

HHS Public Access

Author manuscript *Methods Mol Biol.* Author manuscript; available in PMC 2022 July 22.

Published in final edited form as: *Methods Mol Biol.* 2021 ; 2225: 179–197. doi:10.1007/978-1-0716-1012-1_10.

Metabolomics Analysis of Viral Therapeutics

Haiwei Gu,

Xiaojian Shi,

Paniz Jasbi,

Jeffrey Patterson

Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Scottsdale, AZ, USA

Abstract

Virotherapy, enabled by recent advances in the transdisciplinary field of biotechnology, has emerged as a powerful tool for use in anticancer treatment, gene therapy, immunotherapy, etc. Examining the effects of viruses and virus-derived immune-modulating therapeutics is of great fundamental and clinical interest. Here we describe a sample preparation protocol for metabolite extraction from virus-infected tissue, in addition to liquid chromatography-mass spectrometry conditions essential for subsequent analysis. This metabolomics approach delivers highly sensitive and specific metabolite information on various biospecimens. Such an approach may be adopted to monitor biological changes in over 30 relevant metabolic pathways in response to viral infection and also viral therapeutics.

Keywords

LC-MS/MS; Metabolomics; Sample preparation; Viral vector; Virotherapy

1 Introduction

There is great interest in the use of viruses and virus-derived components as therapeutics. Viral vectors also hold enormous potential to realize the goals of gene therapy [1] and, in the past decade, more than 1700 gene therapy trials have been enabled by the use of viral therapeutics [2]. In addition to their use as a gene therapy delivery vehicle, viral vectors may also be used as an alternative to antibiotics [3] and, recently, have proven useful in DNA vaccination [4]. Utilization of adeno-associated viruses (AAV) for the deliverance of engineered DNA to target cells [5] has led to the development of fit-for-purpose AAV vectors [6]. Further popularizing such therapeutic concepts is the advent of bacteriophage lambda vectors, or RNA-binding proteins of phage origin [7]. These phage vectors have become an attractive vaccine platform given their inexpensive production, biological stability, and suitability to a wide range of applications with minimal development needed between uses [8]. Additionally, virus-derived immune-modulating proteins may also be used for therapeutic purposes. For example, rabies-derived glycoproteins have been shown to facilitate drug delivery to the central nervous system (CNS) [9], while virus-derived anti-inflammatory proteins may improve the human immune response to immune-mediated

Since metabolites are sensitive to subtle differences and changes in pathological status and immune response status, metabolomics, the comprehensive study of small-molecular-weight metabolites and their dynamic changes in biological systems [11–15], provides advanced methods to identify changing metabolite levels, and has resulted in the rapid discovery of disease biomarkers during the past decade (*see* Fig. 1) [16–21]. Mass spectrometry (MS)-based metabolic profiling has proven to be a promising tool for analyzing metabolic alterations due to various diseases and, therefore, can provide sensitive and valuable diagnostic information [18, 22, 23], pathogenesis identification [24, 25], and potential therapeutic targets for clinical treatments [26] and disease monitoring [27]. Indeed, previous studies have applied metabolomics to various aspects of viral therapeutics such as the elucidation of metabolites involved in virus infection and pathogenesis [28] and accurate differentiation of vaccination status [29], in addition to characterizing the metabolic profiles of patients with hepatitis B virus-related hepatocellular carcinoma [30], viruses of the gastrointestinal microbiome [31], inflammatory cytokines involved in H1N1 influenza [32], as well as fingerprinting of HIV-1 and -2 infection in macrophages [33].

Herein, we present a sample preparation protocol and associated liquid chromatographytandem mass spectrometry (LC-MS/MS) conditions for the detection of aqueous metabolites in tissue (*see* Fig. 2). The targeted LC-MS/MS method used here was modeled and developed after those used in a growing number of studies [18, 34–39].

2 Materials

Prepare all solutions using ultrapure water (*see* Note 1). Ensure that all reagents used are at least analytical grade (99% purity). Prepare and store all reagents at room temperature unless indicated otherwise. Follow all pertinent waste disposal protocols as they apply. Thaw samples as directed. Check pipettes to confirm readiness for use. This targeted LC-MS/MS protocol does not provide absolute concentrations of detected metabolites.

2.1 Preparation of Tissue Samples

- **1.** 1.5 mL Eppendorf tubes.
- 2. Bullet beads.
- 3. 2 mL glass vials.
- 4. 300 μL glass inserts.
- 5. 1 mL needle-less syringes.
- 6. Polyvinylidene fluoride (PVDF) syringe filters.
- 7. Micropipettes with 50–800 µL extraction capability.
- 8. 100 mL Methanol (MeOH): 10× dilution with phosphate-buffered saline (PBS).
- 9. 100 mL PBS:acetonitrile ([ACN] 4:6 dilution).

- **10.** Scientific balance with mg readability.
- 11. Bullet blender.
- 12. Vortex mixer.
- **13.** Ultrasonic liquid processor.
- 14. Centrifuge with speed, time, and temperature control.
- **15.** Vacuum concentrator.

2.2 LC-MS/MS Targeted Analysis

- 1. Suitable ultra-performance liquid chromatography (UPLC) system.
- 2. Triple-quadrupole (QQQ)-MS instrument.
- **3.** Electrospray ionization (ESI) source.
- **4.** Hydrophilic interaction chromatography (HILIC) column.
- 5. Mobile-phase solvents:
 - a. 10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% H₂O/5% ACN.
 - b. 10 mM ammonium acetate, 10 mM ammonium hydroxide in 95% ACN/5% H₂O.

3 Methods

In an effort to identify and overcome potential issues, please see Subheading 4.

3.1 Preparation of Tissue Samples

- 1. Weigh out 20 mg \pm 1.5 mg of biological sample in a 1.5 mL Eppendorf tube.
- Homogenize biological sample in 200 μL MeOH:10× diluted PBS in 1.5 mL Eppendorf tube (see Note 2).
- 3. Add $\frac{1}{2}$ spoon of beads and disrupt the sample using bullet blender for 2 min.
- 4. Centrifuge for 1–2 min to remove liquid from the cap.
- 5. Add 800 µL MeOH:10× diluted PBS (*see* Note 3).
- 6. Vortex for 10 s.
- 7. Store sample at $-20 \degree C$ for 30 min.
- 8. Sonicate the mixture in an ice bath for 10 min (*see* Note 4).
- 9. Centrifuge the mixture at $21,694 \times g$ for 15 min at 4 °C (*see* Note 5).
- 10. Remove 800 µL supernatant and transfer to a new Eppendorf tube (*see* Note 6).
- 11. Completely dry the sample(s) using a vacuum concentrator at 37 °C for 6 ± 2 h (*see* Note 7).

- **12.** Once sample(s) is/are completely dried, reconstitute by adding 200 μL of PBS:ACN solution.
- **13.** Vortex the sample for 30 s.
- 14. Sonicate each sample for 5 min in a room-temperature water bath.
- **15.** Centrifuge the samples at $21,694 \times g$ for 10 min at 4 °C (*see* Note 8).
- **16.** Extract 150 μL of the supernatant into a syringe and slowly plunge the sample through the filter and into a new 1.5 mL Eppendorf tube (*see* Note 9).
- 17. Extract the remaining supernatant from each sample and inject into a single 2 mL tube (larger tubes may be used if needed) for quality control (QC) analysis.
- **18.** Transfer $100 \ \mu$ L of the filtered experimental sample into a glass insert inside a glass LC vial. The leftover may be used for backup.
- **19.** Vortex the QC sample for 10 s and then filter it.
- **20.** Transfer 1 mL of the QC sample into a glass LC vial (*see* Note 10).

3.2 LC-MS/MS Targeted Analysis

- 1. All experiments should be performed using an UPLC-QQQ-MS platform.
- 2. Dictate an appropriate worklist such that each sample is injected twice, $10 \ \mu L$ for analysis using negative ionization mode and $4 \ \mu L$ for analysis using positive ionization mode (*see* Note 11).
- **3.** The flow rate is maintained at 0.3 mL/min, auto-sampler temperature is kept at 4 °C, while the column compartment is set to 40 °C.
- 4. *HILIC gradient parameters*: After an initial 1-min isocratic elution of 90% mobile phase solvent B, decrease the percentage of solvent B to 40% at t = 11 min. Maintain the composition of solvent B at 40% for 4 min (t = 15 min), after which the percentage of solvent B should gradually be returned to 90%, to prepare for the next injection (*see* Note 12). An example of a total ion chromatogram (TIC) can be found in Fig. 3.
- **5.** *MS/MS parameters*: The mass spectrometer should be equipped with an electrospray ionization (ESI) source. Targeted data acquisition should be performed in multiple reaction monitoring (MRM) mode.
- **6.** Table 1 lists LC-MS parameters for the validated detection of 310 metabolites using reference standards. For additional parameter details, *see* Note 13.

4 Notes

- 1. Render ultrapure water by filtering deionized water.
- **2.** 4:6 dilution of PBS:ACN contains 4:1 (v:v) solution of ¹³C-lactate and ¹³C-glutamic acid.
- **3.** Added solutions must be cooled at 4 °C.

- 4. Prepare ice for use prior to sonication.
- 5. Ensure that the centrifuge is balanced.
- **6.** Resulting protein pellets may be extracted and saved for protein analysis as needs arise.
- 7. Drying time is contingent on the number of samples and type of tissue used. It is permitted to dry samples overnight. If the extracted supernatant cannot be dried immediately, samples may be kept at −20 °C for short-term storage or at −80 °C for long-term storage.
- 8. During this time, you may prepare the vial inserts and syringe filters.
- **9.** It may be necessary to plunge multiple times in order to filter all of the sample. At least 50 μL of filtered sample is required for LC-MS/MS analysis.
- **10.** A glass insert is not needed for analysis of QC sample given sufficient volume of liquid.
- 11. Both chromatographic separations should be performed in HILIC mode.
- 12. Targeted data acquisition should be performed in multiple-reaction-monitoring (MRM) mode.
- **13.** MS parameters were optimized using standard references. All LC separation was performed using basic HILIC. The dwell time should be configured to 5 s for each ion signal. Unit resolution is required for both MS1 and MS2.

References

- Finer M, Glorioso J (2017) A brief account of viral vectors and their promise for gene therapy. Gene Ther 24:1–2 [PubMed: 28123184]
- Wirth T, Parker N, Ylä-Herttuala S (2013) History of gene therapy. Gene 525:162–169 [PubMed: 23618815]
- 3. Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218 [PubMed: 16567009]
- 4. Celec P, Gardlik R (2017) Gene therapy using bacterial vectors. Front Biosci 22:81-95
- Naso MF, Tomkowicz B, Perry WL et al. (2017) Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31:317–334 [PubMed: 28669112]
- Zinn E, Vandenberghe LH (2014) Adeno-associated virus: fit to serve. Curr Opin Virol 8:90–97 [PubMed: 25128609]
- 7. Zhou Q, Kunder N, De la Paz JA et al. (2018) Global pairwise RNA interaction landscapes reveal core features of protein recognition. Nat Commun 9:2511 [PubMed: 29955037]
- Mattiacio JL, Brewer M, Dewhurst S (2017) Methods in molecular biology (Clifton, N.J.) 1581:245–253 [PubMed: 28374253]
- Huey R, Hawthorne S, McCarron P (2017) The potential use of rabies virus glycoprotein-derived peptides to facilitate drug delivery into the central nervous system: a mini review. J Drug Target 25:379–385 [PubMed: 27581650]
- 10. Zheng D, Chen H, Bartee MY et al. (2012) Virus-derived anti-inflammatory proteins: potential therapeutics for cancer. Trends Mol Med 18:304–310 [PubMed: 22554906]
- Patti GJ, Yanes O, Siuzdak G (2012) Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol 13:263–269 [PubMed: 22436749]

- Everett JR, Holmes E, Veselkov KA et al. (2019) A unified conceptual framework for metabolic phenotyping in diagnosis and prognosis. Trends Pharmacol Sci 40:763–773 [PubMed: 31511194]
- Chong J, Wishart DS, Xia J (2018) MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. Nucleic Acids Res 46:W486–W494 [PubMed: 29762782]
- 14. Ismail IT, Showalter MR, Fiehn O (2019) Inborn errors of metabolism in the era of untargeted metabolomics and lipidomics. Metabolites 9:242
- Rinschen MM, Ivanisevic J, Giera M et al. (2019) Identification of bioactive metabolites using activity metabolomics. Nat Rev Mol Cell Biol 20:353–367 [PubMed: 30814649]
- Gowda GN, Raftery D (2013) Biomarker discovery and translation in metabolomics. Curr Metabolomics 1:227–240 [PubMed: 27134822]
- 17. Gu H, Gowda GN, Raftery D (2012) Metabolic profiling: are we en route to better diagnostic tests for cancer? Future Oncol 8:1207–1210 [PubMed: 23130920]
- Jasbi P, Wang D, Cheng SL et al. (2019) Breast cancer detection using targeted plasma metabolomics. J Chromatogr B 1105:26–37
- Yin P, Xu G (2017) Methods in molecular biology (Clifton, N.J.) 1619:467–475 [PubMed: 28674904]
- Kaysen GA, Johansen KL, Chertow GM et al. (2015) Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J Ren Nutr 25:351–356 [PubMed: 25802017]
- Bowers J, Hughes E, Skill N et al. (2014) Detection of hepatocellular carcinoma in hepatitis C patients: biomarker discovery by LC–MS. J Chromatogr B 966:154–162
- 22. Ahn J, Kim J, Hwang J et al. (2017) Urinary metabolomic profiling to identify potential biomarkers for the diagnosis of Behcet's disease by gas chromatography/time-of-flight-mass spectrometry. Int J Mol Sci 18:2309
- 23. Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—A review in human disease diagnosis. Anal Chim Acta 659:23–33 [PubMed: 20103103]
- 24. Ene IV, Brunke S, Brown AJP et al. (2014) Metabolism in fungal pathogenesis. Cold Spring Harb Perspect Med 4: a019695–a019695 [PubMed: 25190251]
- 25. Poddighe S, Murgia F, Lorefice L et al. (2017) Metabolomic analysis identifies altered metabolic pathways in multiple sclerosis. Int J Biochem Cell Biol 93:148–155 [PubMed: 28720279]
- 26. Monnerat G, Seara FAC, Evaristo JAM et al. (2018) Aging-related compensated hypogonadism: role of metabolomic analysis in physiopathological and therapeutic evaluation. J Steroid Biochem Mol Biol 183:39–50 [PubMed: 29920416]
- Zhu J, Djukovic D, Deng L et al. (2015) Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring. Anal Bioanal Chem 407:7857–7863 [PubMed: 26342311]
- Manchester M, Anand A (2017) Metabolomics: strategies to define the role of metabolism in virus infection and pathogenesis. Adv Virus Res 98:57–81 [PubMed: 28433052]
- 29. Gray DW, Welsh MD, Mansoor F et al. (2018) DIVA metabolomics: differentiating vaccination status following viral challenge using metabolomic profiles. PLoS One 13:e0194488 [PubMed: 29621258]
- Zhang L, Huang Y, Lian M et al. (2017) Metabolic profiling of hepatitis B virus-related hepatocellular carcinoma with diverse differentiation grades. Oncol Lett 13:1204–1210 [PubMed: 28454235]
- Barko PC, McMichael MA, Swanson KS et al. (2018) The gastrointestinal microbiome: a review. J Vet Intern Med 32:9–25 [PubMed: 29171095]
- 32. Chandler JD, Hu X, Ko EJ et al. (2016) Metabolic pathways of lung inflammation revealed by high-resolution metabolomics (HRM) of H1N1 influenza virus infection in mice. Am J Physiol Integr Comp Physiol 311:R906–R916
- Hollenbaugh JA, Montero C, Schinazi RF et al. (2016) Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages. Virology 491:106–114 [PubMed: 26895248]

- Carroll PA, Diolaiti D, McFerrin L et al. (2015) Deregulated Myc requires MondoA/Mlx for metabolic reprogramming and tumorigenesis. Cancer Cell 27:271–285 [PubMed: 25640402]
- Gu H, Zhang P, Zhu J et al. (2015) Globally optimized targeted mass spectrometry: reliable metabolomics analysis with broad coverage. Anal Chem 87:12355–12362 [PubMed: 26579731]
- 37. Gu H, Carroll PA, Du J et al. (2016) Quantitative method to investigate the balance between metabolism and proteome biomass: starting from glycine. Angew Chemie Int Ed 55:15646–15650
- Li R, Grimm SA, Mav D et al. (2018) Transcriptome and DNA methylome analysis in a mouse model of diet-induced obesity predicts increased risk of colorectal cancer. Cell Rep 22:624–637 [PubMed: 29346762]
- Buas MF, Gu H, Djukovic D et al. (2017) Candidate serum metabolite biomarkers for differentiating gastroesophageal reflux disease, Barrett's esophagus, and high-grade dysplasia/ esophageal adenocarcinoma. Metabolomics 13:23 [PubMed: 28190989]

Summary of cancer virotherapy mechanism and LC-MS/MS metabolomics analysis

Fig. 2. Summary of LC-MS/MS sample preparation method

Fig. 3. LC-MS/MS total ion chromatogram: (a) negative and (b) positive modes

Table 1

LC-MS parameters for the validated identification and detection of 310 metabolites

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
1	HMDB0031645	Acetamide	60.05	42.80	13	Positive	5.050
2	HMDB0001525	Imidazole	69.05	42.00	21 Positive		1.826
3	HMDB0000119	Glyoxylic acid	72.99	44.90	5	Negative	5.031
4	HMDB0001522	Methylguanidine	74.07	57.00	13	Positive	5.730
5	HMDB0000115	Glycolic acid	75.01	46.90	9	Negative	5.350
6	HMDB0014691	Acetohydroxamic acid	76.04	43.00	9	Positive	6.215
7	HMDB0000123	Glycine	76.04	30.10	13	Positive	6.598
8	HMDB0000925	TMAO	76.08	58.00	21	Positive	6.187
9	HMDB0002039	2-Pyrrolidinone	86.06	44.00	29	Positive	1.620
10	HMDB0000243	Pyruvate	87.00	43.00	5	Negative	5.45
11	HMDB0001873	Isobutyric acid	87.04	87.04	5	Negative	1.948
12	HMDB0000190	Lactate	89.02	43.00	9	Negative	4.1
13	HMDB0001414	Putrescine	89.11	72.00	9	Positive	6.118
14	HMDB0000161	Alanine	90.06	44.00	9	Positive	6.140
15	HMDB0000271	Sarcosine	90.06	44.10	9	Positive	6.184
16	HMDB0001882	Dihydroxyacetone	91.04	91.04	0	Positive	1.734
17	HMDB0000005	2-Ketobutyric acid	101.02	57.00	5	Negative	1.490
18	HMDB0000060	Acetoacetate	101.02	56.90	9	Negative	2.194
19	HMDB0002176	2-Methylbutyric acid	101.06	101.06	5	Negative	1.693
20	HMDB0000718	Isovaleric acid	101.06	101.06	5	Negative	6.064
21	HMDB0000691	Malonic acid	103.00	58.90	9	Negative	4.306
22	HMDB0000008	2-Hydroxybutyric acid	103.04	58.90	9	Negative	5.87
23	HMDB0000357	3-Hydroxybutyric acid	103.04	56.80	9	Negative	4.264
24	HMDB0002322	Cadaverine	103.13	85.90	5	Positive	6.506
25	HMDB0001906	2/3-Aminoisobutyric acid	104.07	57.90	9	Positive	5.295
26	HMDB0000452	2-Aminobutyric acid	104.07	57.90	13	Positive	5.706
27	HMDB0031654	3-Aminobutyric acid	104.07	85.90	5	Positive	5.934
28	HMDB0000112	4-Aminobutyric acid	104.07	87.00	9	Positive	6.596
29	HMDB0000092	Dimethylglycine	104.07	57.90	13	Positive	5.295
30	142-26-7	N-Acetylethanolamine	104.07	61.80	5	Positive	1.915
31	HMDB0000097	Choline	104.11	58.00	33	Positive	7.000
32	HMDB0000139	Glyceric acid	105.02	75.00	9	Negative	4.843
33	HMDB0000187	Serine	106.05	60.00	9	Positive	6.824
34	HMDB0001169	4-Aminophenol	110.06	69.00	9	Positive	5.184
35	HMDB0000617	2-Furoic acid	111.01	66.90	5	Negative	1.760
36	HMDB0000630	Cytosine	112.05	94.90	21	Positive	3.445
37	HMDB0000870	Histamine	112.09	95.00	17	Positive	8.673

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
38	HMDB0000300	Uracil	113.04	71.60	25	Positive	8.707
39	HMDB0000562	Creatinine	114.07	44.10	21	Positive	2.988
40	HMDB0000134	Fumarate	115.00	71.00	5	Negative	2.130
41	HMDB0000176	Maleic acid	115.00	70.90	9	Negative	1.455
42	HMDB0000019	Alpha-ketoisovaleric acid	115.04	70.90	5	Negative	1.455
43	HMDB0000720	Levulinic acid	115.04	70.90	9	Negative	3.250
44	HMDB0000689	4-Methylvaleric acid	115.07	115.07	5	Negative	1.505
45	HMDB0000535	Hexanoic acid	115.07	115.07	5	Negative	1.471
46	HMDB0000162	Proline	116.07	70.00	13	Positive	5.408
47	HMDB0000202	Methylmalonic acid	117.02	73.00	5	Negative	4.622
48	HMDB0000254	Succinate	117.02	73.00	9	Negative	4.293
49	HMDB0000754	Beta-hydroxyisovaleric acid	117.05	71.00	9	Negative	2.132
50	HMDB0000532	Acetylglycine	118.05	75.90	5	Positive	4.335
51	HMDB0000128	Glycocyamine	118.06	42.90	45	Positive	6.344
52	HMDB0000738	Indole	118.07	85.80	13	Positive	5.385
53	HMDB0003355	Amino valerate	118.09	100.90	9	Positive	6.822
54	HMDB0000043	Betaine	118.09	58.00	29	Positive	4.791
55	HMDB0013716	Norvaline	118.09	72.00	5	Positive	5.019
56	HMDB0000883	Valine	118.09	72.00	5	Positive	5.224
57	HMDB0002649	Erythrose	119.03	42.90	17	Negative	4.519
58	HMDB0000719	Homoserine	120.07	73.90	9	Positive	6.343
59	HMDB0000167	Threonine	120.07	73.90	9	Positive	6.343
60	HMDB0011718	4-Hydroxy benzaldehyde	121.03	92.00	25	Negative	1.301
61	HMDB0001870	Benzoic acid	121.03	77.00	9	Negative	1.487
62	HMDB0000574	Cysteine	122.03	80.90	13	Positive	13.454
63	HMDB0001406	Nicotinamide	123.06	79.80	25	Positive	1.746
64	HMDB0001488	Nicotinic acid	124.04	78.10	22	Positive	3.671
65	HMDB0002243	Picolinic acid	124.04	77.70	25	Positive	5.315
66	HMDB0000251	Taurine	126.02	44.10	17	Positive	5.223
67	HMDB0000898	Methylhistamine	126.11	109.10	13	Positive	4.879
68	HMDB0002024	4-Imidazoleacetic acid	127.05	80.90	13	Positive	5.497
69	HMDB0000634	Citraconic acid	129.02	85.10	5	Negative	1.487
70	HMDB0000620	Glutaconic acid	129.02	85.00	5	Negative	4.774
71	HMDB0000491	3-Methyl-2-oxovaleric acid	129.05	129.05	5	Negative	1.351
72	HMDB0000491	Ketoisoleucine	129.05	85.10	5	Negative	1.368
73	HMDB0000695	Ketoleucine	129.05	85.00	5	Negative	1.368
74	HMDB0000267	Pyroglutamic acid	130.05	83.80	9	Positive	4.675
75	HMDB0000070	Pipecolinic acid	130.09	84.00	13	Positive	5.405
76	HMDB0000223	Oxaloacetic acid	131.00	42.00	17	Negative	6.772

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
77	HMDB0000622	Ethylmalonic acid	131.03	87.00	5	Negative	3.282
78	HMDB0000661	Glutaric acid	131.03	86.90	9	Negative	6.179
79	HMDB0001844	Methyl succinate	131.03	98.90	5	Negative	2.011
80	HMDB0000665	Leucic acid	131.07	85.10	9	Negative	1.994
81	HMDB0001432	Agmatine	131.13	71.90	17	Positive	6.912
82	HMDB0001149	5-Aminolevulinic acid	132.07	85.90	13	Positive	6.521
83	HMDB0000725	Hydroxyproline	132.07	85.90	17	Positive	6.113
84	HMDB0000064	Creatine	132.08	44.00	21	Positive	6.204
85	HMDB0000172	Isoleucine	132.10	86.00	9	Positive	4.697
86	HMDB0000557	L-Alloisoleucine	132.10	86.00	9	Positive	4.468
87	HMDB0000687	Leucine	132.10	86.00	9	Positive	4.468
88	HMDB0001645	Norleucine	132.10	86.00	9	Positive	4.468
89	HMDB0000156	Malate	133.01	114.90	9	Negative	5.87
90	HMDB0000168	Asparagine	133.06	73.90	13	Positive	6.813
91	HMDB0003374	Ornithine	133.10	70.00	21	Positive	11.112
92	HMDB0000191	Aspartate	134.05	73.90	13	Positive	6.471
93	HMDB0000209	Phenylacetic acid	135.04	91.00	5	Negative	1.503
94	HMDB0000034	Adenine	136.06	119.10	25	Positive	2.755
95	HMDB0001895	2-Hydroxybenzoic acid	137.02	93.10	21	Negative	1.215
96	HMDB0000710	4-Hydroxybenzoic acid	137.02	93.10	17	Negative	2.316
97	HMDB0014581	Allopurinol	137.05	54.20	29	Positive	2.070
98	HMDB0000157	Hypoxanthine	137.05	54.80	33	Positive	2.938
99	HMDB0001123	Anthranilic acid	138.06	120.00	9	Positive	1.568
10 0	20989-17-7	2-Phenylglycinol	138.09	103.00	21	Positive	2.549
10 1	HMDB0000301	Urocanic acid	139.05	92.90	21	Positive	4.444
10 2	HMDB0002658	6-Hydroxynicotinic acid	140.04	121.90	17	Positive	4.604
10 3	HMDB0002349	Muconic acid	141.02	97.00	5	Negative	5.684
10 4	HMDB0000393	3-Hexenedioic acid	143.03	99.00	5	Negative	6.042
10 5	HMDB0000482	Caprylic acid	143.11	143.11	5	Negative	1.350
10 6	HMDB0000208	Alpha-ketoglutaric acid	145.01	101.00	5	Negative	4.99
10 7	HMDB0000422	2-Methylglutaric acid	145.05	101.10	9	Negative	5.500
10 8	HMDB0000448	Adipic acid	145.05	101.00	9	Negative	6.025
10 9	HMDB0000895	Acetylcholine	146.12	86.80	9	Positive	3.439

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
11 0	HMDB0001257	Spermidine	146.17	72.00	17	Positive	6.499
11 1	HMDB0059655	2HG	147.03	129.00	5	Negative	5.49
11 2	HMDB0000641	Glutamine	147.08	84.00	17	Positive	6.673
11 3	HMDB0000182	Lysine	147.12	83.90	21	Positive	11.749
11 4	HMDB0003339	Glutamic acid	148.06	84.00	17	Positive	6.39
11 5	147-73-9	Meso-tartaric acid	149.01	86.90	13	Negative	11.000
11 6	HMDB0059916	Tartaric acid	149.01	87.00	9	Negative	11.000
11 7	HMDB0001587	Phenylglyoxylic acid	149.02	77.00	9	Negative	1.315
11 8	HMDB0000646	L-(+)-Arabinose	149.04	59.00	20	Negative	6.034
11 9	HMDB0000283	Ribose	149.04	89.00	5	Negative	4.4
12 0	HMDB0000098	Xylose	149.04	89.00	5	Negative	4.320
12 1	HMDB0002097	4-Ethylbenzoic acid	149.06	105.10	9	Negative	1.501
12 2	HMDB0032075	p-Tolylacetic acid	149.06	105.00	5	Negative	1.501
12 3	HMDB0001878	Thymol	149.09	87.00	13	Negative	11.100
12 4	HMDB0000696	Methionine	150.06	103.90	9	Positive	4.923
12 5	HMDB0000669	2-Hydroxy phenylacetic acid	151.04	107.00	13	Negative	1.280
12 6	HMDB0000440	3-Hydroxyphenylacetic acid	151.04	107.00	5	Negative	1.280
12 7	HMDB0004815	4-Hydroxy-3- methylbenzoic acid	151.04	107.10	9	Negative	1.923
12 8	HMDB0000020	4-Hydroxyphenylacetic acid	151.04	107.00	9	Negative	1.907
12 9	HMDB0000703	Mandelic acid	151.04	107.00	5	Negative	1.907
13 0	HMDB0000508	Adonitol	151.06	70.80	16	Negative	4.149
13 1	HMDB0001851	L-(—)-Arabitol	151.06	89.10	8	Negative	4.335
13 2	HMDB0002917	Xylitol	151.06	59.00	20	Negative	4.390
13 3	HMDB0000132	Guanine	152.06	135.10	21	Positive	4.009
13 4	HMDB0000397	2,3-Dihydroxybenzoic acid	153.02	109.00	17	Negative	1.027

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
13 5	HMDB0000152	Gentisic acid	153.02	108.10	25	Negative	1.415
13 6	HMDB0001856	Protocatechuic acid	153.02	109.00	13	Negative	1.731
13 7	HMDB0000292	Xanthine	153.04	109.90	21	Positive	3.415
13 8	56-17-7	Cystamine	153.05	107.70	5	Positive	9.759
13 9	HMDB0001476	3-Hydroxyanthranilic acid	154.05	112.90	5	Positive	13.765
14 0	HMDB0000073	Dopamine	154.09	137.00	9	Positive	4.015
14 1	HMDB0000177	Histidine	156.08	110.10	13	Positive	7.182
14 2	HMDB0000555	3-Methyladipic acid	159.06	97.20	9	Negative	5.464
14 3	HMDB0000678	Isovalerylglycine	160.10	57.00	17	Positive	2.889
14 4	HMDB0000303	Tryptamine	161.11	144.00	9	Positive	3.433
14 5	HMDB0000510	2-Aminoadipic acid	162.08	98.00	13	Positive	6.839
14 6	HMDB0000062	Carnitine	162.12	43.00	25	Positive	6.550
14 7	HMDB0001713	m-Coumaric acid	163.04	119.00	17	Negative	1.499
14 8	HMDB0002035	p-Coumaric acid	163.04	119.00	17	Negative	1.849
14 9	HMDB0000205	Phenylpyruvic acid	163.04	91.00	9	Negative	1.279
15 0	HMDB0001890	Acetylcysteine	164.04	123.00	9	Positive	2.555
15 1	HMDB0002107	Phthalic acid	165.02	121.00	5	Negative	2.380
15 2	HMDB0060256	D-Xylonic acid	165.04	75.00	16	Negative	5.218
15 3	HMDB0000779	3-Phenyllactic acid	165.05	147.10	9	Negative	1.499
15 4	HMDB0002072	4-Methoxyphenylacetic acid	165.05	106.00	9	Negative	1.499
15 5	HMDB0000159	Phenylalanine	166.09	120.20	17	Positive	4.373
15 6	HMDB0000263	Phosphoenolpyruvic acid	166.97	78.80	33	Negative	6.060
15 7	HMDB0000130	Homogentisic acid	167.03	108.00	13	Negative	5.765
15 8	HMDB0000484	Vanillic acid	167.03	152.00	13	Negative	2.000
15 9	HMDB0000232	Quinolinic acid	168.03	150.00	5	Positive	5.263

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
16 0	HMDB0001112	D-Glyceraldehyde 3- phosphate	168.99	79.00	33	Negative	5.800
16 1	HMDB0000289	Urate	169.04	141.00	13	Positive	4.768
16 2	HMDB0000239	Pyridoxine	170.08	134.10	17	Positive	2.295
16 3	HMDB0000001	1-Methylhistidine	170.10	95.90	21	Positive	6.930
16 4	HMDB0000511	Capric acid	171.14	171.14	5	Negative	1.261
16 5	HMDB0000072	Aconitic acid	173.01	85.00	9	Negative	6.191
16 6	HMDB0003070	Shikimic acid	173.04	93.10	9	Negative	5.801
16 7	HMDB0000893	Suberic acid	173.08	111.10	13	Negative	5.004
16 8	HMDB0000721	Glycylproline	173.09	116.10	13	Positive	6.701
16 9	HMDB0000044	L-Ascorbic acid	175.02	114.90	9	Negative	3.027
17 0	HMDB0003357	Acetylornithine	175.11	70.00	25	Positive	6.769
17 1	HMDB0000517	Arginine	175.12	70.00	25	Positive	11.665
17 2	HMDB0000197	Indole-3-acetic acid	176.07	158.10	13	Positive	6.193
17 3	HMDB0000904	Citrulline	176.11	69.90	25	Positive	7.020
17 4	HMDB0000259	Serotonin	177.10	160.00	9	Positive	4.326
17 5	HMDB0000707	4-Hydroxy phenylpyruvic acid	179.03	135.00	9	Negative	1.273
17 6	HMDB0000660	Fructose	179.05	89.00	5	Negative	4.716
17 7	HMDB0033704	Galactose	179.05	89.10	5	Negative	4.732
17 8	HMDB0000122	Glucose	179.05	89.00	5	Negative	5.410
17 9	HMDB0000169	Mannose	179.05	58.90	17	Negative	5.350
18 0	HMDB0000211	Myoinositol	179.05	135.00	1	Negative	1.497
18 1	HMDB0000714	Hippuric acid	180.07	104.90	13	Positive	2.499
18 2	HMDB0006479	Glucosamine	180.09	162.00	5	Positive	6.791
18 3	HMDB0000118	Homovanillic acid	181.05	136.80	5	Negative	2.268
18 4	HMDB0003269	Nicotinuric acid	181.06	134.80	17	Positive	4.234

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
18 5	HMDB0000765	D-Mannitol	181.07	101.10	20	Negative	5.213
18 6	HMDB0000107	Dulcitol	181.07	58.90	24	Negative	5.294
18 7	HMDB0000247	Sorbitol	181.07	58.70	17	Negative	5.223
18 8	HMDB0000158	Tyrosine	182.08	90.90	33	Positive	5.284
18 9	HMDB0000017	4-Pyridoxic acid	184.06	166.10	9	Positive	1.288
19 0	HMDB0000068	Epinephrine	184.10	166.10	5	Positive	5.366
19 1	HMDB0000819	Normetanephrine	184.10	166.10	5	Positive	4.462
19 2	HMDB0000807	3-Phosphoglyceric acid	184.98	79.00	50	Negative	7.013
19 3	HMDB0000784	Azelaic acid	187.09	125.10	13	Negative	4.020
19 4	HMDB0006029	Acetyl-L-glutamine	189.09	130.00	13	Positive	4.651
19 5	HMDB0000715	Kynurenic acid	190.05	144.00	25	Positive	2.338
19 6	HMDB0002302	3-Indolepropionic acid	190.09	130.10	25	Positive	1.562
19 7	HMDB0000094	Citrate	191.02	111.00	9	Negative	7
19 8	HMDB0000193	Isocitrate	191.02	111.00	13	Negative	6.41
19 9	HMDB0000763	HIAA	192.07	146.10	13	Positive	4.507
20 0	HMDB0002545	D-Galacturonic acid	193.03	58.70	17	Negative	6.662
20 1	HMDB0000127	Glucuronic acid	193.03	113.00	9	Negative	6.493
20 2	HMDB0000954	Ferulic acid	193.05	134.00	13	Negative	1.512
20 3	HMDB0029965	Methyl alpha-D- glucopyranoside	193.07	102.80	13	Negative	4.320
20 4	HMDB0029965	Methyl-D- mannopyranoside	193.07	58.80	21	Negative	3.044
20 5	HMDB0000565	Galactonic acid	195.05	75.00	21	Negative	6.831
20 6	HMDB0000625	Gluconic acid	195.05	129.00	13	Negative	6.900
20 7	HMDB0001847	Caffeine	195.09	138.00	17	Positive	1.447
20 8	HMDB0000609	DOPA	198.08	152.10	5	Positive	5.838
20 9	HMDB0004063	Metanephrine	198.12	180.10	5	Positive	3.959

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
21 0	HMDB0000624	Lauric acid	199.17	199.17	5	Negative	1.224
21 1	HMDB0000792	Sebacic acid	201.11	139.10	17	Negative	3.612
21 2	HMDB0003334	Dimethylarginine	203.15	70.00	21	Positive	10.306
21 3	HMDB0060484	Indole-3-pyruvic acid	204.07	163.20	5	Positive	12.162
21 4	HMDB0000201	Acetylcarnitine	204.13	85.00	17	Positive	5.661
21 5	HMDB0000929	Tryptophan	205.10	187.90	5	Positive	4.437
21 6	HMDB0000881	Xanthurenic acid	206.05	131.90	29	Positive	2.245
21 7	HMDB0000671	Indole-3-lactic acid	206.08	118.10	25	Positive	4.453
21 8	HMDB0000639	Mucic acid	209.03	84.90	13	Negative	7.078
21 9	HMDB0000684	Kynurenine	209.09	192.00	5	Positive	4.483
22 0	HMDB0001511	Phosphocreatine	212.05	45.00	17	Positive	1.674
22 1	2280-85-5	6-Methyl-DL-tryptophan	219.12	202.10	5	Positive	4.071
22 2	HMDB0000210	Pantothenic acid	220.12	90.00	9	Positive	4.071
22 3	HMDB0000472	5-Hydroxytryptophan	221.09	204.00	5	Positive	5.236
22 4	HMDB0000215	Acetylglucosamine	222.10	138.10	17	Positive	4.505
22 5	HMDB0000853	N-Acetyl-D-galactosamine	222.10	204.10	4	Positive	4.387
22 6	HMDB0000215	N-Acetyl-D-glucosamine	222.10	204.30	0	Positive	4.487
22 7	HMDB0000742	Homocysteine	223.08	88.00	29	Positive	8.604
22 8	HMDB0000732	3-Hydroxykynurenine	225.09	207.00	5	Positive	1.102
22 9	2387-23-7	N,N-Dicyclohexylurea	225.20	100.10	13	Positive	1.239
23 0	HMDB0001904	3-Nitrotyrosine	227.07	181.00	5	Positive	4.801
23 1	HMDB0000033	Carnosine	227.12	110.00	21	Positive	7.655
23 2	HMDB0000806	Myristic acid	227.20	227.20	5	Negative	1.189
23 3	HMDB0000014	2-Deoxycytidine	228.10	112.00	9	Positive	3.591
23 4	4300-28-1	D-Ribose 5-phosphate	229.01	78.80	45	Negative	6.850

Author Manuscript

Author Manuscript

Author Manuscript

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
23 5	66768-39-6	D-Xylose 5-phosphate	229.01	78.90	45	Negative	5.200
23 6	HMDB0000012	2-Deoxyuridine	229.08	113.00	9	Positive	2.289
23 7	HMDB0001923	Naproxen	229.08	169.00	33	Negative	1.358
23 8	HMDB0014732	Amiloride	230.06	171.00	13	Positive	4.192
23 9	HMDB0001389	Melatonin	233.13	174.00	13	Positive	1.307
24 0	HMDB0000192	Cystine	241.03	74.00	21	Positive	7.980
24 1	HMDB0000826	Pentadecanoic acid	241.21	241.21	5	Negative	1.189
24 2	HMDB0000089	Cytidine	244.10	112.00	9	Positive	4.229
24 3	HMDB0000296	Uridine	245.08	113.00	5	Positive	2.950
24 4	HMDB0000030	Biotin	245.10	227.00	9	Positive	3.955
24 5	HMDB0000101	2-Deoxyadenosine	252.11	136.10	13	Positive	2.585
24 6	HMDB0000845	Neopterin	254.09	206.00	21	Positive	5.621
24 7	HMDB0000220	Palmitic acid	255.23	255.23	5	Negative	1.189
24 8	HMDB0000982	5-Methylcytidine	258.11	126.10	9	Positive	3.932
24 9	HMDB0001078	D-Mannose 6-phosphate	259.02	79.10	52	Negative	7.170
25 0	HMDB0000124	Fructose 6-phosphate	259.02	78.80	41	Negative	6.87
25 1	HMDB0001586	Glucose 1-phosphate	259.02	79.10	29	Negative	6.889
25 2	HMDB0001401	Glucose 6-phosphate	259.02	78.80	41	Negative	7.300
25 3	HMDB0001254	Glucosamine 6-phosphate	260.06	126.10	9	Positive	7.177
25 4	HMDB0001849	Propranolol	260.17	116.00	17	Positive	2.516
25 5	94-24-6	Tetracaine	265.19	176.00	17	Positive	1.534
25 6	HMDB0000085	2-Deoxyguanosine	268.11	151.90	17	Positive	4.000
25 7	HMDB0000050	Adenosine	268.11	136.00	13	Positive	3.018
25 8	HMDB0000195	Inosine	269.09	137.00	21	Positive	3.794
25 9	HMDB0002259	Heptadecanoic acid	269.25	269.25	5	Negative	1.154

26 0	HMDB0001316	6-Phosphogluconic acid	275.01	78.90	49	Negative	13.882
26 1	506-24-1	9-Octadecynoic acid	279.23	279.23	5	Negative	1.188
26 2	HMDB0003331	1-Methyladenosine	282.12	150.00	29	Positive	6.397
26 3	HMDB0000827	Stearic acid	283.26	283.26	5	Negative	1.137
26 4	HMDB0000133	Guanosine	284.10	152.10	13	Positive	4.616
26 5	HMDB0000299	Xanthosine	285.09	153.00	9	Positive	4.844
26 6	HMDB0060493	N-Acetylmuramic acid	292.10	89.00	8	Negative	3.895
26 7	HMDB0000772	Nonadecanoic acid	297.28	297.28	5	Negative	1.120
26 8	HMDB0001409	dUMP	307.03	195.10	17	Negative	7.235
26 9	HMDB0000125	Glutathione reduced	308.09	84.10	25	Positive	6.070
27 0	HMDB0014950	Phenylbutazone	309.16	76.90	45	Positive	1.030
27 1	HMDB0000230	N-Acetylneuraminic acid	310.12	274.00	5	Positive	6.350
27 2	HMDB0000651	Decanoylcarnitine	316.25	84.90	25	Positive	2.332
27 3	HMDB0001227	dTMP	323.07	80.80	21	Positive	6.033
27 4	HMDB0001058	Fructose 1,6 biphosphate (F16BP)	338.99	78.90	49	Negative	7.9
27 5	HMDB0003514	Glucose 1,6 biphosphate (G16BP)	338.99	241.10	17	Negative	8.000
27 6	HMDB0000055	D-(+)-Cellobiose	341.11	161.00	4	Negative	6.869
27 7	HMDB0005826	Galactinol dihydrate	341.11	179.20	16	Negative	8.318
27 8	HMDB0000186	Lactose	341.11	161.00	5	Negative	7.065
27 9	HMDB0000258	Sucrose	341.11	59.00	50	Negative	6.474
28 0	HMDB0000975	Trehalose	341.11	178.90	9	Negative	7.014
28 1	HMDB0003559	Gibberellic acid	345.13	143.00	37	Negative	1.559
28 2	HMDB0001314	cGMP	346.06	152.00	21	Positive	4.63
28 3	HMDB0000045	AMP	348.10	136.20	17	Positive	6.544
28 4	HMDB0001220	Prostaglandin E2	351.21	315.20	9	Negative	1.474

Precursorion

Production

Collision energy

Polarity

RT (min)

Methods Mol Biol. Author manuscript; available in PMC 2022 July 22.

No.

HMDB/CAS

Compound name

\geq
₫
2
0
_
\leq
0
5
Ē
S
C
⊐.
D
H

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
28 5	HMDB0000939	Adenosyl-L-homocysteine	385.13	136.00	25	Positive	6.875
28 6	HMDB0001245	DCDP	388.03	112.00	17	Positive	6.922
28 7	HMDB0000774	Pregnenolone sulfate	395.19	96.80	45	Negative	1.017
28 8	HMDB0000295	UDP	402.99	78.90	50	Negative	6.79
28 9	HMDB0001341	ADP	428.04	136.10	21	Positive	6.900
29 0	HMDB0000121	Folic acid	442.15	295.00	25	Positive	6.806
29 1	HMDB0001201	GDP	444.03	152.10	33	Positive	7.255
29 2	HMDB0001056	Dihydrofolic acid	444.17	297.10	17	Positive	6.783
29 3	HMDB0000797	SAICAR	455.08	110.00	44	Positive	6.947
29 4	HMDB0000536	Adenylosuccinate	464.08	252.00	25	Positive	8.036
29 5	HMDB0000998	dCTP	468.00	111.90	17	Positive	7.5
29 6	HMDB0001191	dUTP	468.98	80.90	13	Positive	7
29 7	HMDB0001562	Folinic acid	474.18	327.10	17	Positive	1.464
29 8	HMDB0003213	Raffinose	503.16	178.90	25	Negative	7.912
29 9	HMDB0000538	ATP	508.01	136.00	45	Positive	7.350
30 0	HMDB0001178	ADP ribose	560.10	136.20	21	Positive	6.020
30 1	HMDB0000290	UDP-GlcNAc	608.09	204.30	9	Positive	7.010
30 2	HMDB0003337	Glutathione oxidized	613.16	484.00	17	Positive	7.267
30 3	HMDB0000902	NAD	664.12	136.00	41	Positive	6.767
30 4	HMDB0003553	Stachyose hydrate	665.21	383.20	40	Negative	8.960
30 5	HMDB0001487	NADH	666.10	348.10	17	Positive	5.700
30 6	HMDB0000217	NADP	745.10	604.10	17	Positive	7.200
30 7	HMDB0000221	NADPH	746.10	746.10	17	Positive	6.500
30 8	HMDB0001206	Acetyl-CoA	810.14	303.10	37	Positive	6
30 9	HMDB0001243	Isobutyryl-CoA	838.17	331.20	37	Positive	7.000

No.	HMDB/CAS	Compound name	Precursorion	Production	Collision energy	Polarity	RT (min)
31 0	HMDB0001166	Hydroxybutyryl coenzyme A	854.16	347.10	37	Positive	6.954