experimental
Data. We so far compared the ML-predicted and simulated
gas separation performances of MOF membranes and MOF/
polymer MMMs. Despite the scarcity in the reported
experimental gas permeabilities of the pure MOF membranes,
there are several MOF/polymer MMMs that were tested for
different gas separations in the literature.12 To make a
comprehensive comparison between ML predictions, molec-
ular simulations, and experiments, we collected the exper-
imental He, H2, N2, and CH4 permeabilities of the MOF
membranes and MOF-based MMMs from the literature. We
note that simulated and ML-predicted gas permeabilities of
MOF-based MMMs were calculated using the same filler
loading as the corresponding experiments. These experimental
permeability data of MOF membranes and MMMs are
presented in Figure 8 together with our corresponding ML
predictions and simulation results. Figure 8a represents the
ML-predicted, simulated, and experimentally measured gas
permeabilities of two MOFs, Cu-BTC and MIL-96, which
were in our material database used for training ML models.
Simulated and ML-predicted gas permeabilities of the MOFs
strongly agree, but they generally overestimate experimental
gas permeabilities of Cu-BTC62,63 and MIL-96.64 As previously
discussed in the literature,16 MOFs were modeled as perfect,
defect-free crystal structures in the molecular simulations,
which leads to high permeabilities, but defects may exist in the
fabricated membranes.

Even though our ML models somehow overpredicted the
gas permeabilities of MOF membranes, the rankings of MOFs
based on the ML-predicted gas adsorption and diffusion data
agree well with the simulated ones (SRCC in the range of
0.75−0.98), as discussed above. These rankings can be useful
to the experimentalists for selecting the best candidates from a
large group of MOFs for membrane fabricating and testing.
Figure 8b shows He, H2, N2, and CH4 permeabilities of three
different MMMs65−67 composed of well-known MOFs (Cu-
BTC, Mg-MOF74, and MIL-53) with different volume
fractions and polymers (Matrimid, PIM-1). Simulated, ML-

predicted, and experimental gas permeabilities all agree well,
showing the strength of our ML models to predict the gas
separation performances of the MOF/polymer MMMs. This is
an important result because considering the existence of
thousands of MOFs and hundreds of polymers, a theoretically
infinite number of MOF/polymer MMMs can be generated
and accurate estimates for the gas separation performances of
all of these possible MMMs using the ML models that we
develop will significantly accelerate the design and fabrication
of new MMMs for a variety of gas separations.

3.5. Transferability of ML Models. One of the main
advantages of developing ML models for a set of materials is
the ability to transfer these models to a different set of new,
unexplored materials and make accurate predictions for these
unseen materials. Motivated by the good agreement between
the ML, molecular simulations, and experiments, we used our
ML models, which were originally developed for experimen-
tally synthesized MOFs, to predict the separation performances
of hMOFs. hMOFs have not been synthesized yet; thus, no
experimental gas adsorption, diffusion, and/or permeability
data is available for them. After determining the ML-predicted
adsorption and diffusion properties of hMOFs for He, H2, N2,
and CH4, we performed GCMC and MD simulations for
hMOFs to compare ML predictions with simulation results.
The heatmap with the Pearson correlations across different
features of hMOFs is shown in Figure S10, which indicates that
the correlations are generally like those observed for MOFs.
Figure 9 shows the comparison of the ML-predicted and
simulated uptakes and diffusivities of He and H2 in 500
hMOFs. We also computed the MAE, R2, SRCC, and RMSE of
the ML-predicted gas uptake and diffusivity in hMOFs, as
shown in Table S5. Figure 9a,b shows that the ML-predicted
He and H2 uptakes agree well with the corresponding
simulated uptakes. On the other hand, ML-predicted uptakes
of most hMOFs for CH4 and N2 (71 and 88% of all hMOFs,
respectively) are higher than the simulated uptakes, as shown
in Figure S11a,b. It is important to note that the ranges of
simulated He, H2, and CH4 uptakes of hMOFs are similar to
those predicted by ML models in MOFs (as shown in Figure
3), but the range of simulated N2 uptakes in hMOFs is
narrower than that in MOFs.

In Figure 9c,d, it is shown that for most of the hMOFs, the
ML-predicted He and H2 diffusivities are similar to the
simulated ones. The ML models consistently underestimated

Figure 8. Comparison of ML-predicted and simulated gas permeabilities with the available experimental data for (a) MOF membranes and (b)
MOF/polymer MMMs. Blue lines show the experimental gas permeabilities collected from the literature. The number of the blue lines on each
column represents the number of experimental data at (a) 1 bar, 298 K, for MOF membranes and (b) 0.5−5 bar, 298−308 K, for MOF/polymer
MMMs. The values in parentheses in panel (b) represent the volume fraction of MOF fillers. * (**) represents that the MOF was taken from the
test (training) set.
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the simulated gas diffusivities in a small number of hMOFs
exhibiting diffusivities above certain values (>4 × 10−3 cm2/s
for He diffusivities and >5 × 10−3 cm2/s for H2 diffusivities).
This can be attributed to the fact that the tree-based algorithm,
by construction, suffers from the extrapolation of unseen data.
In other words, they cannot reach the trends for cases lying
outside the training data.68 Similar results were observed for
the self-diffusivity predictions of N2 and CH4, as shown in
Figure S11c,d. Overall, these results showed that ML models
that we trained for MOFs can predict the gas uptake and
diffusivities of hMOFs fairly well, suggesting the transferability
of ML models to different membrane materials.

We finally investigated the applicability of ML models to
predict the gas permeability and selectivity of hMOF/polymer
MMMs. Since the lowest predictability power of ML models
were obtained for the MOF/polymer MMMs having highly
permeable polymers (previously shown in Figure 7a,b), we
focused on 1000 hMOF/polymer MMMs composed of 500
different hMOFs and 2 highly permeable polymers, TeflonAF-
2400 and PTMSP, for He/CH4 and H2/CH4 separations.
Figure 9e shows the ratio of the ML-predicted H2 (He)
permeability and H2/CH4 (He/CH4) selectivity of 500
hMOF/PTMSP (hMOF/TeflonAF-2400) MMMs to the
simulated ones. For He/CH4 separation, the ranges of these

Figure 9. Comparison of ML-predicted (a, c) uptake and (b, d) diffusivity for He and H2 in 500 hMOFs with the simulated ones. The black line
represents x = y. (e) The ratio of ML-predicted permeability and selectivity values to that of simulated ones for 1000 MMMs. The left (right) side
of the figure represents the results related to hMOF/PTMSP (hMOF/TeflonAF-2400) MMMs. Boxes show the quartiles of the data set, while
whiskers extend to show the rest of the distribution, except for outliers that were defined as values more than 1.5IQR (IQR = interquartile range)
from either end of the box.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.2c08977
ACS Appl. Mater. Interfaces 2022, 14, 32134−32148

32145

https://pubs.acs.org/doi/suppl/10.1021/acsami.2c08977/suppl_file/am2c08977_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.2c08977?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c08977?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c08977?fig=fig9&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.2c08977?fig=fig9&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.2c08977?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ratios for hMOF/Teflon MMMs were found to be between
0.85 and 1.1 for He permeability and 0.87 and 1.07 for He/
CH4 selectivity. Similarly, even if we studied one of the most
permeable polymers (PTMSP), the ratios were found to be
close to unity for H2 permeability (0.85−1.26) and H2/CH4
selectivity (0.73−1.07). Thus, we can conclude that the ML
models developed to predict the gas uptake and diffusivity of
MOFs lead to accurate gas permeability and selectivity
predictions for the unseen hMOF-based MMMs.

4. CONCLUSIONS
In this study, we investigated the gas separation performances
of MOF membranes and MOF/polymer MMMs by combining
molecular simulations and machine learning for six different
separations, He/H2, He/N2, He/CH4, H2/N2, H2/CH4, and
N2/CH4. Using 20 different physical and chemical and energy-
based descriptors of MOFs, we developed eight different ML
models including LassoLarsCV, ETR, GBR, and RFR
algorithms to predict the uptake and diffusivity of He, H2,
N2, and CH4 in MOFs. The accuracy of ML models was found
to be high for both the gas uptake and diffusion properties of
MOFs leading to an R2 of 0.73−0.99 and 0.65−0.80,
respectively, and an SRCC of 0.86−0.98 and 0.75−0.89,
respectively. The feature importance analysis revealed that the
physical properties such as porosity are more critical for the
accurate prediction of gas adsorption and diffusion data of
MOFs compared to the chemical descriptors such as atom
types and degree of unsaturation. ML-predicted gas uptake and
diffusivity data were used to compute He, H2, CH4, and N2
permeabilities of a total of 5249 MOF membranes and a total
of 31,494 MOF/polymer MMMs, and the results were shown
to be in good agreement with the permeabilities computed
from the simulations. Comparisons between the ML-predicted,
simulated, and experimentally reported gas permeabilities of
different MOF membranes and MOF/polymer MMMs
showed that our ML models will be very useful to estimate
gas separation performances of MOF-based membranes in a
rapid and accurate manner. Finally, the transferability of ML
models developed for real MOFs to hMOFs was examined and
results showed that ML models can successfully predict gas
permeabilities of hMOFs/polymer MMMs. Overall, the ML
models that we developed in this work to predict the gas
uptake and diffusion properties of MOFs will be very useful to
evaluate the gas separation performance of a large number and
variety of MOF membranes and MOF/polymer MMMs by
saving an enormous amount of computational time for
molecular simulations and huge amounts of efforts for the
experimental fabrication and testing of membranes. These
rapid and accurate models will also be beneficial for allocating
experimental efforts, resources, and time to the most promising
membrane materials.
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