
CANCER EPIDEMIOLOGY, BIOMARKERS & PREVENTION | RESEARCH ARTICLE

Polyunsaturated Fatty Acid Levels and the Risk of
Keratinocyte Cancer: A Mendelian Randomization
Analysis
Mathias Seviiri1,2, Matthew H. Law1,2, Jue Sheng Ong1, Puya Gharahkhani1, Dale R. Nyholt2,
Catherine M. Olsen3,4, David C. Whiteman3, and Stuart MacGregor1,2

ABSTRACT
◥

Background: Keratinocyte cancer is the commonest cancer,
imposing a high economic burden on the health care system.
Observational studies have shown mixed associations between
polyunsaturated fatty acids (PUFA) and keratinocyte cancer, basal
cell carcinoma (BCC), and squamous cell carcinoma (SCC). We
explored whether genetically predicted PUFA levels are associated
with BCC and SCC risks.

Methods: We conducted a two-sample Mendelian randomiza-
tion study using PUFA level genome-wide association studies
(GWAS) from the Cohorts for Heart and Aging Research in
Genomic Epidemiology Consortium (n > 8,000), and the meta-
analysis GWASs from UKB, 23andMe, and Qskin for BCC
(n ¼ 651,138) and SCC (n ¼ 635,331) risk.

Results:One SD increase in genetically predicted levels of linoleic
acid [OR ¼ 0.94, 95% confidence interval (CI) ¼ 0.91–0.97, P ¼
1.4� 10–4] and alpha-linolenic acid (OR¼ 0.91, 95%CI¼ 0.86–0.96,
P ¼ 5.1 � 10–4) was associated with a reduced BCC risk, while
arachidonic acid (OR ¼ 1.04, 95% CI ¼ 1.02–1.06, P ¼ 3.2 � 10–4)
and eicosapentaenoic acid (OR ¼ 1.10, 95% CI ¼ 1.04–1.16, P ¼
1.5 � 10–3) were associated with an increased BCC risk.

Conclusions: Higher genetically predicted levels of linoleic acid
and alpha-linolenic acid were associated with a reduced BCC risk,
but arachidonic acid and eicosapentaenoic acidwere associatedwith
a higher BCC risk.

Impact: PUFA-related diet and supplementation could influence
BCC etiology.

Introduction
Keratinocyte cancers (KC) are the commonest cancers globally, and

include two principal types: basal cell carcinoma (BCC) and squamous
cell carcinoma (SCC). Because of their frequency, they incur consid-
erable morbidity and very large health expenditures up to AUD $700
million and USD $4.8 billion for their treatment annually in Australia
and the United States, respectively (1–3). These cancers are caused by
sun exposure, and personal risk is influenced by factors such as fair
skin, red hair, and genetic factors (4–6). As amodifiable factor, the role
of dietary factors in keratinocyte cancer risk has been contentious.
Polyunsaturated fatty acids (PUFA) that include n-6 or omega-6 fats;
linoleic acid (LA; 18:2n-6), and arachidonic acid (AA; 20:4n-6), and n-
3 or omega-3 fats; alpha-linolenic acid (ALA, 18:3n-3), eicosapentae-
noic acid (EPA, 20:5n-3), docosapentaenoic acid (DPA, 22:5n-3), and
docosahexaenoic acid (DHA, 22:6n-3) have been found to influence
the risk of a number of diseases. Previous studies have reported

associations between PUFAs and coronary heart disease (7, 8) and
cancers (9, 10).

PUFAs influence biological processes that influence both carcino-
genesis and cancer progression (11–14). Omega-6 LA stimulates
production of anti-inflammatory products with carcinoprotective
properties while AA triggers generation of cytokines which initiate
cancer-related inflammation (11–14). In contrast, n-3 PUFAs (e.g.,
ALA and EPA) are generally metabolized into anti-inflammatory
eicosanoids thus halting carcinogenesis (11, 12, 14, 15). The respective
PUFA effects are thought to be independent of each PUFA family. For
example, a previous study found no interaction between plasma
phospholipid levels of LA (n-6) and the levels of DHA or EPA
(n-3), but significant interaction of ALA with EPA levels (increase in
ALA resulted in increased EPA; ref. 16).

Although the aforementioned biological processes link PUFAs to
cancers, observational studies examining the relationship between
PUFAs and BCC and SCC have reported mixed findings (17). For
example, the Nambour Study in Australia found no association
between PUFAs (total omega-6 and omega-3) with the risk of BCC
and SCC (18). Specifically, it found no association between higher
levels of each of the omega-3 fats; ALA, EPA, DHA, and DPA and the
risk of BCC, and SCC (18). Similarly, higher levels of omega-6 fats; LA,
and AA were not associated with the risk of BCC and SCC (18).
However, recent findings from the Nurses’ Health Study and Health
Professionals Follow-up Study from the United States, revealed that
higher intake of omega-6 fat was associated with higher risks of both
BCC and SCC (19). In addition, while higher intake of omega-3 fat was
positively associated with the risk of BCC, this was not the case with
SCC (19).

However, observational studies are more prone to limitations
including; selection and recall bias, confounding, and reverse causa-
tion, than randomized control trials (RCT) and Mendelian random-
ization (MR) studies. RCTs are less prone to error, but are very difficult
to conduct for dietary interventions, and consequently are extremely
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scarce. Thus, it is desirable to use theMR approach.MR is based on the
principle of random allocation of risk alleles and independent assort-
ment of genes atmeiosis. Therefore, it is less prone to someof the biases
which affect observational studies when the assumptions for a valid
instrument variable are met. TheMR design utilizes genetic variants as
the instrumental variables for the exposure (here PUFA levels). It
assumes that the instrumental variables; (i) are associated with the
exposure (PUFA levels), (ii) are not associatedwith any confounders of
PUFA-KC association (exposure outcome), and (iii) affect the out-
come (here BCC and SCC) only through the exposure (here PUFA
levels; ref. 20).

Previous MR studies have found significant associations between
genetically predicted levels of particular PUFAs and the risk of cancer
including; prostate cancer (21), lung cancer (22), and colorectal
cancer (12, 23). However, previous MR studies found no association
between PUFAs and the risk of cutaneous melanoma (24) and all
cancer (23). No MR study to date has explored a causal relationship
between PUFA levels and the risk of BCC or SCC. Therefore, our aim
was to assess whether genetically predicted PUFA levels are associated
with the risk of BCC and SCC.

Materials and Methods
Study population for PUFA levels

Weobtained summary statistics data to identify genetic instruments
for PUFA levels from genome-wide association study (GWAS) meta-
analysis on n-3 (ALA, EPA, DPA and DHA) and n-6 (AA, and LA)
PUFAs that included that included 8,866 and 8,631 participants,
respectively, of European ancestry in five studies in the Cohorts for
Heart and Aging Research in Genomic Epidemiology (CHARGE)
Consortium (16, 25). Details for each cohort including recruitment,
quality control, and ethical procedures have been published
previously (16, 25–29). The five study cohorts included were Athero-
sclerosis Risk in Communities (ARIC, n ¼ 3,268), Coronary Artery
Risk Development in Young Adults (CARDIA, n ¼ 1,507), Cardio-
vascular Health Study (CHS, n ¼ 2,326), Invecchiare in Chianti
(InCHIANTI, n ¼ 1,075), and Multi-Ethnic Study of Atherosclerosis
(MESA, n¼ 690). PUFA levels were analyzed by gas chromatographic
techniques and reported as percentage of the total plasma fatty
acids (16, 30). The mean and SD of each PUFA in the cohorts were
reported.

Study population for the BCC and SCC risk
We used summary data from the recently published GWAS meta-

analysis that included overall 31,787 BCC cases, and 619,351 controls,
and 9,674 SCC cases and 625,657 controls of European descent from
Europe, United States, and Australia (31). For BCC, the meta-analysis
included the UK Biobank (16,847 cases, 340,302 controls), the
23andMe Research cohort (12,945 cases, 274,252 controls), and the
QSkin Sun and Health Study (QSkin) cohort (1,995 cases, 4,797
controls). Similarly, the SCC meta-analysis included the UK Biobank
(2,274 cases, 340,302 controls), 23andMeResearch cohort (6,579 cases,
280,558 controls), and theQskin cohort (821 cases and 4,797 controls).
All participants were of European ancestry. Details on the respective
cohorts have been extensively described previously (4, 32–34).

In summary, the UK Biobank is a population-based cohort of over
500,000 adult participants (40–69 years old) recruited between 2006
and 2010 in the United Kingdom. Detailed phenotypic and genetic
data were collected and participants with information on BCC and
SCC were included in the meta-analysis. The study was approved by
the United Kingdom’s National North West Multi-Centre Research

Ethics Committee. 23andMe Research cohort included international
participants of European ancestry with self-reported data on BCC and
SCC. Validation of the self-reported data showed high accuracy (4).
The research protocol was approved by the Ethical and Independent
Review Services, an Institutional Review Board accredited by the
Association for the Accreditation of Human Research Protection. The
QSkin is a population based prospective cohort of adulted participants
(40–60 years old, N� 43,000) from Queensland, Australia recruited
between 2011 and 2012, and over 17,000 of them genotyped in
2017 (34). Both clinically validated and self-reported data on BCC
and SCC were collected. The study was approved by the Human
Research Ethics Committee at QIMR Berghofer Medical Research
Institute, Brisbane, Australia. All participants in the three cohorts
provided written informed consent. Details on the methods used to
conduct the GWAS in each cohort and the meta-analysis published
elsewhere (31).

Selection of the instrumental variables
We identified the SNPs that were associated with increased PUFA

plasma levels at the genome-wide significant level (P ¼ 5 � 10–8) in
published GWAS meta-analysis summary data from the CHARGE
Consortium (16, 25, 30). For each PUFA, we extracted the SNP, its
PUFA-increasing allele, the estimated SNP-PUFA magnitude of asso-
ciation (beta), and its SE (Table 1) for the instrument selection for
PUFA and harmonized using the TwoSampleMR package in R (35).
The selected instrumental variables (IV) were largely consistent with
previous studies that explored the associations between PUFA and
other morbidities (21, 22, 24). Next, we retrieved summary data for the
selected IVs for each PUFA for both the BCC and SCC analysis from
the previous keratinocyte cancer GWAS meta-analysis (31).

MR
We conducted a two-sampleMR analysis using the inverse variance

weighted (IVW)method (36, 37). IVW utilizes GWAS summary data,
a method equivalent to using individual level data (36). For each
PUFA, theWald-type ratio estimator (38)was used to compute theMR
estimates for each SNP. Then, the SNP estimates (for multiple IVs)
weremeta-analyzed using the IVWapproach based on random effects.
TwoSampleMR package in R was used for the analysis (35). Then, the
estimated associations for the genetically determined levels of PUFA
and BCC and SCC risk were expressed as OR per SD increase in PUFA
levels.

Sensitivity analyses
We conducted “leave-one-out” analyses to assess whether the MR

results were being driven or biased by a SNP for each PUFA. Next, we
investigated the possibility of directional (horizontal) pleiotropy
through MR-Egger regression (39). The intercept term in the MR-
Egger regression quantifies evidence for the directional pleiotropy; the
magnitude and direction of the effect of the instrumental variables
(SNPs) on the outcome (BCC and SCC risk) that are not mediated
through the exposure (39). Egger method explores whether the
intercept is significantly different from zero (40). The intercept
estimate is interpreted as the average pleiotropic effect across all
instrument variables used. An intercept estimate, significantly differ-
ent from zero indicates directional pleiotropy. However, as the MR-
Egger regression requires at least three genetic variants, it was only
used for PUFAswhich showed a significant association and had at least
three IVs (LA). For the PUFAs that were significantly associated with
the outcomes, we also assessed whether a single dominantly influenced
the results.
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Next, to rule out the possibility of reverse causality for BCC and SCC
on PUFAs, we conducted a reverse-MR analysis evaluating whether
genetically predicted BCC and SCC risks are associated with each
PUFA separately. We used TwoSampleMR package in R (35) for all
statistical analyses.

Finally, we explored whether potential confounders such as body
mass index (BMI), educational attainment, and vitamin D levels
affected the associations between the PUFAs and BCC risk. We
obtained IVs using publicly available published data for educational
attainment (years and college completion; ref. 41) andBMI (42) andwe
testedwhether the PUFA IVswere causally affected BCC throughBMI,
educational attainment, and vitamin D using the IVW approach
described earlier. Vitamin D GWAS summary data were generated
using the UK Biobank data (data field 100021) that included 401,529
participants of European ancestry. Age, sex, the first 10 principal
components andmonthly vitaminD variationswere adjusted for using
BOLT-LMM (43). SNPs with minor allele frequency of >1% and
imputation score of 0.3 were then selected.

Results
Association between PUFA levels and BCC incidence

MR results for each of the six PUFA traits on BCC incidence are
shown in Fig. 1. Briefly, among the six PUFAs evaluated, a one SD
increase in genetically determined plasma levels of LA, and ALA was
associated with a decreased incidence of BCC. Conversely, a one SD
increase in genetically predicted levels of AA and EPA was associated
with an increased incidence of BCC. However, genetically determined
levels of DPA and DHA were not associated with BCC incidence.

Association of PUFA levels and SCC incidence
While the point estimates for the associations between each genet-

ically predicted PUFA levels and the SCC incidence were similar to
those of BCC, the 95%confidence intervals (CI) around these estimates
weremuchwider, likely due to the smaller sample size for SCC (Fig. 2).

Sensitivity analyses
MR-Egger intercept regression results for LA (�0.005, �0.02 to

0.01; P ¼ 0.50) and showed no evidence of directional pleiotropic
effects on BCC risk through other pathways independent of serum LA.
In a leave-one-out analysis the sensitivity analysis results did not differ
materially from the primary results. No single SNP was strongly
driving the overall effects of LA (Fig. 3A), AA (Fig. 3B), and EPA
(Fig. 3C) on the BCC risk. There was no opposite causal association
between PUFA levels and BCC risk; LA (OR ¼ 0.95, 95% CI ¼ 0.80–
1.13, P ¼ 0.596); ALA (OR ¼ 1.00, 95% CI ¼ 1.00–1.003, P ¼ 0.935);
AA (OR¼ 0.99, 95%CI¼ 0.88–1.12, P¼ 0.851) and EPA (OR¼ 1.00,
95% CI ¼ 0.98–1.02, P ¼ 0.855).

Our assessment for violations of theMR assumptions by bodymass
index, education attainment, and vitamin D as a potential confounder
revealed it was unlikely that PUFA IVs would affect the BCC risk
through the aforementioned traits (P > 0.05 for all PUFAs; Table 2).

Discussion
We used a two-sample MR to investigate the association between

specific genetically predicted PUFA levels and the incidence of BCC
and SCC among people of European ancestry. Our findings suggest
that people with genetically predicted high levels of LA and ALA have

Table 1. The instrument variables for the PUFAs that were used for the MR study.

PUFA CHR Gene SNP A1� A2 A1 Freq P Beta SE VE per allele (%)

Linoleic acid (LA) 10 NRBF2 rs10740118 G C 0.56 8.1 � 10–09 0.248 0.043 0.2–0.7
11 FADS1 rs174547 C T 0.32 5.0 � 10–274 1.474 0.042 7.6–18.1
16 NTAN1 rs16966952 A G 0.31 1.2 � 10–15 0.351 0.044 0.5–2.5

Arachidonic acid (AA) 11 FADS1 rs174547 T C 0.68 3.3 � 10–971 1.691 0.025 3.7–37.6
16 NTAN1 rs16966952 G A 0.69 2.4 � 10–10 0.199 0.031 0.1–0.6

Alpha-linolenic acid (ALA) 11 FADS1 rs174547 C T 0.33 4.0 � 10–64 0.016 0.001 1.03
Eicosapentaenoic acid (EPA) 6 ELOVL2 rs3798713 C G 0.43 2.0 � 10–12 0.035 0.005 0.36

11 FADS1 rs174538 G A 0.72 5.0 � 10–58 0.083 0.005 1.69
Docosapentaenoic acid (DPA) 6 ELOVL2 rs3734398 C T 0.43 1.0 � 10–43 0.04 0.003 0.46

11 FADS1 rs174547 T C 0.67 4.0 � 10–154 0.075 0.003 2.74
2 GCKR rs780094 T C 0.41 9.0 � 10–09 0.017 0.003 8.38

Docosahexaenoic acid (DHA) 6 rs2236212 G C 0.57 1.3 � 10–15 0.113 0.014 0.65
A1�-PUFA increasing allele A2 - other allele SE - standard error
VE- variance explained IV - instrument variable A1 Freq - frequency of PUFA increasing allele

Figure 1.

Association of one SD increase in genetically deter-
mined levels of PUFA and the risk of BCC. PUFA,
polyunsaturated fatty acid; SD, standard deviation;
OR, odds ratio per SD; and 95% confidence interval.
The middle line represents the null (OR ¼ 1.00), and
the error bars represent 95% CI. The figure shows the
MR results for the relationship between the six PUFAs
and the risk of BCC.
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lower risks of BCC than those with lower levels of these dietary factors.
In contrast, we found that people with high plasma levels of AA and
EPA had elevated risks of BCC. Our analyses suggest that one n-3
PUFA is protective for BCC (ALA: OR ¼ 0.91) while the other is
associated with increased risk for BCC (EPA: OR ¼ 1.10). Similarly,
one n-6 PUFA is protective (LA: OR ¼ 0.94) while another one
increases the incidence of BCC (AA: OR ¼ 1.04). These findings
suggest that n-3 and n-6 PUFAsmay act in opposing ways to influence
the risks of BCC. Although results for SCC were overlapping with the

null, the magnitude and directions of association for each PUFA were
similar to those observed for BCC, but were subject to greater
imprecision due to smaller sample sizes.

A recent systematic review and meta-analyses of observational
studies reported that combined n-3 PUFAs (ALA, EPA, DHA) were
not associatedwith the risk of BCC (pooledOR¼ 1.05, 95%CI¼ 0.86–
1.28) and SCC (pooled OR ¼ 0.86, 95% CI ¼ 0.59–1.23; ref. 17).
However, this finding is not surprising because all the n-3 PUFAs were
considered together, yet our data and other studies suggest that these

Figure 3.

Forest plots of the individual SNP effects (logOR) for genetically predicted LA, AA, and EPA levels on BCC risk. This figure illustrates the contribution of individual IVs
used for the association between LA (A), AA (B), EPA (C), and BCC risk. The error bars represent the individual SNP effects (beta or log OR) and the 95% CI derived
using the IVWmethod orMREgger for all SNPs and theWald ratiomethod for instrumental variables. The vertical dotted line is the null (logOR). Thefigure shows that
the results were not driven by a single IV.

Figure 2.

Association of one SD increase in genetically deter-
mined levels of PUFA and the risk of SCC. PUFA,
polyunsaturated fatty acid; SD, standard deviation;
OR, odds ratio per SD; and 95% confidence interval.
The middle line represents the null (OR ¼ 1.00), and
the error bars represent 95%CI. The figure shows the
MR results for the relationship between the six
PUFAs and the risk of SCC.
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factors likely have heterogeneous effects on cancer develop-
ment (12, 21). Another observational study found no association
between any of the PUFAs with the incidence of BCC and SCC (18).
However, findings from two observational longitudinal studies in
the United States found that higher intake of both n-6 and n-3 fats
was associated with higher risk of BCC (for n-3; HR ¼ 1.08, 95%
CI ¼ 1.02–1.14; Ptrend ¼ 0.01 and for n-3; HR ¼ 1.09, 95% CI ¼
1.04–1.13, Ptrend < 0001; ref. 19). Higher intake of n-6 fat was
significantly associated with increased risk of SCC (highest vs.
lowest quintile, HR ¼ 1.23, 95% CI ¼ 1.08–1.41, P ¼ 5 � 10–4;
ref. 19). However, higher intake of n-3 fat was not associated with
SCC risk (highest vs. lowest quintile, HR ¼ 0.97, 95% CI ¼ 0.87–
1.10, P ¼ 0.78; ref. 19).

Observational studies for dietary factors are prone to biases, espe-
cially from confounding and reverse causation (44). A recent RCT of
46 participants showed that supplementation of EPAþDHA given to
lung transplant patients was not associated with the risk of KC (OR¼
0.34, 95%CI¼ 0.09–1.32; ref. 45). However, this was a small RCTwith
very limited power to detect any meaningful associations. Second,
participants followed for a short period (1 year), which is not applicable
for slow growing tumors. Therefore, in absence of a well-conducted
RCT, our MR study offers reliable findings to clarify results from
observational studies.

Our results are comparable with other MR PUFA findings for other
cancers previously published. They are similar to an MR of PUFA and
prostate cancer risk amongmen< 62 years that revealed that LA (OR¼
0.95, 95%CI¼ 0.92–0.98) and ALA (OR¼ 0.96, 95% CI¼ 0.93–0.98)
were associated with a reduced risk of prostate cancer (21). In addition,
conversely, AA (OR ¼ 1.05, 95% CI ¼ 1.02–1.08), EPA (OR ¼ 1.04,
95%CI¼ 1.01–1.06), andDPA (OR¼ 1.05, 95%CI¼ 1.02–1.08) were
associated with an increased risk of prostate cancer (21). A previous
MR study also showed that LA (OR ¼ 0.95, 95% CI¼ 0.93–0.98) and
AA (OR ¼ 1.05, 95% CI ¼ 1.02–1.07) were negatively and positively,
respectively, associated with the risk of colorectal cancer (12). A
recently published MR on PUFA and the risk of melanoma found
no significant associations between different PUFAs and melanoma

risk (24). However, the magnitude and direction of the associations
(per SD increase in PUFA) are similar to our results for LA (OR¼ 0.94
for BCC vs. 0.94 for melanoma 95% CI ¼ 0.86–1.02), ALA (OR ¼
0.91 vs. 0.92, 95%CI 0.82–1.03), andAA (OR¼ 1.04 vs. 1.03, 95%CI¼
0.99–1.07). Therefore, ourfindings are comparable in terms of both the
direction and the magnitude to previous PUFAMR results on prostate
cancer, colorectal cancer and melanoma.

Possible biological mechanisms for carcinogenesis
The PUFA metabolic pathways and other biological routes to

possible carcinogenesis are summarized inFig. 4. Downstreammetab-
olismof LAviametabolitesGLAandDLA through desaturation (using
fatty acid desaturase 2 (FADS2) and FADS1) and elongation (using
elongase) results into AA and other eicosanoids. On the other hand,
downstream metabolism of ALA via metabolites SDA and ETA using
FADS2, FADS1, and elongase results in EPA and other eicosanoids.
Several pathways in which PUFAs initiate carcinogenesis (which may
apply to keratinocyte cancer) have been suggested. For example, it has
been suggested that at high concentrations, LA stimulates tumoricidal
actions through generation of free radicals within the cancer
cell (12–15). It induces mitochondrial dysfunction and oxidative stress
which lead to suppression of tumor cell growth and the eventual tumor
cell apoptosis (12–15). It also stimulates production of prostaglandin
E1, an anti-inflammatory product (12, 14, 15). However, downstream
metabolism of LA to AA leads to production of carcinogenic proin-
flammatory AA-derived eicosanoids like leukotriene B4 through
lipoxygenase; and prostaglandin E2 and thromboxane A2 through
cyclooxygenases (12, 14). This potentially explains why AA is asso-
ciated with increased risk of BCC in our findings. Downstream
metabolism of ALA results in production of EPA-derived eicosanoids
like leukotriene B5 and prostaglandin E3, which have anti-
inflammatory actions that are carcinoprotective (12, 14, 15). However,
in our study, EPAwas associated with increased risk of BCC. This may
be a true effect as is the case with prostate cancer EPA (OR¼ 1.04, 95%
CI¼ 1.01–1.06; ref. 21). However, it is also possible that the results are
influenced by residual confounding.

Table 2. Causal relationship between the PUFAs and the potential confounders.

Exposure
Potential
confounder Beta� 95% CI P

LA BMI 0.0017 �0.0129 0.0163 0.8200
EA �0.0029 �0.0150 0.0093 0.6431
VitD �0.0011 �0.0126 0.0105 0.8587

AA BMI �0.0011 �0.0136 0.0115 0.8658
EA 0.0012 �0.0022 0.0047 0.4833
VitD 0.0021 �0.0033 0.0074 0.4516

ALA BMI 0.1950 �0.0639 0.4538 0.1399
EA �0.1258 �0.4956 0.2440 0.5050
VitD �0.1805 �0.5196 0.1585 0.2966

EPA BMI �0.0392 �0.0844 0.0059 0.0885
EA 0.0253 �0.0344 0.0849 0.4062
VitD 0.0026 �0.1192 0.1244 0.9666

DPA BMI �0.0575 �0.1769 0.0620 0.3457
EA 0.0270 �0.0333 0.0873 0.3802
VitD �0.0657 �0.4518 0.3204 0.7389

DHA BMI 0.0080 �0.0267 0.0426 0.6527
EA �0.0088 �0.0608 0.0431 0.7389
VitD 0.0332 �0.0018 0.0682 0.0628

Abbreviations: AA, arachidonic acid; ALA, alpha-linolenic acid; Beta� , beta coefficient for the effect; BMI, body mass index; CI, confidence interval; DHA,
docosahexaenoic acid; DPA, docosapentaenoic acid; EA, educational attainment; EPA, eicosapentaenoic acid; LA, linoleic acid; PUFAs, polyunsaturated fatty
acids; VitD, vitamin D or 25-hydroxyvitamin D.
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Strengths and limitations
Our study has several strengths. First, we used strong instrumental

variables since they were genome-wide significant with the exposure
(PUFA levels); and with some IVs explaining up to 30% of trait
variance (Table 1). In addition, the F-statistic (a measure of the
strength of the genetic instrument) for each PUFA was high i.e., AA
(11, 302), EPA (479), LA (1, 104-3, 533), DPA (1, 997) and DHA (299)
as indicated previously (21). Therefore, it is unlikely that our results
were affected by bias from weak genetic instruments (36, 46). Thus,
combination of strength IVs and the large BCC sample size, this allows
great precision in our MR findings. Furthermore, we used the IVW
method on summary statistics which gives results equivalent to
individual level data (36). Our study also used data from the United
States, Europe, and Australia and thus making our results broadly
generalizable to people of European descent. Finally, MR overcomes
reverse causation, a key source of bias in observational studies.

However, the findings have limited specific application to the
clinical setting. For example, it is not clear what one SD of any of
the PUFAs translates into in terms of diet change (food quantities).
Nevertheless, it provides a broad perspective of the associations

between specific PUFAs and BCC. Our MR findings pertain to people
of European descent; thus, it remains unclear whether they can be
generalized to other non-European ancestry populations. Our analysis
involved 1–3 SNPs for the PUFAs (Table 1). Thus, we were able to
assess directional horizontal pleiotropy for only LA using the MR-
Eggermethod, and although it didnot influence ourMRestimates (39),
we cannot rule out residual pleiotropic effects (including for other
PUFAs). In addition, due to the limited number of PUFA SNPs, a
multivariable MR approach (47) was not appropriate to assess highly
polygenic potential confounders including; BMI, vitamin D, and
educational attainment in the same model as this would introduce
the regression dilution bias toward the null for the PUFA esti-
mates (40). Nevertheless, the PUFA genetic instruments did not affect
BCC through potential confounders; BMI, vitamin D, or education
attainment (Table 2), and have been well studied and have known
biology with PUFA metabolism (16, 25). While our findings for BCC
were robust, the findings for SCC were less precise, mainly due to the
much lower prevalence of the disease. “There is also a possibility for the
results for AA and EPA being influenced by the levels of their
metabolic precursors LA and ALA, respectively. For example, one

Figure 4.

The PUFA metabolic pathways and other
biological routes to carcinogenesis. Sche-
matic diagram showing downstreammetab-
olism of essential fatty acids LA andALA into
proinflammatory and anti-inflammatory
eicosanoids and free radicals, such as ROS.
LOX, lipoxygenase; COX, cyclooxygenases
(COX-1 and COX-2); PGE, prostaglandin E;
ROS, reactive oxygen species; FADS2, fatty
acid desaturase 2; FADS1, fatty acid desatur-
ase 1.
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SD unit increase in ALA was found to increase EPA levels by 23% of
one SD (16). However, it may not be the case that n-6 PUFAs influence
n-3 PUFA results because the associations of FADS1/2 and ELOVL2
genes with EPA andDHAwere found to be independent of LA levels in
a previous study (16).

Clinical and public health implications and future research
This study providesmeaningful insights on the possible benefits and

risks of PUFA supplementation with respect to BCC and SCC.
However, the findings are modest and future widespread RCTs using
specific PUFA supplements are needed to understand if PUFAs
influence BCC or SCC risk in a clinical setting. A recent pilot RCT
that assessed the feasibility of PUFA supplementation (EPAþDHA) in
lung transplant recipients showed 88% and 83% retention in the
intervention and placebo groups respectively; as well as good adher-
ence to the supplements (45). Therefore, an RCT on supplementation
is feasible.

Conclusions
Genetically predicted levels of LA and ALAwere causally associated

with a reduced incidence of BCC, while AA and EPA were causally
associated with an increased incidence of BCC. This MR study
provides support for future RCTs to determine whether LA and ALA
supplementation will practically reduce the risk of these very common
cancers in the population. Thus, supplementation of LA and ALA
might be useful in prevention of keratinocyte cancers in high risk
groups such as organ transplant recipients.
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