Skip to main content
. Author manuscript; available in PMC: 2022 Jul 22.
Published in final edited form as: J Mach Learn Res. 2021 Jan-Dec;22:282.

Table 4:

Hyperparameters used in the algorithms for the Swiss Roll with increasing sparsity (see Figure 18)

Algorithm Hyperparameters RES = 30 RES = 15 RES = 12 RES = 10
LDLE η min 3 3 3 3
k tune 7 2 2 2
N 100 25 25 25
k lv 7 4 4 4
LTSA n_neighbors 5 4 5 10
UMAP n_neighbors 25 25 10 5
min_dist 0.01 0.01 0.5 0.5
t-SNE perplexity 10 5 5 5
exaggeration 4 2 4 2