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Abstract 

Background:  Diabetes mellitus (DM) and its cardiovascular disease (CVD) complication are among the most frequent 
causes of death worldwide. However, the metabolites linking up diabetes and CVD are less understood. In this study, 
we aimed to evaluate serum acylcarnitines and amino acids in postmenopausal women suffering from diabetes with 
different severity of CVD and compared them with healthy controls.

Methods:  Through a cross-sectional study, samples were collected from postmenopausal women without diabetes 
and CVD as controls (n = 20), patients with diabetes and without CVD (n = 16), diabetes with low risk of CVD (n = 11), 
and diabetes with a high risk of CVD (n = 21) referred for CT angiography for any reason. Metabolites were detected 
by a targeted approach using LC–MS/MS and metabolic -alterations were assessed by applying multivariate statistical 
analysis. The diagnostic ability of discovered metabolites based on multivariate statistical analysis was evaluated by 
ROC curve analysis.

Results:  The study included women aged from 50–80 years with 5–30 years of menopause. The relative concentra-
tion of C14:1, C14:2, C16:1, C18:1, and C18:2OH acylcarnitines decreased and C18 acylcarnitine and serine increased in 
diabetic patients compared to control. Besides, C16:1 and C18:2OH acylcarnitines increased in high-risk CVD diabetic 
patients compared to no CVD risk diabetic patients.

Conclusion:  Dysregulation of serum acylcarnitines and amino acids profile correlated with different CAC score 
ranges in diabetic postmenopausal women. (Ethic approval No: IR.TUMS.EMRI.REC.1399.062).
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Background
Metabolomics approaches have become a capable 
method for the identification of biomarkers for screen-
ing, diagnosis, and monitoring of various diseases in 
the last decades. The concept of metabolomics discloses 
the downstream of genome, epigenome, transcriptome, 
and proteome and is known as a reflection of an exist-
ing phenotype in systems biology [1–3]. Assessment of 
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metabolite profiles such as acylcarnitine metabolites [4], 
branched-chain and aromatic amino acids [5] could help 
to find novel markers for predicting DM and the risk of 
CVD in DM [6, 7, 8].

Evidence suggests that the risk of CVD events in 
women with DM is stronger and more age-related than 
diabetic men [9, 10], also this association was noticed 
to be potent in postmenopausal women rather than the 
premenopausal one [11]. In essence, menopause is gone 
together with fluctuations in body mass index, distribu-
tion of adipose tissue, and energy disbursement, along 
with insulin secretion and sensitivity that can affect the 
development of DM [12, 13].

In the present study, we applied a high throughput 
technique, LC–MS/MS-based metabolomics approach, 
to analyze amino acids and acylcarnitine metabolites in 
postmenopausal women suffering from DM with differ-
ent severity of CVD compared with the control group 
to take a step toward discovering novel and credible 
metabolite.

Research design and methods
Study populations and classification of participants
This cross-sectional study was carried out from April 
2019 until December 2020 on postmenopausal women 
who had been referred to Tehran heart hospital and 
underwent coronary CT scans (Dual Source Flash-128 
slice) for any reason. Coronary artery calcium score 
(CACS) values which can be detected by cardiac CT 
data were calculated for them by an expert radiologist 
based on the Agatston Score quantification method. A 
CACS reflects the atherosclerotic coronary artery disease 
(ACAD) burden and determines future CVD risk [14].

Participants were divided into three groups based on 
the CACS test. 1) no CACS: A score of zero indicating 
there is no risk of coronary heart disease, 2) low CACS: A 
score between 1 to 100, with low to the mild risk of heart 
disease and 3) high CACS: A score greater than 100, 
which point to clogged arteries and is associated with a 
relatively higher risk of heart diseases over the next years 
[15]. Diabetic patients were identified according to their 
medical history.

All participants had neither acute infection, history of 
cancer, renal, gastrointestinal nor thyroid diseases. Also, 
patients who were taking certain medications such as 
hormones, corticosteroids, heparin, and thyroid hor-
mones were excluded.

Finally, the study comprised 68 postmenopausal 
women distributed into four study groups: (1) 16 DM 
patients without CVD; (2) 11 DM patients with low-risk 
CVD; (3) 21 DM patients with high-risk CVD; (4) 20 
non-diabetic subjects with CACS of zero as controls.

Blood sampling and biochemical analysis
A venous blood sample was obtained from patients and 
stored at -80 °C until the analysis. Information on demo-
graphics and medical status was captured by question-
naires. Biochemical analytes were measured by COBAS 
c311 (Roche Diagnostics).

Sample preparation and metabolite quantification
The metabolomics assessment method had been 
described in detail in the previous study [16]. Briefly, the 
serum samples metabolomics measurements were per-
formed using flow injection analysis on MS/MS technol-
ogy, an AB Sciex 3200 triple quadruple system. The ion 
source was electrospray ionization (ESI). Multiple reac-
tion monitoring (MRM) with positive ion mode was 
performed to scan analytes. The mobile phase which 
transferred the components to be assessed was acetoni-
trile aqueous solution. Isotope-labeled internal standards 
of amino acids and acylcarnitines were used for targeted 
quantification. Data acquisition and analysis were accom-
plished on Multiquant 3.0.2 software. The quality con-
trol samples were analyzed together with the samples in 
each run. The mean of estimated inter-assay precision 
(reported as a coefficient variation) for AAs and acyl-
carnitines were less than 8.7% and 12.3%, the estimated 
mean bias was below 8.8% and 10.2% respectively.

Statistical analysis
Data preprocessing
The missing values were replaced by the default method 
of Metabo-Analyst (half of the minimum positive values 
detected in the data). Different types of data normaliza-
tion, transformation, and scaling were assessed to make 
samples and metabolite concentrations more comparable 
and transform the data into a better Gaussian-type dis-
tribution [17]. Finally, the cube root transformation and 
Pareto scaling was performed.

Discovering the metabolites changes
Determining the significant differences among experi-
mental groups from complex mass spectrometry data 
was carried out based on univariate and multivariate sta-
tistical analysis. First of all, based on the normality results 
of the Kolmogorov Smirnov test, the one-way ANOVA 
analysis with Tukey’s HSD test was conducted to deter-
mine the significant metabolites. Logistic regression 
was performed to adjust the effect of age, BMI, time of 
menopause, lipid profile (cholesterol, HDL-C, LDL-C), 
diabetes duration, and medications (B-blockers, met-
formin, statin, anticoagulants, and nitroglycerin) on each 
metabolite.

Partial least squares discriminant analysis (PLS-DA) 
was used to distinguish and visualize the metabolites 
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which are responsible for the discrepancy between the 
groups. Afterward, the variable importance in the project 
(VIP) value that was generated in PLS-DA processing 
was applied for selection of discriminating metabolites. 
VIP score is a weighted sum of squares of the PLS that 
accounting the degree of Y-variation in each dimension. 
In this study, variables with P-value less than 0.05 based 
on ANOVA and VIP values higher than one were consid-
ered as discriminating metabolites [18, 19] and analyzed 
by logistic regression to measure their associations with 
CVD development. To validate the robustness of the 
PLS-DA model and to assess the amount of overfitting, 
permutation tests with 100 iterations were performed. 
The multivariable analysis was performed by the  back-
ward method selection procedure to assess the effect of 
the confounder. To more clearly characterize the profile 
of metabolites, a plot based on the Pearson correlation 
coefficient was used.

The procedure was carried out using Metabo-analyst 
software version 5.0 (https://​www.​metab​oanal​yst.​ca) and 
IBM SPSS Statistics software version 26 (https://​www.​
ibm.​com/​analy​tics/​spss-​stati​stics-​softw​are).

Results
Baseline characteristics of the study population
Demographic information and clinical characteristics  of 
the study groups (DM patients without CVD (16); DM 
patients with low-risk CVD (11); DM patients with high-
risk CVD (21); non-diabetic subjects with CACS of zero 
as controls (20)) are summarized in Table  1. Briefly, 
the study included women with a mean of 63.9 years of 
age, 29.8  kg/m2 of BMI, and 5–30  years of menopause. 
There was no significant difference between the three 
diabetes groups in terms of the duration of diabetes. 
Also, this trend is similar for HbA1c, which could be 
because patients were under-control and received proper 
medication.

Selection of discriminating metabolites
The measured concentration and coefficients of varia-
tion of each metabolite and the result of data preproc-
essing are represented in Supplementary Table  S1, S2 
and Figure S1, respectively. The PLS-DA score plots are 
demonstrated in Fig. 1A. Control samples were compara-
tively separated from patient samples (DM, DM + low-
risk CVD, and DM + high-risk CVD) along with the 
scores for the first two components, which explained 
the variance (diabetes compared to control: PC1 = 17.5, 
PC2 = 9.8; diabetes with low-risk CVD compared to con-
trols: PC1 = 19.8, PC2 = 10.7; diabetes with high-risk 
CVD compared to control: PC1 = 18.1, PC2 = 11.7). PLS-
DA model validation is performed by permutation tests 
based on the separation distance. The P-value based on 

permutation was less than 0.01, indicating that the model 
was not over-fitted (supplementary Figure S2).

Important features in metabolites discrimination 
identified by PLS-DA are depicted by VIP score plots in 
Fig. 1B. The colored boxes on the right indicate the rela-
tive concentrations of the corresponding metabolite in 
each group under study.

Variables with a VIP ≥ 1 and  P-value < 0.05 (based-on 
ANOVA analysis, Table S3) were considered to be signifi-
cantly different variables and listed in Table 2.

Entirely, acylcarnitine C18 and amino acid serine were 
significantly higher in diabetes, and acylcarnitines C14:1, 
C14:2, C16:1, C18:1, and C18:2OH were lower. In diabe-
tes with a low risk of CVD vs control, serine, C10:1, and 
C18 were increased significantly and C14:2, C16:1, and 
C18:2OH acylcarnitines were decreased. In diabetes with 
a high risk of CVD vs control, increased acylcarnitines 
and amino acid were similar to diabetes with low-risk of 
CVD and C14:1, C14:2, C16:1, and C18:1 acylcarnitines 
were decreased. In diabetes with a low risk of CVD vs 
diabetes, there was no significantly changed metabolite. 
In diabetes with a high risk of CVD vs diabetes, C16:1 
and C18:2OH were increased. There were no significant 
changes in other comparisons of study groups. These 
metabolites differed significantly within the compared 
groups after adjusting for age, BMI, and time of meno-
pause. But after adding lipid profiles and medications to 
the adjustment model, just serine, C14:1, C14:2 remained 
significant.

The heatmap represented the correlation between 
many significantly altered long-chain acylcarnitines that 
is presented in Fig. 2.

Discussion
The present study provided a new avenue for investi-
gating the correlations of acylcarnitine and amino acid 
metabolites with diabetes, and CVD risk among them. 
DM is an established risk factor for the development of 
CVD and people with DM have an increased risk of CVD 
complications compared with those with either condi-
tion alone. Various studies have also indicated different 
risks of CVD through gender between those with DM. In 
this study, 10 out of the 50 analyzed metabolites changed 
significantly that showed odds of diabetes and CVD may 
somewhat stem from dysregulation of serum acylcarniti-
nes and amino acids profile.

Acylcarnitines
Glucose, fatty acids, and amino acids are required  sub-
strates for energy generation and building blocks of 
macromolecules. Organs are adaptable in the selection 
of substrate which they will be used to sustain energy 
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homeostasis.  In the heart, liver, and skeletal muscle, the 
major metabolic pathway is fatty acid β-oxidation (FAO), 
which takes place in mitochondria [20].

The uptake of long-chain and very long-chain fatty 
acids into cells seems to be mediated by membrane 
proteins, called fatty acid transport proteins (FATPs). 
Although passive transport also occurs. After trans-
location across the plasma membrane, fatty acids are 
rapidly converted to acyl-CoAs at the cytosolic site. 
Acyl-CoAs converted to acylcarnitine by carnitine pal-
mitoyltransferase 1 (CPT1) to import into mitochon-
dria by carnitine acylcarnitine translocase (CACT). In 
the mitochondrial matrix, acylcarnitines reconverts 

into acyl-CoA  by carnitine palmitoyltransferase 2 
(CPT2). Subsequently, Acyl-CoAs break down into 
acetyl-CoA components through the chain of enzyme 
reactions, known as β-oxidation. The resultant acetyl-
CoA then  enters  the mitochondrial tricarboxylic acid 
(TCA) cycle to produce more energy [21].

Disorders of the mitochondrial FAO pathway have 
been suggested to take part in the pathogenesis of dia-
betes and insulin resistance. Furthermore, FAO is an 
extremely important pathway in the heart while it con-
tinuously depends on fatty acids as a great proportion of 
its energy requirements. This coincides with the link of 
developing CVD in patients with DM [22].

Table 1  Demographic and clinical characteristics of participants

BMI Body mass index, GFR Glomerular filtration rate, LDL-C Low-density lipoprotein cholesterol, HDL-C High-density lipoprotein cholesterol, ALT Alanine 
aminotransferase, AST Aspartate aminotransferase, ACEi Angiotensin-converting enzyme inhibitors, ARB Angiotensin receptor blockers, CCB Calcium channel blockers

Data are represented as n (%), means ± standard deviation, median (interquartile range(Q1-Q3))
* P-values for comparisons between groups derived by ANOVA test
** P-values for comparisons between groups derived by Kruskal–Wallis’s test

P-values for comparisons between groups of medications derived by Pearson Chi-Square test

Controls Diabetes without CVD Diabetes + Low-risk CVD Diabetes + High-risk CVD P-value

N (%) 20 (29.4%) 16 (23.5%) 11 (16.2%) 21 (30.9%)

Age (year) 62.55 ± 5.708 62.06 ± 6.082 64.55 ± 5.681 66.62 ± 8.255 0.145*

Years of menopause 15.4 ± 7.148 15.94 ± 9.943 15.36 ± 7.406 19.33 ± 11.702 0.513*

Duration of diabetes (year) 0 6.87 ± 3.55 16 ± 8.56 11.6 ± 7.76  ≤ 0.001*

BMI (kg/m2) 30.37 ± 4.9529 29.075 ± 4.1130 28.227 ± 4.3941 31.671 ± 6.7291 0.291*

Biochemistry tests
  Uric Acid (mg/dL) 4.895 ± 1.3763 5.406 ± 1.5181 4.873 ± 1.4065 5.176 ± 1.0392 0.632*

  Creatinine (mg/dL) 0.76 (0.69–0.87) 0.86 (0.75–0.93) 0.87 (0.73–1.01) 0.81 (0.71–0.88) 0.438**

  GFR (mL/min/1.73m2) 93.5 (90–97.5) 87.5 (76–97.5) 84 (71–98) 87 (80–95) 0.516**

  HbA1c (%) 6.04 (5.76–6.88) 5.74 (5.63–6.45) 6.51 (5.83–7.31) 5.72 (5.44–6.1) 0.076**

  Cholesterol (mg/dL) 158.4 ± 36.151 157.19 ± 25.002 165.73 ± 22.258 179.48 ± 35.785 0.116*

  HDL-C (mg/dL) 43.8 ± 11.669 41.06 ± 6.382 49 ± 16.131 39.95 ± 7.486 0.117*

  LDL-C (mg/dL) 70.2 ± 31.388 76.25 ± 26.07 68.36 ± 18.101 91.71 ± 29.16 0.053*

  AST (U/L) 18 (16–23.5) 20 (17–21.5) 20 (18–21) 19 (15–23) 0.757**

  ALT (U/L) 10.5 (8–15.5) 8.5 (7–14.5) 12 (6–17) 10 (7–13) 0.563**

Medications
  Aspirin 9 (45%) 7 (43.8%) 5 (45.5%) 13 (61.9%) 0.63

  Anticonvulsant 0 0 2 (18.2%) 1 (4.8%) 0.085

  Diuretics 1 (5%) 1 (6.3%) 3 (27.3%) 6 (28.6%) 0.094

  B-blockers 5 (25%) 5 (31.3%) 9 (81.8%) 15 (71.4%) 0.001

  ACEi 1 (5%) 1 (6.3%) 0 3 (14.3%) 0.467

  ARB 8 (40%) 9 (56.3%) 7 (63.6%) 13 (61.9%) 0.466

  CCB 3 (15%) 0 2 (18.2%) 5 (23.8%) 0.235

  Metformin 0 13 (81.3%) 10 (90.9%) 20 (95.2%)  < 0.001

  Insulin 0 3 (18.8%) 2 (18.2%) 6 (28.6%) 0.096

  Statins 11 (55%) 10 (62.5%) 6 (54.5%) 19 (90.5%) 0.057

  Anticoagulant 2 (10%) 0 0 5 (23.8%) 0.064

  Nitroglycerine 8 (40%) 1 (6.3%) 1 (9.1%) 14 (66.7%)  < 0.001
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Fig. 1  A Score plots of partial least squares (PLS-DA) scatter plots (green = control, blue = diabetes, yellow = diabetes + low-risk CVD, and 
red = diabetes + high-risk CVD) and B variable importance in projection (VIP) generated from PLS-DA. Metabolites with a VIP score ≥ 1 were 
considered as discriminating metabolites (1 = Controls, 2 = Diabetes without CVD, 3 = Diabetes + High-risk CVD, 4 = Diabetes + Low-risk CVD)
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As the major finding of this study, C14:1, C14:2, C16:1, 
C18, C18:1, and C18:2OH acylcarnitines were altered 
in diabetes compared to controls. Meanwhile, C10:1, 
C14:2, C16:1, and C18 metabolites changed similarly 
among diabetes with different severity of CVD compared 
to controls. As well, C16:1 and C18:2OH acylcarnitines 
increased in diabetes with a high risk of CVD compared 
to diabetes without CVD.

Some studies have indicated that metabolic profiles 
of acylcarnitines, mainly medium- and long-chain ones 
were associated with DM [23], with the risk of CVD in 
DM [4, 24], and also with  CVD and mortality [25, 26]. 
There is a lack of agreement across the decreased or 
increased amount of specific short-, medium-, and long-
chain acylcarnitines in association with diabetes inci-
dence. Besides, reports concerning the fluctuations of 
FAO and TCA intermediates in diabetics are controver-
sial [23, 27, 28]. As a notice, Lu Y et al. pointed out that 
the mitochondrial dysregulation caused by acylcarnitines 
may aggravate the development of DM more exactly than 
act as a trigger [29].

In terms of complications, a study conducted 
based on comparisons within diabetes and diabe-
tes different complications, individuals with diabetic 

vascular complications showed down-regulation of some 
medium- and long-chain acylcarnitines [30]. As well, 
medium-chain (such as C10:1, C14:1, C16:1) and long-
chain (such as C18, C18:1) acylcarnitines were positively 
associated with cardiovascular events such as mortality, 
death/ myocardial infarction in Shah SH et al. study [26]. 
Concordantly, we found similar trends for C10:1, 16:1, 
and C18 acylcarnitines especially in diabetes with a high 
risk of CVD while the results for C14:1 and C18:1 were in 
the opposite direction. Regarding the reduced amounts 
of acylcarnitines in this study, it was supposed that in 
patients experiencing a long-term period of the disease, 
the TCA cycle activity arises intending to supply energy 
for human bodies. Meanwhile, as the clinical period pro-
longed, diabetes metabolism would much get worse [30].

Contrary to these findings, Zhao S et al. study resulted 
in elevated C10, C12, C14:1, C14, C14-OH, and C16-OH 
which are mainly medium-chain acylcarnitines, among 
diabetes with coronary artery disease, heart failure, or 
stroke [4]. Based on the Violante S et al., the cause of this 
controversy might be; i) the variety of precursors that can 
generate medium-chain acylcarnitines, ii) their diverse 
functions in the  FAO in the mitochondria [31], and iii) 

Table 2  Unadjusted and adjusted odds ratio (OR) analysis for the significantly altered metabolites associated with high-risk CVD, low-
risk CVD, and diabetes mellitus

Results were shown as odds ratio (OR) and the corresponding 95% confidence intervals (CI)
a  Adjusted P-Value by age, BMI, and time of menopause
b  Adjusted P-Value by age, BMI, time of menopause, lipid profile, diabetes duration, and medications

C10:1, Decenoylcarnitine; C14:1, Tetradecenoylcarnitine; C14:2, Tetradecadienoylcarnitine; C16:1, Hexadecenoylcarnitine; C18, Octadecanoylcarnitine; C18:1, 
Octadecenoylcarnitine; C18:2-OH, 3-OH-octadecadienoyl

Metabolites Diabetes/ controls Diabetes + low risk CVD/ controls
OR (95% CI) P-Value P-Valuea P-Valueb OR (95% CI) P-Value P-Valuea P-Valueb

Serine 1.021 (1.003–1.039) 0.025 0.026 0.000 1.026 (1.006–1.045) 0.009 0.009 0.000
C10:1 1.003 (0.999–1.007) 0.134 0.166 0.899 1.006 (1.001–1.01) 0.016 0.017 0.579

C14:1 0.979 (0.964–0.994) 0.007 0.006 0.000 0.989 (0.974–1.004) 0.147 0.151 0.000
C14:2 0.974 (0.958–0.991) 0.003 0.003 0.000 0.974 (0.955–0.993) 0.007 0.008 0.000
C16:1 0.940 (0.906–0.975) 0.001 0.001 0.859 0.969 (0.942–0.997) 0.031 0.041 0.999

C18 1.027 (1.003–1.051) 0.030 0.038 0.865 1.042 (1.011–1.074) 0.007 0.009 0.689

C18:1 0.986 (0.974–0.997) 0.017 0.011 0.788 0.994 (0.984–1.005) 0.271 0.478 0.988

C18:2OH 0.994 (0.989–0.998) 0.006 0.008 0.546 0.995 (0.99–0.999) 0.020 0.020 0.625

Metabolites Diabetes + high risk CVD/ controls Diabetes + high risk CVD/ diabetes
OR (95% CI) P-Value P-Valuea P-Valueb OR (95% CI) P-Value P-Valuea P-Valueb

Serine 1.023 (1.005–1.041) 0.010 0.008 0.000 1.002 (0.989–1.015) 0.732 0.630 0.341

C10:1 1.004 (1.001–1.08) 0.037 0.027 0.879 1.001 (0.997–1.005) 0.579 0.372 0.578

C14:1 0.983 (0.97–0.997) 0.016 0.010 0.000 1.005 (0.99–1.019) 0.534 0.631 0.072

C14:2 0.980 (0.965–0.994) 0.006 0.005 0.000 1.005 (0.99–1.021) 0.509 0.610 0.532

C16:1 0.976 (0.956–0.997) 0.023 0.025 0.742 1.039 (1.003–1.076) 0.034 0.028 0.036
C18 1.032 (1.008–1.056) 0.008 0.009 0.988 1.005 (0.982–1.029) 0.683 0.560 0.830

C18:1 0.989 (0.979–0.999) 0.027 0.060 0.854 1.003 (0.991–1.016) 0.590 0.311 0.060

C18:2OH 0.998 (0.996–1.0) 0.083 0.081 0.889 1.005 (1.0–1.009) 0.043 0.072 0.122
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influence of diet on pathways related to acylcarnitine 
metabolism [32].

Despite this, studies concerning acylcarnitines in DM 
with/ without risk of CVD are still limited, and contro-
versial discoveries have been stated.

Amino acids
Regularly, body cells utilize glucose and lipids to provide 
the energy they need. However, they can use amino acids 
for energy supply, too [33]. There are more than twenty 
amino acids, each of which involves not the same deg-
radation pathway. Nevertheless, amino acids  mainly 
undergo shared reactions like deamination and transami-
nation. Therefore, over these reactions all amino acids 

Fig. 2  Correlation matrix showing the results of Pearson correlation analysis. Pearson correlation coefficient values and directions are marked 
with different colors; positive correlation (from white to red on the color scale); negative correlation (from white to blue) (see color-bar next to the 
matrix)
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can be directly or through the production of pyruvate or 
acetyl-CoA transformed into mediates of TCA cycle and 
energy production [20].

The present study revealed that in diabetes vs control, 
the amino acid serine was increased significantly. In both 
diabetes with a low and high risk of CVD vs control, the 
serine was increased, too. In diabetes with low and high-
risk CVD vs diabetes, there were no significantly changed 
amino acid metabolites.

As stated by Lin w et al., amino acid and fatty acid 
metabolism were the most involved pathways between 
diabetics and non-diabetic controls and serine was the 
focal point metabolite of diabetes [34]. More ever, Wal-
ford GA et al. identified the serine as a metabolite posi-
tively associated with incident diabetes [35]. A similar 
result was seen in animal studies, too [36] that provide 
other evidence in support of our results on the above 
amino acid in diabetics compared to controls. Whereas, 
Gunther S et al. reported that serine was inversely associ-
ated with diabetes risk [23].

Even though the exact reasons that led to our findings 
cannot be discovered according to the present study, 
possibilities obtained from the existing literature in this 
regard should be considered. The metabolic differences 
observed between baseline and post-treatment in phar-
macometabolomic studies to some extent reveal the 
effects of medications on the altered metabolites.  For 
instance, The profile of lipids and amino acids can be 
influenced by medications such as aspirin, statins, and 
antihypertensive drugs [37]. By this, confirming the pre-
dictive power of metabolites and clarifying their roles 
becomes a big challenge. So, it would be better to employ 
metabolomic approaches separately in the study of CVD 
predictors and treatment outcomes.

Ultimately, our findings together with others could pro-
vide further indications about metabolomics appliances 
in the prediction and diagnosis of diabetic postmenopau-
sal women with CVD risk. Nonetheless, further studies 
with a larger patient population, and follow-ups are nec-
essary to provide a more complete picture of metabolic 
profile and evaluation of novel biomarkers. Moreover, the 
influence of dietary assessment should be noted.

Conclusion
In summary, our study described the associations of 
diabetes and its CVD risk with serum amino acids and 
acylcarnitines profile in postmenopausal women. The 
obtained in this study could be useful for understand-
ing what might lead to DM or CAD and facile future 
prediction of these diseases.
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