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Abstract

Objective.—Noninvasive brain–computer interfaces (BCIs) assist paralyzed patients by 

providing access to the world without requiring surgical intervention. Prior work has suggested 

that EEG motor imagery based BCI can benefit from increased decoding accuracy through the 

application of deep learning methods, such as convolutional neural networks (CNNs).

Approach.—Here, we examine whether these improvements can generalize to practical scenarios 

such as continuous control tasks (as opposed to prior work reporting one classification per trial), 

whether valuable information remains latent outside of the motor cortex (as no prior work has 

compared full scalp coverage to motor only electrode montages), and the existing challenges to the 

practical implementation of deep-learning based continuous BCI control.

Main results.—We report that: (1) deep learning methods significantly increase offline 

performance compared to standard methods on an independent, large, and longitudinal online 

motor imagery BCI dataset with up to 4-classes and continuous 2D feedback; (2) our results 

suggest that a variety of neural biomarkers for BCI, including those outside the motor cortex, 

can be detected and used to improve performance through deep learning methods, and (3) tuning 

neural network output will be an important step in optimizing online BCI control, as we found 

the CNN models trained with full scalp EEG also significantly reduce the average trial length in a 

simulated online cursor control environment.

Significance.—This work demonstrates the benefits of CNNs classification during BCI control 

while providing evidence that electrode montage selection and the mapping of CNN output to 

device control will be important design choices in CNN based BCIs.
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1. Introduction

Those afflicted by paralysis resulting from stroke, trauma, and other neuromuscular 

disorders suffer from reduced quality of life (French et al 2010). The ability to noninvasively 

decode user intent in real time enables brain–computer interfaces (BCIs) to provide this 

population with alternative routes of communication and action (Vallabhaneni et al 2005, 

Yuan and He 2014, He et al 2020). Decoding requires the recording of neural signals, often 

through electroencephalography (EEG) due to its low cost, portability, and non-invasive 

nature. Various types of EEG based BCIs have been developed to detect different neural 

biomarkers, and each has their own benefits and drawbacks. BCIs based on exogenous 

stimulation—for instance, the P300 response (Mak et al 2011) and steady state evoked 

potentials (Chen et al 2015)—present the user with a display and use the visual system’s 

response to control a device. While these systems often work well, they require a visual 

display with pre-programmed options, making them unsuitable for practical continuous 

control. BCIs based on the endogenous modulation of brain rhythms—in response to motor 

imagery (Wolpaw and McFarland 2004), shifts in visual attention (Van Gerven and Jensen 

2009, Treder et al 2011, Tonin et al 2013), and manipulations of high level attention 

(Grosse-Wentrup and Schölkopf 2014)—are intuitive and provide continuous control, but 

may be more challenging to learn. Finally, some BCIs have been proposed which combine 

multiple biomarkers such as responses to both motor imagery and overt shifts in attention 

(Li et al 2010, Meng et al 2018).

One well-studied BCI method attempts to decipher motor imagery by recording 

sensorimotor rhythms (SMRs), which predictably change in response to real and imagined 

movements (Pfurtscheller and Neuper 2001, Vallabhaneni et al 2005, Yuan et al 2009, 

Yuan and He 2014). One of the most prominent SMRs is the mu rhythm, a characteristic 

biomarker of the motor cortex at rest, visible as oscillations in the alpha band over midline 

structures. When moving, or thinking about moving, the motor cortex is engaged, leading 

to reductions in the mu rhythm contralateral to the moved, or imagined, body part; this 

phenomenon is called event-related desynchronization (ERD). The reliability of ERD and its 

converse, event-related synchronization (increases in alpha power over the motor cortex 

during rest), can be used to control a BCI (Pfurtscheller and Lopes Da Silva 1999, 

Pfurtscheller and Neuper 2001). The intuitive and continuous nature of SMR-based BCIs 

enables the extension of the user through the control of virtual objects, drones, wheelchairs, 

and robotic arms (Wolpaw and McFarland 2004, Rebsamen et al 2010, Doud et al 2011, 

Huang et al 2012, Lafleur et al 2013, Meng et al 2016, Edelman et al 2019), and has further 

been shown to improve post-stroke outcomes when combined with physical therapy (Frolov 

et al 2017).
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To realize the full potential of SMR based BCIs, a deeper understanding of the nature of 

brain activity and user intent associated with specific BCI tasks is still required. This deficit 

is demonstrated by the extensive effort, in both time and resources, required to train users 

and by the highly variable post-training control quality, preventing the widespread clinical 

adoption of BCIs (Leeb et al 2013). At least 20% of users are unable to control SMR BCIs 

proficiently, even after extensive training. Furthermore, performance levels often fluctuate, 

making the safe use of robotic end effectors for daily activities difficult (Guger et al 2003). 

Why some users are unable to control the device and how to remedy this situation is 

currently unknown, although some psychological and electrophysiological factors correlate 

with initial BCI skill (such as higher resting alpha power) (Blankertz et al 2010, Hammer et 
al 2011, Ahn et al 2013b).

Further improvement in SMR based BCIs may be realized through the application of deep 

learning with neural networks. The promise of deep learning lies in its capacity for learning 

complex nonlinear patterns from the raw data (Craik et al 2019). Many recent studies have 

shown that neural networks are able to classify user intent from brain data with excellent 

accuracy (Schirrmeister et al 2017, Lu et al 2017a, Sakhavi et al 2018, Craik et al 2019) as 

well as improve the information transfer rate of BCI systems (Nagel et al 2019). However, 

many of these studies rely on the same public BCI competition datasets, or small data sets 

using simple trial structures, and therefore may not generalize well outside the datasets 

they were tested on (Jayaram and Barachant 2018). Most of these studies utilize the BCI 

Competition IV datasets 2a and 2b, which are comparatively small (9 subjects, 2–5 sessions) 

and simple (2a–4 class, no online feedback, 2b–2 class with online feedback, but only 3 

motor electrodes) (Tangermann et al 2012).

Craik et al provide a comprehensive review of the ongoing research in deep learning 

classification of EEG data (Craik et al 2019). In general, these studies can be distinguished 

by the type of data provided to the classification models or the type of deep learning 

architecture used for classification. The input data are usually either the signal voltage 

values (An et al 2014, Liu et al 2015, Kobler and Scherer 2017, Schirrmeister et al 2017, 

Tang et al 2017, Dose et al 2018) or calculated features based on the voltage values, 

typically in the form of frequency content (Sakhavi et al 2015, 2018, Tabar and Halici 2017, 

Yu and Song 2017, Lu et al 2017a, Abbas and Khan 2018, Chu et al 2018, Luo et al 2018, 

Wang et al 2018). Among deep learning approaches for motor imagery tasks, convolutional 

neural networks (CNNs) are by far the most common (Liu et al 2015, Sakhavi et al 2015, 

2018, Schirrmeister et al 2017, Tabar and Halici 2017, Tang et al 2017, Abbas and Khan 

2018, Dose et al 2018, Lawhern et al 2018, Craik et al 2019), followed by deep belief 

networks (An et al 2014, Kobler and Scherer 2017, Yu and Song 2017, Lu et al 2017a, Chu 

et al 2018), and a nontrivial number of recurrent neural networks as well (Luo et al 2018, 

Ma et al 2018, Wang et al 2018). However, most of these studies obtained their results from 

a limited number of participants (often fewer than 10 subjects) and fewer than 10 h of EEG 

data, greatly limiting the generalizability of their results (An et al 2014, Liu et al 2015, 

Sakhavi et al 2015, Tabar and Halici 2017, Tang et al 2017, Yu and Song 2017, Abbas and 

Khan 2018, Lawhern et al 2018, Luo et al 2018, Wang et al 2018).
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Finally, most deep learning BCI classification studies have relied on a uniform trial structure 

and utilized the entire trial for classifications, which is not suitable for continuous BCI 

control (e.g. classifying a 2 s trial of motor imagery as ‘left’ rather than continually updating 

a cursor position in response to a prediction signal) (Wolpaw and McFarland 2004). While 

online deep-learning BCI systems have been recently developed, these systems have yet to 

demonstrate continuous feedback control (Tayeb et al 2019, Jeong et al 2020). For example 

in Tayeb et al 20 subjects performed two class motor imagery (left hand, right hand) and at 

the end of the trial, a robotic arm was moved in the direction classified by the system. Jeong 

et al developed a system closer to continuous control using a moving window approach 

where 15 subjects performed 6 class motor imagery (imagine the right hand moving left, 

right, up, down, forward, and backward). Sliding windows of 4 s were updated every 0.5 s, 

and classifier output values were averaged over 3 successive windows and the direction with 

the highest average probability over these windows was selected as an output command for 

a robotic arm. Unfortunately knowing a desired direction of movement is not the same as 

fluidly moving an external device through space (Edelman et al 2019). Therefore, rigorous 

validation of previous methods and methodological extensions suitable for online continuous 

control are needed to aid the development of online BCI systems using deep learning 

classification.

This work addresses two questions that need to be answered before the utility of deep 

learning decoding in BCI systems can be fully established: (1) Does deep learning generally 

improve BCI classification, and if so, how? (2) How do we bridge the gap between offline 

and single decision BCI classification studies and online continuous control BCIs based on 

deep learning classification? We address the generalizability of deep learning classification 

systems by (1) validating prior work on a new larger, more complex, and more challenging 

dataset, and (2) assessing the capacity for a generalized MI intent model designed to be 

applied to numerous control output strategies, compared to training one model per unique 

control task, affording significantly more flexibility in eventual practical BCI deployment. 

Furthermore, we demonstrate that deep learning systems can improve classification accuracy 

by better discerning and representing multi-variate, independent control signals in higher 

dimensional data (deep learning models provided with more information outside of the 

motor cortex displayed better performance while providing this information to standard 

methods showed little effect). We also highlight that translating neural network output into 

device commands will be an important step in bridging the gap between offline classification 

studies and online BCI control devices. We show how BCI operation can be improved by 

tuning cursor speed in a simulated online environment and specifically demonstrate that 

deep learning models trained with full scalp EEG coverage far exceed motor cortex specific 

deep learning models when this calibration step is performed optimally.

We recently collected, to our knowledge, the largest motor imagery BCI dataset ever 

recorded (in terms of total recording time; e.g. roughly 950% larger than the BCI 

competition datasets 2a and 2b combined) which includes 76 subjects and up to 11 sessions 

of online, continuous BCI control (Cho et al 2017, Kaya et al 2018, Stieger et al 2020). 

In each session, participants performed 300 trials of up to four class motor imagery in 

center-out cursor tasks with online feedback. Factors, besides size, that separate our dataset 

from those examined previously include: (1) the recording of full scalp coverage (62 
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channel) EEG, (2) varying trial structure (i.e. trials vary in length between 0.5 and 6 s 

rather than a uniform duration of 2 or 4 s), and (3) continuously updated online feedback 

in 1D and 2D (i.e. feedback was updated every 40 ms). Performance in this study was 

quantified based on (1) cursor proximity analysis (how close could classification models 

place a virtual cursor to an intended target) and (2) simulated metrics of online performance 

(e.g. cursor speed/trial length). Validating deep learning methods on this dataset presents a 

unique opportunity to study how neural networks classify individuals’ brain data from the 

population at large, under challenging conditions (such as four class, center-out, continuous 

control with varying trial structure), and additionally represents the first assessment of how 

neural net classification accuracy changes based on the inclusion of all electrodes provided 

by full scalp coverage EEG.

2. Materials and methods

2.1. Dataset

During the BCI tasks, users attempted to move a virtual cursor outwards from the center 

of the screen to one of four targets placed at the cardinal positions (Top, Bottom, Left and 

Right). Participants were instructed to imagine their left (right) hand opening and closing to 

move the cursor left (right), imagine both hands opening and closing to move the cursor up 

and finally, rest, to move the cursor down. In separate blocks of trials, participants drove the 

cursor toward a target that required left/right (LR) movement only, up/down (UD) only, and 

combined 2D movement (2D). BCI experiments consisted of three runs of the LR, UD, and 

2D tasks (each with 25 trials), a short break, and an additional block of three runs of each 

task. Runs were broken into individual trials which included pre and post inter-trial intervals 

(2 s each), a cuing period where only the target was presented (2 s), and up to 6 s where 

the participant was provided feedback and attempted to control the cursor (0.04–6 s). Only 

the feedback portion of trials was used for classification. Trials longer than 6 s were aborted 

with the closest target to the current cursor position selected as the intended target.

All experiments were approved by the institutional review boards of the University of 

Minnesota and Carnegie Mellon University (Stieger et al 2020), with the clinical trial 

registration number NCT03221374. In total, 144 participants were enrolled in the study 

and 76 participants completed all experimental requirements. Seventy-two participants were 

assigned to each intervention by block randomization, with 42 participants completing 

all sessions in the experimental group (MBSR before BCI training; MBSR subjects) and 

34 completing experimentation in the control group. Four subjects were excluded from 

the analysis due to non-compliance with the task demands and one was excluded due to 

experimenter error. We were primarily interested in how individuals learn to control BCIs, 

therefore analysis focused on those that did not demonstrate ceiling performance in the 

baseline BCI assessment (accuracy above 90% in 1D control). The dataset presented here 

is now publically available and describes data collected from 62 participants: 33 MBSR 

participants (age = 42 ± 15, (F)emale = 26) and 29 controls (age = 36 ± 13, F = 23) (Stieger 

et al 2021).

BCI experiments were conducted in BCI2000 (Schalk et al 2004). Online control of the 

cursor proceeded in a series of steps. The first step, feature extraction, consisted of spatial 
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filtering and spectrum estimation. During spatial filtering, the average signal of the four 

electrodes surrounding the hand knob of the motor cortex was subtracted from electrodes 

C3 and C4 to reduce the spatial noise. Following spatial filtering, the power spectrum was 

estimated by fitting an autoregressive model of order 16 to the most recent 160 ms of data 

using the maximum entropy method. The goal of this method is to find the coefficients of a 

linear all-pole filter that, when applied to white noise, reproduces the data’s spectrum. The 

main advantage of this method is that it produces high frequency resolution estimates for 

short segments of data. The parameters are found by minimizing (through least squares) the 

forward and backward prediction errors on the input data subject to the constraint that the 

filter used for estimation shares the same autocorrelation sequence as the input data. Thus, 

the estimated power spectrum directly corresponds to this filter’s transfer function divided 

by the signal’s total power. Numerical integration was then used to find the power within a 3 

Hz bin centered within the alpha rhythm (12 Hz).

The translation algorithm, the next step in the pipeline, then translated the user’s alpha 

power into cursor movement. Horizontal motion was controlled by lateralized alpha power 

(C4 − C3) and vertical motion was controlled by up and down regulating total alpha power 

(C4 + C3). These control signals were normalized to zero mean and unit variance across 

time by subtracting the signals’ mean and dividing by its standard deviation. A balanced 

estimate of the mean and standard deviation of the horizontal and vertical control signals 

was calculated by estimating these values across time from data derived from 30 s buffers 

of individual trial type (e.g. the normalized control signal should be positive for right trials 

and negative for left trials, but the average of left and right trials should be zero). Finally, the 

normalized control signals were used to update the position of the cursor every 40 ms.

EEG data were bandpass filtered between 1 and 100 Hz, and then down-sampled from 1 

kHz to 250 Hz. Noisy channels, identified through visual inspection, were replaced by local 

weighted averages interpolated through spherical splines (Delorme and Makeig 2004, Ferree 

2006). The data were rereferenced to a common average. Ocular artifacts were removed 

using independent component analysis and a template matching procedure. Trials shorter 

than the minimum window length were removed (Stieger et al 2020).

2.2. Filter bank common spatial patterns

As a control comparison, models were initially fit using the filter-bank common spatial 

patterns (FBCSP, abbreviated CSP in figures) algorithm which has performed well on the 

BCI competition datasets (Ang et al 2008). We used the implementation available in the 

MOABB toolbox (Jayaram and Barachant 2018). The MOABB toolbox was designed to 

permit easy benchmarking of BCI algorithms. We first bandpass filtered the EEG data 

into nine bands, each with a 4 Hz width, between 4 and 40 Hz. Covariance matrices 

were estimated for the 500 ms windows (Barachant et al 2012), and CSP extracted four 

filters from each band based on these covariance matrices (Guger et al 2000). The data 

were standardized, then the 10 best features were selected based on mutual information 

(Pedregosa et al 2011). Finally a support vector machine was trained to classify future BCI 

data windows (Cortes and Vapnik 1995). To validate this implementation, we compared 

the accuracies of this FBCSP algorithm to those published in the literature for the same 
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BCI competition IV dataset 2a (Sakhavi et al 2015, Schirrmeister et al 2017). This 

implementation (71.18%) showed very similar performance when compared to the accuracy 

reported in Schirrmeister et al (67.59%) and Sakhavi et al (66.67% P > 0.7 Wilcoxon 

signed-rank test). This underlines that our FBCSP implementation, including our feature 

selection and filter bank design, indeed was a suitable baseline for the evaluation of our 

CNN decoding accuracies.

2.3. CNN models

Convolutional neural network (CNN) models were trained using the brain_decode package 

(version 0.4.85) in python, specifically using the shallow CNN architecture (Schirrmeister 

et al 2017). In the original paper, the authors propose two architectures for classifying 

2 s trials of motor imagery EEG data, one shallow with only a few layers of neurons, 

and one deep with many more layers of neurons. In this work, we trained the shallow 

network with sliding windows of EEG data recorded during online BCI tasks. Briefly, in this 

architecture, the first two layers perform a temporal convolution and a spatial filter followed 

by a squaring nonlinearity, mean pooling layer, and a logarithmic activation function (figure 

1). Two types of models were trained based on the data provided. ‘Motor Models’ were 

trained using the same motor cortex electrode montage as the online BCI experiments, 

namely the small spatial Laplacians surrounding C3 and C4. ‘All Models’ were trained 

using all available electrodes (62, total scalp coverage). Due to both variable trial structure 

and in order to directly compare with the online classification, we used the recommended 

default time window length from BCI2000 of 500 ms, with classification occurring every 

40 ms. To compare this output to the classification of the online system in the 1D case, 

non-valid classes were removed from the CNN predictions after classification (e.g. in the 

LR task the classification output for up/down trials was set to zero). Activation functions 

were exponential linear units. Electrode-wise exponential moving standardization with a 

decay factor of 0.999 was used to compute exponential moving means and variances 

for each channel and standardize the continuous data (Schirrmeister et al 2017). CNN 

models were trained using the Extreme Science and Engineering Discovery Environment 

(XSEDE), which is supported by National Science Foundation grant number ACI-1548562. 

Specifically, it used the Bridges system, which is supported by NSF award number 

ACI-1445606, at the Pittsburgh Supercomputing Center (PSC) (Towns et al 2014, Nystrom 

et al 2015).

2.4. Model training

The model training employed was used to test the generalizability of BCI decoding models. 

During online control with BCI 2000, participants controlled the cursor during three 

different tasks. Left-right (LR) control only comparing left and right hand motor imagery, 

up-down (UD) control only comparing motor imagery of both hands to resting and 2D 

control which combined these strategies. Decoding models were trained on all three tasks 

(with one model trained per session) to determine whether a single model could accurately 

classify brain data from these diverse, but related tasks. In order to emulate BCI experiments 

in which BCI decoding could be used in an online setting after calibration, models were 

trained on 500 ms windows of data. One classification was made every 40 ms, and a 

virtual cursor was updated with each classification, therefore classifications compounded in 
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a continuous way, unlike previous models where output only occurred every second or two 

(Tayeb et al 2019, Jeong et al 2020). Models were trained for each session using the first 

two runs in a given block and the last run in each block for testing (i.e. each participant 

completed six runs of each task per day; runs 1, 2, 4, and 5 were used for training and runs 

3 and 6 were used for testing). Participants took a short break between runs 1–3 and 4–6, 

which created a natural opportunity to break up the data. Accuracy was initially assessed 

in a continuous fashion by measuring the average distance to the target. Then discrete 

metrics such as average trial length were derived based on the optimum cursor speed that 

produced the minimum average distance to the target. Two different types of models were 

trained for each session. The first model (CSP-Motor, CNN-motor—10 electrodes) used 

only the electrodes over the motor cortex (C3/C4 each surrounded by the four electrodes that 

formed the small Laplacian filter for online control), while the second included all available 

electrodes for training and testing (CSP-All, CNN-All—62 electrodes).

Batch normalization and dropout were used during the training of CNN models. Adam 

optimization was used to perform stochastic gradient descent (Kingma and Ba 2015). A 

training termination strategy was utilized that occurs in two steps. First, the training data 

was further segmented into minor training and validation subsets. During this phase, model 

training would terminate when validation accuracy ceased to improve over a predefined 

number of epochs (Schirrmeister et al 2017). Then, training continued to update the model 

in the second phase, on the combined training and validation fold, i.e. the entire training set, 

beginning with the best of the best parameter values determined in phase one. Training ends 

when the loss function is equivalent between the two training phases, resulting in a variable 

number of model training epochs across participants.

2.5. Electrophysiological analysis

Feature importance maps were calculated with the input-perturbation network-prediction 

correlation method (Schirrmeister et al 2017). These maps were created to investigate the 

causal effect of changes in EEG power on the trained CNN models. Initially, all 500 ms 

windows were transformed to the frequency domain by a Fourier transform. Then the 

power amplitudes were randomly perturbed by adding Gaussian noise (with mean 0 and 

variance 1) to their original values while leaving phase unperturbed. These trials were 

then transformed back to the time domain via an inverse Fourier transform. Predictions 

were made by the trained CNN models before and after the perturbations. This procedure 

was repeated 400 times, then the change in input amplitudes (the added noise) and the 

change in CNN predictions was examined in a correlation analysis. Feature importance 

maps were calculated only for the final three sessions when learning was assumed to have 

plateaued, then averaged for each subject. A cluster-based permutation test statistic was used 

to assess group differences in feature importance maps for each target condition (Maris and 

Oostenveld 2007, Oostenveld et al 2011).

2.6. Statistics

Most data displayed significant deviations from normality and were therefore fit with a rank 

based analysis of linear models using the Rfit package (0.23.0) as a robust alternative to 

least squares (RAOV) (Kloke and McKean 2012). Metrics were fit in 2 × 2 designs with 
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model type (4 Levels: CSP-All, CSP-Motor, CNN-All, CNN-Motor) vs. session (11 levels). 

Average one-way comparisons across models were fit with Wald tests. Significant findings 

were followed by independent post-hoc tests to aid inference. All post-hoc inferences were 

two-sided at a Holm-Bonferroni corrected alpha level of 0.05 (0.025 per side).

3. Results

3.1. CNN model predictions outperform standard filter bank common spatial pattern 
methods

Deep learning with CNNs was found to significantly improve the probability of correct 

class membership (note: ‘probability’ is used to describe the softmax output of decoding 

models for convenience, these models may not represent actual probabilities (Guo et al 
2017)). To begin, models output a softmax probability estimate for each window of data 

within a trial. The ‘probability’ values were averaged across all 40 ms intervals for the 

target class across each trial (e.g. all ‘left’ probabilities averaged across all windows in 

‘left’ trials) and then averaged across the trials in a given session. In this way, higher 

values of correct class membership would lead to greater cursor movement in the intended 

target direction. Figure 2(A) displays the probability of correct class membership output 

by the models that were trained on the online BCI data as participants learned to control 

the device. By examining performance in each task across participant training sessions, two 

facts become apparent. First, CNN decoding outperforms FBCSP decoding across all tasks 

examined and this improvement in BCI classification accuracy is maintained across all tasks 

and all sessions. Second, as participants learn to produce better motor imagery (and brain 

signals), the CNNs are able to discern this improvement, which is evinced by increases in 

classification accuracy over time. In other words, as participants get better at controlling the 

online BCI the offline decoding performance also increases.

The different decoding methods differed significantly in their performance. When modeling 

the probability of correct class membership over time, a main effect of model type 

was found (figure 2(A), F1, 3 = 198.66, P < 0.00001; supplementary table S1 (available 

online at stacks.iop.org/JNE/18/046082/mmedia)). Post-hoc tests revealed that the use of all 

electrodes in CNN models significantly improved classification accuracy compared to motor 

exclusive CNN models (+0.06, Wilcoxon rank sum (WRS) test: Z = 2.63, P = 0.009). CNN 

models using only the motor electrodes also displayed significant improvements compared 

to the FBCSP motor models (+0.04, WRS: Z = 3.66, P = 0.0003). No difference was 

observed between the different types of FBCSP models (−0.01, WRS: Z = −1.14, P = 0.26).

3.2. Using estimated class probability as a control signal highlights the merit of CNN 
classification

One important aspect of SMR-BCI is its continuous control; therefore, attempts were made 

to emulate online control with the output of the CNN models. In BCI2000 (and standard 

cursor control tasks), the magnitude of cursor movement is determined by the strength of the 

chosen control signal (originally as normalized differences in alpha power over the motor 

cortex; hence larger differences in alpha power would lead to larger cursor movements). 

We simulated continuous control using the estimated class probability output by the CNN 
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and FBCSP models (i.e. one prediction for each 40 ms interval), such that when a model 

was more confident in its decisions, the cursor could be moved further in a simulated 

environment.

A simulated cursor control environment was created to examine the effects of deep learning 

classification on continuous BCI control where a virtual cursor was moved in a 2D plane 

similar to the feedback provided to participants during online control. For each EEG data 

window, a simulated cursor was moved in the direction of, and in direct proportion to, the 

highest class probability output by the decoding models. In the same manner as online BCI 

control, left and right (as well as up and down) decisions were given opposite signs such 

that if two consecutive decisions were 0.65 probability right, then 0.65 probability left, these 

decisions would cancel (however, unlike online control, motion was restricted to a single 

axis per time window). The distance between the cursor position (the summed probability 

signal) and the intended target was measured for each trial. If this summed signal crossed a 

threshold in one direction, a trial level classification was made and the remaining trial data 

was discarded (i.e. the minimum distance was recorded if the correct target was selected 

or the maximum distance was recorded if a non-target was selected). If this threshold was 

not reached by the end of the trial data, the final cursor position was used to measure this 

distance. The distance units were arbitrary but based on BCI 2000’s screen width parameter 

of 4095.

CNN based decoding models were shown to significantly reduce the average distance 

to the target in a simulated cursor control environment. Figure 3(A) displays a receiver-

operating-characteristic curve plotting the average target distance against the cursor speed. 

The x-axis of figure 3(A) can be thought of as a gain parameter that multiplies the model 

classification outputs. Slower cursors have a smaller gain factor, so they tend to be unable 

to leave the center of the screen. Increasing the cursor speed (and the magnitude of the gain 

factor) reduces the average distance to the target, but only up to a certain point. When the 

cursor speed exceeds the optimum value, the cursor becomes erratic, which leads to greater 

distance from the intended target. In practice this means that each classification decision 

has a greater weight in the eventual trial outcome. While accurate classifications rapidly 

move the cursor closer to the target, inaccurate decisions allow for little time for behavioral 

or decoding correction. If the cursor is moving too fast, the weight of a particularly poor 

decision could place the cursor on the opposite side of the screen, or worse, lead to the 

contact of an inappropriate target, terminating the trial. When comparing the area under 

the curve for these models, a Wald test rejected the null hypothesis that model type had 

no effect on rank (Wald = 145.44, P < 0.00001; supplementary table S2). Significant 

reductions in average target distance were observed for each successive model type. CSP-All 

vs CSP-Motor (+1.37 × 105, WRS: Z = 2.58, P = 0.01), CSP-Motor vs CNN-Motor (+3.10 × 

105, WRS: Z = 4.83, P < 0.00001), CNN-Motor vs CNN-All (+1.48 × 105, WRS: Z = 2.41, 

P = 0.016). These results suggest that on average across all operation points of cursor speed: 

(1) CNN models tend to outperform FBCSP models and (2) CNN models trained with full 

scalp EEG tend to outperform those trained with only the electrodes over the motor cortex.
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3.3. CNN models with full scalp EEG coverage preferentially benefit BCI low-performing 
participants

When examining the relationship between online BCI performance and offline decoding 

accuracy, it was found that the use of CNN Models preferentially benefitted participants 

that struggled with online control. A significant positive correlation was found between 

online accuracy and all classification models, indicating that if participants produced better 

linearly classifiable signals, higher classification accuracy could be expected from the offline 

decoding methods (figure 4(A); CSP-All: r62 = 0.71, P < 0.00001; CSP-Motor: r62 = 0.82, 

P < 0.00001, CNN-All: r62 = 0.73, P < 0.00001; CNN-Motor: r62 = 0.82, P < 0.00001). 

A significant negative correlation was found between online BCI performance and the 

difference between offline and online BCI performance for all models except CNN-Motor 

(figure 4(B); CSP-All: r62 = −0.78, P < 0.00001; CSP-Motor: r62 = −0.41, P = 0.0008, 

CNN-All: r62 = −0.43, P = 0.0004; CNN-Motor: r62 = 0.24, P = −0.06). This suggests that, 

on average, the worse a participant performed during the standard online SMR-based BCI, 

the more benefit could be expected from using full scalp EEG CNN classification. Finally, 

the improvement in classification accuracy when using all electrodes to train models, vs 

just motor electrodes, displayed a significant negative correlation with online performance, 

indicating that even though these participants may not display the expected motor correlates 

of motor imagery, deep learning methods were able to find valuable information outside the 

motor cortex to aid in classification (figure 4(C); CNN Models r62 = −0.50, P = 0.0004, CSP 

Models r62 = −0.57, P < 0.00001). One cautionary note is that the one generalized FBCSP 

model trained on all tasks performed worse than the online BCI 2000 decoding which used 

3 separate models (this is shown by the positive values of change in average target distance 

in figures 4(B) and (C)—see discussion). The negative correlations in this context mean that 

the detriment caused by using the generalizable FBCSP models is less severe for poorly 

performing subjects.

In these figures, larger y-values represent greater errors. In general, FBCSP classification 

errors are greater when using full scalp coverage compared to motor cortex specific 

montages. This trend is reversed in the case of CNN classification: the use of full scalp 

coverage reduces errors compared motor cortex specific montages. We see in the middle 

panel (4B) that participants who excelled in standard BCI2000 control displayed greater 

classification error when fitting one FBCSP model to the three separate tasks, but that 

participants who initially performed poorly during online control are benefitted by the use 

of FBCSP classification. The trend is the same for CNN classifiers: good performers in the 

online context are slightly benefitted by CNN classification, but the poor performers show 

greater reductions of errors. Finally, in the last panel (4C), participants who excelled in 

standard SMR BCI control had better performance in FBCSP models trained with motor 

montages (i.e. FBCSP models with full scalp coverage had higher error compared to FBCSP 

models trained with only motor cortex information; suggesting that the additional electrodes 

introduced unnecessary noise into the system), while participants who had little control 

over their motor cortex mu rhythm received a slight benefit from using full scalp coverage 

to train their models. Again, the trend is the same in CNN models, but the interpretation 

is slightly different. Participants who excelled in standard BCI control saw roughly the 

same performance (or slightly worse) when using models trained with full scalp coverage 
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(because most of their distinguishing EEG features are over the motor cortex anyway), but 

the participants who could not control their SMRs well were greatly benefitted by the full 

scalp montages.

3.4. CNN models maintain advantage when cursor speed is optimized

CNN models trained with full scalp EEG were found to result in the shortest trial lengths. 

We attempted to find the point of optimal speed-accuracy tradeoff in our decoding models 

by finding the cursor speed that produced the smallest average target distance for each 

model. From the ROC curves above (figure 3(A)) we found the cursor speed that minimized 

the average trial length for each model type. Then we used the model classification 

output to control a cursor in a simulated environment using the gain factor (cursor speed) 

found above. The trial length was determined by how long the cursor was ‘active’ in this 

environment. In other words, if the cursor contacted a target, the new trial length was set 

as the time point when this event occurred and the rest of the brain data for a given trial 

was discarded. At this threshold, a Wald test rejected the null hypothesis that all model 

types produced the same trial length (Figure 5, Wald = 62.30, P < 0.00001; supplementary 

table S3). A significant reduction in average trial length was observed when comparing 

CNN models trained with full scalp EEG compared to the motor montage: CNN-All vs 

CNN-Motor (−0.42 s, WRS: Z = −5.55, P < 0.00001). No other differences in average 

trial length were observed: CSP-All vs CSP-Motor (0.0 s, WRS: Z = −0.44, P = 0.65), 

CSP-Motor vs CNN-Motor (−0.02 s, WRS: Z = 0.39, P = 0.69).

3.5. Feature importance maps suggest CNNs Utilize motor and non-motor biomarkers for 
SMR-BCI classification

The feature maps calculated with the input-perturbation network-prediction correlation 

approach (see section 2.3) revealed that both motor and non-motor biomarkers were utilized 

in the CNN Models’ predictions (figure 6). Cluster based permutation tests were used 

to compare the feature importance maps for each target against the feature importance 

maps for the other targets (while holding the frequency band fixed) in order to discover 

statistical regularities in the derived CNN biomarkers for each class condition. The bands 

examined were (upper) alpha (10–14 Hz), beta (16–28 Hz), and gamma (28–58 Hz). 

In total, 26 clusters were identified and all clusters displayed a significance level lower 

than the Bonferroni threshold for multiple comparisons (P < 0.0042) (see supplementary 

figure S2, supplementary table S4). Right hand motor imagery was associated with patterns 

of contralateral motor and ipsilateral occipital desynchronization in the alpha and beta 

bands with a unique ipsilateral fronto-tempolar gamma response. Left hand motor imagery 

displayed the same pattern mirrored over the midline. Motor imagery of both hands 

correlated with motor and occipital desynchronization across all bands as well as with 

frontal beta synchronization. Resting was associated with alpha and beta synchronization 

over the motor cortex as well as frontal beta and frontal/temporal gamma desynchronization.

4. Discussion

In this work, we have demonstrated that deep learning methods are able to significantly 

improve classification performance compared to conventional methods in SMR based BCI 
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tasks. This improvement was found to disproportionately benefit the participants who 

struggled the most with BCI control, suggesting the use of CNN classification in BCI could 

potentially address the problem of BCI inefficiency. The use of high density EEG was shown 

to significantly improve the theoretical speed of operation and accuracy when compared 

to models utilizing information derived from traditional ‘motor only’ electrode montages. 

Finally, novel combinations of BCI features were identified in addition to standard SMRs, 

such as occipital features and frontal gamma power, indicating deep learning models 

may derive useful information from outside the motor cortex when classifying EEG data 

collected during online SMR MI BCI control with continuous feedback.

Recent research demonstrating improved classification accuracy through the use of deep 

learning methods was extended here in a large and longitudinal BCI dataset. Most of the 

recent work in applying neural networks to SMR based BCI has focused on the development 

of various architectures and algorithms while testing them on standard benchmark, or in-

house, datasets (Tangermann et al 2012, Schirrmeister et al 2017, Lu et al 2017a, Lawhern 

et al 2018, Sakhavi et al 2018, Wang et al 2018), though some have recently begun to 

validate these methods on their own datasets in online scenarios (Tayeb et al 2019, Jeong 

et al 2020). Here, we have shown that deep learning with CNNs can significantly increase 

classification performance on an independent, large, and longitudinal dataset, thus validating 

the generalizability of these methods. We additionally demonstrate that these methods are 

able to produce improved performance compared to conventional methods in scenarios 

suitable for continuous SMR based control, as opposed to prior work that produced one 

classification per uniform 2 or 4 s trials (Schirrmeister et al 2017, Lu et al 2017a, Lawhern et 
al 2018, Sakhavi et al 2018, Wang et al 2018).

The inability of a significant proportion of the population to control standard BCIs, even 

after extensive training, has historically limited the clinical adoption of BCI technology 

(Leeb et al 2013). However, the use of CNN models in BCI systems could potentially 

remedy this situation as the improvement in classification accuracy through the use of deep 

learning methods was discovered to be greatest in this challenged population. This finding 

may lend credence to the future clinical viability of BCIs as BCI decoding technology 

develops (Guger et al 2017). Those with poorer initial BCI performance additionally 

displayed a greater benefit from the inclusion of extra-motor electrodes in this offline 

classification study, suggesting high-density EEG may be more important for end-users. 

Most prior work has focused on classification which uses electrodes only over the motor 

cortex, with some claiming the inclusion of all electrodes for BCI classification was found to 

lead to worse accuracies than those over the motor cortex alone (Schirrmeister et al 2017), 

therefore future work is needed to reconcile these discrepant findings.

BCI control makes use of a distributed network of interacting brain structures that participate 

in motor imagery, maintenance of task demands, attention, awareness of feedback, and 

reward processing (Sitaram et al 2017). As predicted, characteristic motor cortex dependent 

patterns of motor imagery within the alpha band, which additionally extended into the beta 

band, were found in the feature importance maps, demonstrating CNNs are able to find 

subject specific SMRs.
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The alpha rhythm, and indeed performance in SMR BCIs, has been shown to be related 

to gamma band activity, especially in the frontal regions (Grosse-Wentrup et al 2011, 

Grosse-Wentrup and Schölkopf 2012, 2014, Ahn et al 2013a). This frontal gamma signal 

was found to play an important role in CNN models, and, of particular note, its absence 

was a prominent biomarker of the rest condition where motor imagery was not performed. 

However, these maps additionally suggest that CNN models utilize non-motor related 

features in their decisions, such as occipital signals.

Parietal/occipital attention signals have been used to develop various BCI techniques such 

as overt and covert spatial attention (Van Gerven and Jensen 2009, Bahramisharif et al 
2010, Treder et al 2011, Tonin et al 2013, Meng et al 2018). While these studies focus 

on synchronization of the alpha rhythm subsequent to shifting attention, their results also 

indicate there is a pattern of mid-frequency desynchronization during the initial shifting 

period (Van Gerven and Jensen 2009, Treder et al 2011). Ipsilateral occipital alpha and beta 

desynchronization were found to be significantly correlated with CNN model predictions, 

which alludes to a pattern of orienting to the target while covertly attending to the cursor 

(opposite that of covert attention paradigms of orienting to the center of the screen while 

covertly attending to the periphery) (Van Gerven and Jensen 2009, Bahramisharif et al 
2010).

While the group-averaged feature importance maps include all of the aforementioned 

biomarkers, individual models may rely on a subset of these biomarkers, or even unique 

features that do not appear when examining BCI data from the group level. One advantage 

of CNN classification of BCI signals is the ability of these models to detect reliable 

biomarkers at the individual, rather than the group, level. It is this specificity which 

might explain why subjects who did not fit the ‘standard’ BCI model had the greatest 

improvements in classification accuracy. As evidenced here, future probing of these deep-

learning models might serve to discover relationships between subject populations and 

biomarkers leading to novel neuroscientific findings, such as when are these occipital and 

frontal gamma features are in operation, which subjects display them most prominently, and 

whether they can be trained or enhanced.

One limitation of this study may be the sub-optimal performance of the FBCSP algorithm 

on our dataset. We believe the implementation of this algorithm was appropriate because (1) 

the code was published in the MOABB toolbox and validated on various datasets (Jayaram 

and Barachant 2018) and (2) it produced comparable results on the BCI competition dataset 

to other work in the field (Sakhavi et al 2015, Schirrmeister et al 2017). The authors of 

the MOABB toolbox mention no one algorithm out-performs all others on all datasets, 

so FBCSP may not be optimal for our dataset (Jayaram and Barachant 2018). Common 

spatial patterns may be a technique that requires additional calibration to each individual 

and each dataset (Guger et al 2000, Ang et al 2008, Blankertz et al 2008, Wu et al 2013). 

One advantage of CNNs is they learn features from raw data, so they may perform better 

when compared to other techniques that require further calibration (Craik et al 2019). 

Additionally, the poorer performance of FBCSP when compared to CNN classification may 

have occurred because we trained one model per session across three different, though 

similar tasks. This difference may provide evidence that CNN models generalize across 
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tasks better than conventional methods, which is called transfer learning in some contexts 

(Volker et al 2018). FBCSP was chosen as the main benchmark in this study because 

it is a well-established and the well compared method that utilizes both a training and 

testing phase. We note other CNN architectures have out-performed the shallow network of 

Schirrmeister et al on limited datasets (Lawhern et al 2018, Sakhavi et al 2018) and a study 

designed to review the current state-of-the-art would have included a comparison of these 

architectures. However, our main goals were not to find the best deep learning architecture, 

but rather to (1) demonstrate the ability of deep learning methods to generalize to continuous 

BCI tasks and large populations and (2) discuss concerns that future online continuous BCI 

systems will need to address for practical deployment. Since our dataset is now publicly 

available, we invite the reader to test their algorithms and architectures on this large and rich 

database (Stieger et al 2021).

The significant increases in decoding performance suggest future BCIs using CNN 

classification could be controlled with finer precision, however the robustness of the control 

signal—as opposed to its precision—may lead to greater practical advantages. We found that 

CNN models trained with full scalp EEG displayed the greatest probability of correct class 

membership when compared to the other models examined. This meant that for each time 

step of 40 ms, a cursor could be moved farther towards a target in a simulated environment. 

We indeed found that CNN models trained with full scalp EEG resulted in the minimum 

average distance to targets across all examined cursor speeds. An unintended consequence 

of this finding was that when we found the optimal speed-accuracy tradeoff for these 

models, the CNN models trained with full scalp EEG also resulted in the minimum trial 

length. We believe this occurred because the greater probability of correct class membership, 

compounded every 40 ms, led to target selection with fewer time steps.

Challenges still exist when translating CNN BCIs from offline classification analyses to 

online systems. One limitation of this study is that, while we believe it represents one 

of the most complex classification studies conducted, these analyses were still performed 

offline. In online experiments, training data may not be available beforehand, or if it was 

collected prior to BCI use, the training of models within an experimental session would take 

a prohibitive amount of time. Future work will be needed to assess how well models trained 

in one session transfer to future sessions (Fahimi et al 2019). Additionally, neural networks 

often require long training times themselves, so there is a need to devise systems that are 

able to adapt in an online fashion (Schwemmer et al 2018). For example, variable electrode 

placement may compromise the accuracy of models trained in previous sessions, which is 

a hindrance not present in static, invasive systems (Schwemmer et al 2018). Recently, the 

feasibility of online BCI systems using deep learning classification has been demonstrated 

(Tayeb et al 2019, Jeong et al 2020), however more work is needed to create noninvasive 

deep learning BCIs that provide continuous control. BCI is a skill that the user and system 

acquire together, and it is currently unclear how neural networks will adapt to changes in a 

user’s control strategy as it develops (Vansteensel et al 2016, Perdikis et al 2018).
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5. Conclusions

In conclusion, we have demonstrated that deep-learning based classification and high 

density EEG are important tools for increasing BCI efficiency. CNN models are shown 

to significantly increase the performance of motor imagery decoding models on a large 

BCI dataset when compared to conventional methods. This improvement is found to have 

the greatest benefit in the most challenged subset of the population, namely those that 

struggle with standard BCI control, suggesting deep learning in BCI systems may have 

the greatest impact on end-users in the locked-in state (Kübler and Birbaumer 2008, De 

Massari et al 2013, Grosse-Wentrup and Schölkopf 2014). BCI inefficient participants were 

again discovered to disproportionately benefit from the use of full scalp EEG coverage. 

Further, leveraging the output of these models in a simulated cursor control environment 

demonstrated that the additional information provided by high-density EEG could increase 

both the accuracy (minimize the average target distance) and the objective speed of 

operation (minimize the average trial length). This benefit may be in-part due to the variety 

of reliable correlates of BCI control, in addition to the SMR (such as an occipital and frontal 

gamma signals) that may be learned. These findings additionally suggest that valuable 

information may remain latent within EEG recordings (Nagel et al 2019). Future work 

developing BCI systems with online classification using CNN models may lead to the 

widespread clinical adoption of this technology and aid those suffering with paralysis by 

restoring their agency and access to the world.
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Figure 1. 
Continuous Deep Learning Classification of BCI Data. Sliding windows of EEG data 

recorded during online BCI tasks were used to train the shallow CNN architecture reported 

in Schirrmeister et al (2017). These windows were 500 ms long and were shifted every 40 

ms. Two types of models were trained based on the data provided. ‘Motor Models’ were 

trained using the same motor cortex electrode montage as the online BCI experiments. ‘All 

Models’ were trained using all available electrodes. In successive steps, the shallow CNN 

architecture performs a temporal convolution, spatial filter, squaring nonlinearity, mean 

pooling, log transform, and linear classification using a dense layer and softmax transform. 

During testing, the trained models provide the estimated probability of class membership 

for each window. In a simulated cursor control environment, the class with the highest 

estimated probability (red circles) was used to move a virtual cursor in the direction of, 

and in proportion to, this highest estimated probability. The functional mapping between 

neural network predictions and control systems was explored by varying the cursor speed (a 

scalar gain multiplied by the neural network outputs). The number of neurons per layer is 

shown by the unlabeled numbers underneath each section and the numbers of filters in each 

layer corresponds to the number of ‘Units’ (e.g. the temporal convolution learns 40 unique 

combinations of combinations of 25 signal values from each filter’s 25 neurons) (see text for 

further details).
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Figure 2. 
CNN model predictions are more accurate than FBCSP. (A) The use of CNN models was 

found to outperform FBCSP in all tasks examined throughout BCI training (sessions on 

x-axis). The y-axis in these figures represents the probability of correct class membership, 

that is the average classification output for the target class. CNN models with all electrodes 

(dark blue) displayed the best classification accuracy in each individual session, followed 

by motor electrode only CNN models (light blue), CSP-motor models (orange) and CSP-

all models (red). (B) Significant increases in the probability of correct class membership 

were found when comparing the average classification output across all tasks and sessions 

between CNN models with full scalp EEG coverage and motor only CNN models (P = 

0.009), and between CNN motor models and CSP motor models (P = 0.0003), however no 

differences were found between CSP-all and CSP-motor models (P = 0.26). Line plots (A): 

shaded area represents ±1 standard error of the mean (S.E.M.). Violin plots (B): shaded area 

represents kernel density estimate of the data, white circles represent the median, and grey 

bars represent the interquartile range.
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Figure 3. 
Deep learning models lead to smaller distances to intended targets. Using a sliding window 

approach, the output of classification models (the predicted probability of class membership) 

can be used as a control signal for continuous BCI. (A) A receiver operating characteristic 

curve was made by varying the cursor speed (the gain parameter multiplying the model 

classification output) to measure how the different models perform in a continuous control 

environment. The y-axis can be thought of as model error, that is the average distance to 

the intended target. (B) When comparing the area under these curves, a Wald test rejected 

the null hypothesis that model type had no effect on rank (Wald, P < 0.00001). Significant 

reductions in average target distance were observed for each successive model type. CSP-All 

vs CSP-Motor (WRS, P = 0.01), CSP-Motor vs CNN-Motor (WRS, P < 0.00001), CNN-All 

vs CNN-Motor (WRS, P = 0.02). Line plots (A): shaded area represents ±1 standard error 

of the mean (S.E.M). Violin plots (B): shaded area represents kernel density estimate of the 

data, white circles represent the median, and grey bars represent the interquartile range.
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Figure 4. 
CNN classification preferentially benefits inefficient participants. (A) A significant positive 

correlation was found between online and offline BCI decoding performance (Pearson 

correlation, P < 0.00001). (B) A significant negative correlation was found between online 

BCI decoding performance and all model types except CNN-Motor (Pearson correlation, P 
< 0.0008, CNN-Motor P = 0.06) suggesting that those with worse online BCI performance 

improved more through the use of offline classification methods. (C) Another significant 

negative correlation was found between online BCI performance and the improvement in 

offline performance when using full scalp EEG coverage (Pearson correlation, P < 0.00004), 

indicating that those with worse online BCI performance improved more through the use of 

models with full scalp EEG coverage.
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Figure 5. 
CNN trained with full scalp EEG produce the fastest trials using the optimal cursor 

speed that minimized average target distance for each model, a simulated cursor control 

environment was created in which a cursor was moved based on the decoding models’ 

output. A Wald test rejected the null hypothesis that all model types produced the same trial 

length (Wald, P < 0.00001). Wilcoxon rank sum tests found that CNN models trained with 

full scalp EEG produced the shortest trials (WRS, P < 0.00001). Shaded area represents 

kernel density estimate of the data, white circles represent the median, and grey bars 

represent the interquartile range.
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Figure 6. 
Feature importance maps display multiple biomarkers used in continuous BCI control. 

Using the input-perturbation network-prediction correlation method, feature importance 

maps were created for each motor imagery strategy. Warm colors occur when increases 

in power over these areas increase the classification accuracy, while cool colors occur 

when decreases in power increase the classification accuracy (or vice-versa). The value of 

r is the average correlation between changes in frequency power and changes in predicted 

class membership across subjects (e.g. when alpha power decreases over left motor cortex, 

models predict a higher probability of that data belonging to a right trial; when alpha 

power increases over right motor cortex the models also produce a higher probability of 

that data belonging to a right trial). Black dots represent significant clusters of positive 

correlation and white dots represent significant clusters of negative correlation. All clusters 

had a significance level lower than the Bonferroni threshold for multiple comparisons (P < 

0.0042).
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