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Translating “Big Data” in Oncology for Clinical Benefit:

Progress or Paralysis
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The molecular characterization of cancer through genomics,
data from multiomics technologies, molecular-driven clinical
trials, and internet-enabled devices capturing patient context
and real-world data are creating an unprecedented big data
revolution across the cancer research-care continuum. While
big data has translated to benefit for some patients, it has also

Introduction

Although there is no common definition of “big data,” it has been
described as “large-scale datasets with complex organization that arise
from different sources and fields (e.g., genomics, physiology, imaging,
health informatics, real -world data, etc.).” Currently, a multiomics
profile of a single cancer patient’s sample can produce from 2-4
terabytes of data or more; and when integrated with myriad other
clinical and disease measures demonstrate that building a big data
foundation for “precision oncology” is challenging but feasible. How-
ever, it is currently estimated that of the 8% of patients with cancer who
qualify for big data—driven targeted therapies, only 5% will benefit (1).
A major reason more patients are not benefitting from big data is
because data analysis has lagged significantly behind data generation
across the discovery to care continuum (2). Given the sheer volume
and variety of data types, only a small percentage of oncology data has
been analyzed to date and even the best algorithms are fraught with risk
in oncology due to the difficulties of applying machine learning and
artificial intelligence (AI) to a dynamic system such as cancer (3).
Although big data may well prove to be transformative in diagnosing,
treating, and preventing cancer, progress in converting data to infor-
mation and using the information to realize patient benefit is slow.
There is general acceptance that information from these massive data
efforts can be transformative for patients, but issues must be addressed
before most patients will benefit (Table 1).

How Genomics Came to Drive Big Data
in Oncology

Cancer is an extraordinarily complex and heterogenous disease.
Despite 50 years of concentrated research by thousands of scientists,
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created new problems. Our intent in this brief communication is
to explore some examples of progress and key challenges that
remain. The problems are not intractable, but success will require
rethinking and rebuilding an information and evidence-based
learning system that moves beyond paralysis to shape a better
future for patients with cancer.

understanding cancer at a fundamental level remains the greatest
challenge of cancer research. Cancer is often described as a disease of
the genome, reflecting the fact the disease results from aberrations in
the normal genome. The long history of aberrant gene discovery in
cancer is a major driver of today’s oncology’s big data “tsunami.” The
early discoveries of key cancer genes (SRC, RAS, TP53, etc.) inevitably
led to the concept of targeting proteins coded by these abnormal genes
as a path to understand and control cancer. FDA approval in 1998 of
trastuzumab for HER2-positive breast cancers and in 2002 of imatinib
targeting BCR-ABL in patients with chronic myeloid leukemia pro-
vided momentum to the search for other targeted agents in oncology.
The completion of the sequence of the normal human genome in 2004
was a watershed moment for all of biomedicine, especially cancer, that
catalyzed a massive search for similarly effective cancer targets in the
dysregulated cancer genome. Building on decades of genome-centric
discoveries in cancer, finally knowing the normal genome sequence
provided a strong rationale for applying sequencing technologies to
systematically identify (all or most) aberrant genes in cancer. These
events set the stage for large-scale sequencing projects in oncology
including The Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (4).

TCGA was the first “big science” project with an original goal to
develop a comprehensive catalog of the genomic changes in 20 cancers.
TCGA’s mission was to provide the high-quality curated data needed
to discover new targets for cancer diagnosis, treatment, and preven-
tion. Key goals for the pilot project included establishing the network
of genome characterization and sequencing centers, a centralized
biospecimen resource and data center to sequence up to three tumors.
The project was scaled from pilot phase in 2008 to ultimately sequence
and provide multiomics data on 33 different types of cancer including
10 rare tumors—producing 2.5 petabytes of publicly available data.
TCGA set high standards for data quality, showed the value of
machine-readable and computable data, identified new driver genes
and demonstrated the value of multiomics data in establishing tumor
subtypes. TCGA and other large scale genome sequencing projects
have driven sequencing technology to where it is estimated that 100
million to 2 billion human genomes could be sequenced by 2025
producing up to 1 zettabase of sequence data per year (5).

Examples of Big Data-Driven Progress

As we reflect on lessons learned, data generated, and frameworks
created by “the Gleevec moment” just 20 years ago and projects such as
TCGA, clearly the “big data” revolution has impacted almost every
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Table 1. Select examples of Big Data’s impact in oncology.

Status of Translation of “Big Data” in Oncology

Clinical
research
phase

Areas of advancement Synopsis of clinical impact from Big Data

Challenges ahead

(i) Discovery

Individual and
pan-cancer
subtypes (2, 6)

Molecular profiling of biospecimens has generated
new molecular classifications within tissue types
(e.g., primary and secondary GBMs) as well as
finding molecular commonalities across tissue
types that have advanced discovery and
development of interventions (e.g., NTRK).

Need to keep pace in developing actionable
targeted interventions as new cancer and
pan-cancer subtypes are discovered and
analytically validated using growing datasets to
improve both decision science and drug
discovery.

(i) Translation

Multiomics
approaches (3)

Reuse of retrospective cohorts to inform
prospective multiomics has demonstrated the
need for orthogonal measurements using
biospecimens collected at the same time and
longitudinally, as shown by genome to proteome
studies.

As omics technologies continue to emerge and
evolve, it is critical that these studies are
conducted with high-quality biospecimens to
avoid secondary analysis of pooled data, with
new analytic techniques mistaking batch effects
as real biological/clinical insights.

Targeted Between 2000 and 2020, 124 anticancer agents
therapies with were approved by FDA. In 2021, 15 were approved
companion including the first KRAS inhibitor. Since 2016, there

diagnostics (2, 7) have been four biomarker-driven, tumor agnostic-
approved indications of targeted therapies and
immunotherapies across 20 cancers (e.g., MSI+,

NTRK, and TMB-H).

Need an optimized solution to update treatments
and feedbacks based on molecular profiles and
actionable alterations as analysis across

11 countries between 2014 and 2020 reported only
20% of patients received treatment informed by
molecular tumor board.

(i) Clinical trials

Novel molecular
biomarker-driven
clinical trials (8)

Adaptive platform trials to stratify broad cohorts
into different subtypes based on molecular profile
and clinical phenotypes and to test different
treatment strategies on the basis of a predefined
decision algorithm.

Adaptive trials such as I-SPY 2, an adaptive
platform trial for neoadjuvant breast cancer
launched in 2009, demonstrate that these
innovative trials must be comprehensive in
collecting longitudinal data to establish
subtypes for ever-increasing precision in therapy
selection.

(iv) Delivery

Therapy selection—
Al-based decision
oncology (9)

Use of clinicogenomics and real-world evidence
outcome datasets to determine benefit and to
develop sequencing of combination regimens
informed by molecular and clinical factors of

As combination regimens continue to be approved
across tumor types, how do we balance N-of-one
"evidence” when an individual patient is choosing
his/her initial treatment plan?

individual patients.

Abbreviation: GBM, glioblastoma.

aspect of cancer research from discovery to clinical application.
Although early, the use of molecular profiling and other technologies
such as advanced imaging, digital pathology, immunology, and inno-
vative clinical trials have moved the pharmaceutical and biotechnology
industries to shift their focus from cytotoxic drugs to more targeted
agents—including immunotherapies. This big data focus combined
with associated advanced analytics has led to approval of unprece-
dented numbers of new targeted drugs across several cancer types and
numerous advances in diagnostics ranging from specific “omics”
profile-directed therapies to companion diagnostics for drug devel-
opment (2). The last few years have seen significant progress in
applying big data to advance precision oncology concept to reality.
Although far from exhaustive, the areas and highlights shown
in Table 1 reflect a breathtaking pace of change that hopefully portend
progress versus paralysis:

(i) Discovery. TCGA and other big data projects drove development
of targeted gene panels that support the identification of cancer
subtypes significantly influencing clinical practices (2). For exam-
ple, in 2016, the World Health Organization incorporated molec-
ular criteria for the first time to redefine glioblastomas into
primary and secondary diseases based on molecular differences,
prevalence, and survival rate (6). Including these molecular char-
acteristics as part of standard molecular work up is critical as the
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results from limited surgical samples used to improve decision-
making after surgery will become clinical data elements for future
pooled secondary analysis.

(ii) Translation. We have vast amounts of data in oncology that was
developed either before or very early in the evolution of next-
generation sequencing (NGS). Lessons learned in large-scale
genomics (e.g., TCGA) and proteomics (e.g., CPTAC) programs
have demonstrated the vital importance of determining fit-for-
purpose quality of biospecimens to comprise true multiomics for
individual patients. In addition, databases used to house multi-
omics data for future secondary analysis will require careful
attention to context of use for each study, especially as the use
of companion diagnostics to determine actionable treatments
evolve within and across tumor types over time (7).

(iii) Clinical trials. Validating molecular signatures requires clinical
trials that test multiple interventions against standard of care with
longitudinal follow-up and designs that speed the testing of the
effectiveness of new drugs and combinations. Launched in 2010,
the I-SPY2 Bayesian statistics—driven adaptive platform trial has
continuously enrolled patients on a multi-arm, master protocol to
evaluate new neoadjuvant therapies in combination with stan-
dard-of-care chemotherapy for high-risk neoadjuvant breast
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cancer. Patients are evaluated on the basis of molecular markers
and imaging for molecular subtyping and assigned to agent arms
based on their subtype. Pathologic complete response (pCR) is
employed to determine success or failure of a specific agent. Big
data plays a key role in nearly all aspects of I-SPY2 as evident by the
recent update demonstrating the association of event-free survival
with individual-level pCR that could only be achieved through
longitudinal monitoring and continued follow-up (8).

(iv) Delivery. Big data from NGS is rewriting the way oncologists make
decisions on therapy recommendations for patients informed by
clinicogenomic real-world evidence repositories (e.g., AACR’s
Project GENIE, ASCO TAPUR,; ref. 2). Using cohorts of molec-
ularly profiled patients with colorectal cancer given different
first-line combination regimens, an aggregate biomarker signature
was developed and trained to predict relative efficacy to inform
future patients with colorectal cancer faced with similar choices of
initial therapy (9). Clinical validation using an independent cohort
demonstrated the signature not only predicted patients with
decreased benefit from approved combinations for initial treat-
ment of colorectal cancer, but also predicted those who would
benefit from alternative strategies for initial treatment for esoph-
ageal, gastric, and pancreatic cancers. As Al-derived biosignatures
like FOLFOZXai continue to be developed and aid clinical decisions,
it is essential to continue to augment genomic-only Al training
with emerging molecular profiling datasets (e.g., microenviron-
ment, proteome, epigenome).

Major Issues and Barriers

Although big data has enabled progress in several areas of the cancer
research continuum, for the major goals of precision oncology to be
achieved, there are both legacy and prospective barriers that must be
understood and removed (see Table 1). For example, legacy (retro-
spective) data are often collected by individual investigators without
the benefit of future secondary analysis revealing batch effects caused
by either sample quality or legacy data standards (7). These data,
sometimes referred to as “fuzzy data” are of varying quality and
questionable value. One approach to increase the value of certain of
these data sets is the creation of “data lakes,” which could be structured
in a manner agnostic to questions and analytics as described in Part 14
of Jaffee and colleagues (10).

Despite government mandates to make all data from government
funded large-scale genomics studies public, data sharing continues
to be a legacy problem as new multiomics platforms are introduced
and mature (6). Solving this problem requires progress on devel-
oping and deploying common data models, data standards, and
interoperability of systems, but of equal importance is changing
career reward structures that currently select against data sharing
before publication.

Beyond these legacy problems, as highlighted in Table 1 and further
explored below, there are more intractable problems that require
creative solutions:

(i) Poor data quality. Data quality begins with the quality of biospeci-
mens. Rigorous biospecimen standards exist and as molecular
profiling becomes more powerful, the mandate to ensure repro-
ducibility of data has become critical. Best practices for the
acquisition of high-quality biospecimens are available from several
sources including NCI’s Best Practices (https://biospecimens.can
cer.gov/bestpractices/). History has shown AI methods trained
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using “samples of convenience” have generated biosignatures
that have little benefit for patients and sometimes even resulted
in harm (2).

(ii) Unstructured databases. Prior to the big data “omics-centric”
revolution, oncology data were collected with minimal attention
paid to the structure of databases, creating a problem for second-
ary analysis using new machine learning and deep learning-based
analytics (3). Oncology databases, especially housing “multi-
omics centric” big data, should require methods to harmonize
legacy data with new emerging technologies.

(iil) Inadequate analytics and lack of delivery. Analysis of the ever-
increasing data explosion in cancer research and care represents
perhaps the field’s biggest challenge in providing the right algo-
rithm-based decision tools to oncologists. Analytics that mirror
the dynamics of cancer require copious amounts of data for
training and testing these algorithms; and there is a critical lack
of trained technical computational professionals to solve these
problems. Moreover, there is a dearth of robust processes to deliver
these decision tools to oncologists. Creating information flows that
sync with electronic medical and electronic health records are
challenges that will likely only be addressed by the major hospital
records companies.

Harnessing the power of big data will require the creation of
prospective databases that address all of the issues above and more.
In addition, there is a need for longitudinal databases to inform the
dynamics of cancer in patients across the research-care continuum
including: diagnostic staging, therapy selection, cancer subtyping,
companion diagnostics for treatment selection and creating new
innovative clinical trials.

The Future

Although the definition of “big data” is still evolving, as existing
technologies advance and new technologies emerge, the questions
that both oncologists and patients hope “big data” will answer
remain relatively constant: (oncologist) what therapies to recom-
mend and (patient) what therapy to choose. Shared decision
making in the era of “big data” should be informed by the
contributed knowledge and experience of every patient with cancer.
Most patients would like to see their data shared in a continuous
learning system.

The increase in our understanding of biological pathways, by TCGA
and other large-scale genomic studies, must now be mirrored and
enabled for clinical pathways (e.g., guidelines, reimbursement). How
can we build an ecosystem where the utilization driven by clinical
pathways dictated by payors and longitudinal outcomes are candidly
shared so we can determine what test to give to whom and what
treatment should be recommended per person on their cancer
journey? Our current system of waiting for enough patients to change
guidelines or using cancer registries as surrogate delayed indicators is
not sustainable.

We find ourselves at the beginning of a “big data” revolution and
are ill prepared to achieve progress without creating patient-centric
systems to collect, manage, analyze and move these data into
patients. Are we making progress? Yes, but it is too slow and the
numbers of patients benefitting, especially in underserved popula-
tions, is disappointing. Change will require a combination of
government enforcement of strict privacy laws, interoperability
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across research and care, common data standards and models,
mandated data sharing, and strong engagement of the private sector
to ensure delivery of the AI decision tools needed to deliver these
new technologies at scale to maximize clinical benefit—to name a
few actions.

Finally, as we contemplate how to proceed in an environment
where big data is literally accumulating at petabytes per day, we will
soon (or have) reach a point where individual investigators armed
even with the most powerful AI tools will be unable to integrate
and interpret the vast amounts of data required to produce the
information needed to inform patient decisions. We are reaching
an inflection point in the oncology big data revolution where we
must learn from other disciplines and understand that data are
entropy until it has context. We can only move to establish such
context through the acceptance and implementation of appropriate
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