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Summary 
Natural killer (NK) cells exert an important role in cancer immune surveillance. Recognition of malignant cells and controlled activation of effector 
functions are facilitated by the expression of activating and inhibitory receptors, which is a complex interplay that allows NK cells to discriminate 
malignant cells from healthy tissues. Due to their unique profile of effector functions, the recruitment of NK cells is attractive in cancer treatment 
and a key function of NK cells in antibody therapy is widely appreciated. In recent years, besides the low-affinity fragment crystallizable receptor 
for immunoglobulin G (FcγRIIIA), the activating natural killer receptors p30 (NKp30) and p46 (NKp46), as well as natural killer group 2 member D 
(NKG2D), have gained increasing attention as potential targets for bispecific antibody-derivatives to redirect NK cell cytotoxicity against tumors. 
Beyond modulation of the receptor activity on NK cells, therapeutic targeting of the respective ligands represents an attractive approach. Here, 
novel therapeutic approaches to unleash NK cells by engagement of activating NK-cell receptors and alternative strategies targeting their tumor-
expressed ligands in cancer therapy are summarized.
Keywords: NKG2D, NKp30, NKp46, FcγRIIIA, natural killer cells, bispecific antibody, CAR NK, CAR T
Abbreviations:  ADC: antibody-drug conjugate; ADCC: antibody-dependent cell-mediated cytotoxicity; DLBCL: diffuse large B cell lymphoma; ITAM: intracellular 
immunoreceptor tyrosine-based activation motif; KIR: killer cell immunoglobulin-like receptor; MHC: major histocompatibility complex; NCR: natural cytotoxicity 
receptor; NK: natural killer; NKG2D: natural killer group 2 member D; PD-1: programmed cell death-1; scFv: single-chain fragment variable; TIGIT: T-cell 
immunoreceptor with immunoglobulin and ITIM domains; TRAIL: tumor necrosis factor-related apoptosis-inducing ligand; CAR: chimeric antigen receptor; ECD: 
extracellular domain.

Introduction
Immunotherapy is meanwhile an established treatment op-
tion in cancer therapy. A variety of approaches have been 
preclinically investigated and selected concepts matured into 
clinical practice. Many approaches that recently achieved 
clinical approval such as bispecific antibodies, immune check-
point inhibitors, or chimeric antigen receptor (CAR) T cells 
are dealing with concepts of redirecting T cells or directly 
triggering T responses to establish cancer immunity ideally 
in a self-reinforcing immunity cycle [1–4]. However, despite 
encouraging success in certain tumor entities, overall response 
rates are still unsatisfactory. In the tumor microenvironment, 
other effector cell populations including natural killer (NK) 
cells contribute to tumor immunity by counteracting immune-
evasion or promoting T cell responses [5]. Although clinically 
less advanced concepts modulating the innate immune system 
hold great promise to further broaden therapeutic options for 

cancer patients. Analogous to modulating T cells, activating 
and inhibitory immune checkpoints on myeloid cells or NK 
cells have been identified and various agents targeting these 
receptors are in different stages of preclinical and clinical de-
velopment [6–9].

NK cells share similarities with CD8-positive T cells in cer-
tain aspects, but do not require the presentation of tumor 
antigens by major histocompatibility complex (MHC) class I 
molecules for activation. In contrast, NK cells are activated by 
germline-encoded, stress-inducible marker molecules, which 
they recognize by sets of activating surface receptors (Fig. 1). 
Activating NK-cell receptors and their cognate ligands are 
one class of receptor/ligand systems with great promise in 
cancer immunotherapy and are evaluated in academia and 
industry [8, 10, 11]. Here, selected candidate activating recep-
tors and their ligands are introduced and advances in novel 
approaches in modulating their activity for therapeutic inter-
vention are outlined.
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NK cells in cancer immunosurveillance and 
cancer therapy
NK cells are innate immune cells that exert spontaneous cyto-
toxicity and play a key role in the immune surveillance of tu-
mors [8, 12, 13]. In vitro, NK cells are able to kill tumor cells 
from different entities, and in animal models an enhanced 
propensity for tumor development was demonstrated in mu-
tated mice with reduced NK cell functions or in mice depleted 
of NK cells [14–16]. In humans, an increased risk of cancer 
was observed in subjects with low natural cytotoxicity in a 
long-term prospective epidemiological study [17]. Moreover, 
NK cell defects are found frequently in different tumor types 
and are associated with progression and metastasis [8, 13, 
18–20]. NK cells were suggested to play important roles in 
different treatment modalities including antibody therapy 
[21–24]. Here, NK cells are regarded as important effector 
cells for therapeutic antibodies since the majority of periph-
eral blood NK cells express the low-affinity Fc receptor for 
immunoglobulin G (FcγRIIIA, CD16A), which enables them 
to eliminate target cells by antibody-dependent cell-mediated 
cytotoxicity (ADCC) [22]. The potential importance of NK 
cells was suggested by clinical observations. Thus, patients 
with homozygous expression of the FcγRIIIA 158 V allelic 
variant with high affinity to the antibody Fc domain had im-
proved responses to antibody therapy than patients expressing 
the low-affinity FcγRIIIA 158 F variant [25, 26]. Moreover, 
high NK cell counts were associated with improved survival 
in non-germinal center (GC) diffuse large B cell lymphoma 

(DLBCL) patients receiving R-CHOP chemoimmunotherapy, 
although this was not observed in GC DLBCL patients [27]. 
In neuroblastoma patients, a contribution of NK cells to 
anti-GD2 dinutuximab antibody therapy was suggested by 
improved survival rates observed in patients with unlicensed 
NK cells lacking inhibitory killer cell immunoglobulin-like re-
ceptor (KIR) reactive to self-human leukocyte antigen (HLA) 
molecules [28].

NK cells can eradicate tumor cells by secretion of perforins 
and granzymes upon the formation of a lytic synapse be-
tween the NK cell and the target cell. In addition, NK cells 
can kill tumor cells by death receptor activation through 
the expression of tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) or CD95 ligand [12, 29]. NK cells 
also modulate diverse immune responses by releasing various 
cytokines and chemokines or by crosstalk with other immune 
cells including T cells, macrophages, or dendritic cells. To 
maintain self-tolerance the reactivity state of individual NK 
cells is fine-tuned (NK cell education) and NK cell activities 
are tightly regulated by a complex interplay between sets of 
germline-encoded activating or inhibitory receptors [30, 31]. 
Activating receptors that allow recognition of tumor cells and 
mediate natural cytotoxicity include NKG2D and members 
of the group of natural cytotoxicity receptors (NCR) [8, 31, 
32]. The group of NCR comprises natural killer receptors p46 
(NKp46, NCR1), p30 (NKp30, NCR3), and p44 (NKp44, 
NCR2) [33–36]. In particular, NKG2D and NKp30 bind 
danger signaling self-antigens, which can be either induced or 

Figure 1: Tumor cell elimination by triggering activating NK-cell receptors. Upon malignant transformation tumor cells upregulate stress-induced ligands, 
which can be recognized by activating NK-cell receptors such as NKG2D or NKp30, and are eliminated by cytotoxic attack. Tumor cells are able to evade 
NK cell attack by shedding or downmodulation of these surface-exposed danger ligands.
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upregulated in response to malignant transformation or other 
forms of cellular stress (induced self-recognition). Inhibitory 
receptors include inhibitory members of the polymorphic KIR 
family and the heterodimeric CD94-NKG2A complex recog-
nizing MHC class I molecules as well as various co-receptors 
such as CD96, T cell immunoreceptor with immunoglobulin 
and ITIM domains (TIGIT), programmed cell death-1 (PD-1) 
and others [37–48].

Although antibody therapies have improved patient out-
comes, not all patients benefit, and relapses and progression 
of the disease remain urgent issues. Therefore, the improve-
ment of antibody therapy for cancer is a major issue of current 
translational research. Regarding their important functions 
in immunosurveillance of cancer and in antibody therapy, 
strategies are developed to further improve NK-cell recruit-
ment against tumors. These include agonistic antibodies to 
co-activating receptors such as CD137, immune checkpoint 
antibodies for blockade of inhibitory receptor signaling, and 
tumor-targeting antibodies or bispecific antibody derivatives 
for NK-cell recruitment and activation by engagement of 
stimulatory receptors [10, 11, 39].

Engagement of NK lysis receptors
Canonical IgG antibodies can engage FcγRIIIA to elicit 
ADCC by NK cells, but the interaction between the antibody 
and FcγRIIIA is of low affinity. Further improvements can be 
obtained by strengthening the interaction with the Fc receptor 

using Fc engineered antibodies or bispecific antibody-
derivatives [49, 50]. Bispecific antibodies, which combine the 
antigen-binding sites from two different antibodies in one 
single protein, can be designed as Fc-less molecules to avoid 
FcγR ligation and allow to selectively engage a distinct lysis 
receptor. Currently, one bispecific antibody, the bispecific T 
cell engager blinatumomab for T cell recruitment via CD3, 
is marketed [1]. In different attempts to recruit NK cells dif-
ferent formats were employed, including small-sized fusion 
proteins only consisting of two single-chain fragments vari-
able (scFv) and more complex bispecific IgG-like antibodies 
harboring a functional Fc domain [10, 50]. Besides, recom-
binant immunoligands were developed. These molecules typ-
ically consist of a tumor cell-directed scFv antibody moiety 
and a ligand of an activating NK-cell receptor (Fig. 2).

FcγRIIIA
In therapy with tumor-targeting antibodies, the role of NK 
cells as mediators of ADCC is widely accepted, albeit anti-
bodies mediate a plethora of effector functions [22]. In 
peripheral blood NK cells are the dominant effector cell popu-
lation that expresses FcγRIIIA, of which relevance has been 
suggested by clinical observations [22, 25]. FcγRIIIA is asso-
ciated with homo- or heterodimers of the adaptor proteins 
FcƐRI γ and TCR ζ carrying intracellular immunoreceptor 
tyrosine-based activation motifs (ITAM). In humans, the re-
ceptor is also expressed in a subset of peripheral monocytes, 
macrophages, dendritic cells, and certain T cells. To improve 

Figure 2: Strategies to restore/ enhance tumor cell recognition by NK cells. A variety of strategies to restore or enhance tumor cell recognition by NK 
cells have been evaluated. Selected concepts based on antibodies are summarized: (a) monoclonal antibodies against a tumor-associated antigen (TAA) 
are capable in triggering ADCC via engagement of the FcγRIIIa, (b) bispecific antibodies (bsab) targeting a TAA and engaging FcγRIIIa, (c) bispecific 
antibodies targeting a TAA and an alternative activating NK-cell receptor, and (d) recombinant immunoligands based on stress-ligands genetically fused 
to an antibody fragment targeting a TAA. Note: the molecule structures represent conceptual drawings. The concept could be realized by a variety of 
molecule designs, including more IgG-like structures [50].
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FcγRIIIA engagement and NK cell-mediated ADCC, the 
antibody`s Fc domain was engineered to achieve a higher af-
finity [49]. Two Fc glycoengineered antibodies with reduced 
fucose content, mogamulizumab and obinutuzumab, and an 
Fc-engineered ADC (belantamab-mafodotin), are approved 
for clinical use in the treatment of leukemia or lymphomas 
and more are in different stages of pre-clinical or clin-
ical development. The enhanced affinity to FcγRIIIA by Fc 
glycoengineered antibodies may reduce the relative impact of 
inhibitory receptor signaling. Thus, ADCC by rituximab was 
diminished by inhibitory interactions between KIR and HLA 
molecules, whereas the inhibitory effect of KIR signaling on 
ADCC was negligible when the Fc engineered CD20 antibody 
obinutuzumab was employed [51].

Significant improvements in NK-cell-mediated tumor cell 
lysis were also obtained with bispecific antibodies harboring 
FcγRIII-specific Fab or scFv domains with high affinity. Such 
bispecific CD16 antibodies were highly efficient in inducing 
NK-cell-mediated lysis of tumor cells. A variety of CD16-
engaging bispecific antibodies and antibody derivatives have 
been described [52–54].

NKG2D
NKG2D (CD314) is a C-type lectin-like receptor. The re-
ceptor forms a complex with the signaling molecule DNAX-
activating protein of 10  kDa (DAP10), which includes an 
intracellular tyrosine-based YxxM motif for signal transduc-
tion [32, 55]. NKG2D, which in humans is expressed by NK 
cells, CD8-positive T cells, γδ T cells, and CD4-positive T cell 
subsets, recognizes multiple cellular ligands. Human NKG2D 
ligands consist of MHC class I related chain (MIC) A and B 
and six UL-16 binding proteins (ULBP1 to 6) [32]. In mice, 
NKG2D ligands include members of the Rae-1 family, which 
are orthologs of human ULBPs, the H60 family, as well as 
murine UL16-binding protein-like transcript 1 (MULT1). 
Normally NKG2D ligands are expressed poorly in healthy 
tissues. Their expression is regulated at the level of transcrip-
tion, mRNA or protein stability, and proteolytic cleavage from 
the cell surface membrane and surface expression is often 
found upregulated upon cellular stress such as infections with 
pathogens or malignant transformation. The contribution of 
NKG2D and its ligands to cancer immunosurveillance has 
been highlighted in various murine cancer models [56–60]. In 
cancer patients, the expression of NKG2D ligands has been 
linked to favorable prognosis and improved NK cell tumor in-
filtration [61–63]. Acute myeloid leukemia (AML) stem cells 
have been described as lacking NKG2D ligands and thereby 
evading immune destruction [64]. However, also contradic-
tious reports exist, according to which high levels of MICA 
were associated with poor prognosis [65, 66], which may be 
explained by the occurrence of shed MICA which may act 
as immunosuppressive [67, 68]. In addition, immunoselection 
may edit tumor cells to downregulate the expression of lig-
ands for activating receptors as demonstrated for NKG2D 
and NKp46 in murine cancer models [60, 69]. An important 
role has been attributed to shedding soluble NKG2D ligands, 
which may impede NK cell activities by blocking receptor 
functions or downregulating the cognate receptors’ surface 
expression levels, as demonstrated for NKG2D in both T and 
NK cells [70, 71].

For activation of NKG2D, which represents a compelling 
target for immune intervention, ULBP2 or MICA were fused 
to IgG antibodies or scFv antibody fragments [72–74]. For 

example, ULBP2 was fused to a CD138 scFv for targeting 
of malignant plasma cells [73]. The immunoligand mediated 
NK cell killing of multiple myeloma cells in vitro and showed 
therapeutic efficacy in a xenograft model of multiple mye-
loma. Similarly constructed immunoligands directed against 
other cell surface antigens such as CD33 or CD20 on blood 
cancer cells or antigens such as CEA, CD24, and HER2 on 
solid tumors also have proven efficacy in pre-clinical models 
[72, 75–78]. Importantly, co-engagement of NKG2D was 
found to enhance NK cell-mediated ADCC in a synergistic 
manner. For example, the expression of NKG2D ligands in 
target cells may be important as evidenced by experiments 
showing that their expression resulted in higher susceptibility 
of lymphoma cells to rituximab-mediated ADCC in vitro [79]. 
Drug-induced expression of NKG2D ligands results in higher 
in vitro ADCC by an Fc engineered CD33 antibody in AML 
[80]. In agreement with these findings immunoligands con-
sisting of a CD20 scFv and either ULBP2 or MICA antigen 
were shown to augment lymphoma cell lysis when combined 
with rituximab or the CD38 antibody daratumumab [76, 
81]. In addition to immunoligands, also bispecific NKG2D 
engaging antibodies have been described. Recently, the thera-
peutic efficacy of a bispecific tandem scFv antibody engaging 
NKG2D and binding to CS1 on malignant plasma cells has 
been reported [82]. In a recent report, VHH-based bispecific 
antibodies have been described and showed high cytolytic po-
tential [83].

NKp30
The NCR NKp30 (NCR3, CD337) is expressed on resting 
as well as activated NK cells, innate lymphoid cells 2 (ILC2), 
CD8-positive T cells, and γδ T cells [84, 85]. Like FcγRIIIA, 
NKp30 signals via the ITAM carrying FcƐRI γ and TCR ζ 
chains [31]. Ligation of NKp30 elicits cytotoxicity and cyto-
kine release functions of NK cells [33]. However, NKp30 
exists in different splice variants, which differ in intracellular 
domains. In contrast to activating NKp30 A and NKp30 B 
isoforms, the NKp30 C splice variant was reported to exert 
immunosuppressive functions [86]. In addition to heparan 
sulfate glycosaminoglycans on cell surfaces or the extracel-
lular matrix, NKp30 recognizes B7-H6, the HLA-B-associated 
transcript 3 protein (Bat3), and soluble galectin-3 [87–89]. 
B7-H6 is normally absent from healthy tissues. However, 
its expression has been found on the cell surface of tumor 
cells of different origins and its expression has been shown 
to promote NK cell cytotoxicity [87]. Bat3 normally is local-
ized in the nucleus, but is trafficked to the cell surface upon 
contact with NK cells and can be secreted in exosomes, and 
was shown to trigger cytokine release and cytotoxicity [88]. 
In contrast, soluble galectin-3 inhibited NK cell effector func-
tions [89]. Also, elevated serum levels of soluble B7-H6 were 
observed in a subgroup of patients with advanced malignant 
melanoma and were correlated to NKp30 down-modulation, 
chemotherapy resistance, and metastases in neuroblastoma 
[90, 91]. Moreover, soluble Bat3 was implicated in immune 
evasion in chronic lymphocytic leukemia [92].

In cancer patients, a key function for NKp30 has been sug-
gested in neuroblastoma and gastrointestinal stromal tumors 
(GIST). Thus, in GIST patients receiving activating NK cell 
KIT tyrosine kinase inhibitor therapy, predominant expres-
sion of the immunosuppressive NKp30 C isoform relative 
to activating NKp30 A and B splice variants was associated 
with reduced survival [86, 90]. Levels of expression of the 
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NKp30 C isoform were also associated with the risk of re-
lapse in high-risk neuroblastoma patients in remission after 
induction chemotherapy [90]. Moreover, high NKp30 ex-
pression was associated with improved overall survival in 
AML [93]. To harness NKp30 as a trigger molecule, bispecific 
immunoligands were generated. Thus, B7-H6 was fused to a 
CD20 scFv to target lymphoma cells [94]. This recombinant 
fusion protein triggered NK cell-mediated lysis of lymphoma 
cells. In particular, a highly synergistic induction of cyto-
toxicity and cytokine release was observed by a combin-
ation of this molecule with a CD20-directed immunoligand 
containing the NKG2D ligand ULBP2. Similar results were 
observed with immunoligands consisting of B7-H6 and a 
HER2-specific scFv [95]. In a recent study, a minimal NKp30 
binding domain derived from B7-H6 was affinity maturated 
and showed in the format of a bispecific, EGFR-directed fu-
sion protein potent NK cell activation capacity. When these 
novel agents were additionally equipped with a functional Fc 
domain an even higher cytolytic potential was demonstrated 
by concomitant FcγRIIIA activation. Besides triggering tumor 
cell lysis by NK cells, these novel agents triggered significant 
pro-inflammatory cytokine release demonstrating a unique 
feature compared to cetuximab [96]. Recently, also NKp30 
bispecific antibodies have been preclinically evaluated for 
their ability to eliminate precursor B-ALL tumor cells or mul-
tiple myeloma cells and showed significant cytolytic capacity 
[10, 97].

NKp46
NKp46 (NCR1, CD335) is another member of the NCR 
family [34, 98]. NKp46 is displayed by both resting and acti-
vated NK cells as well as ILC1, a subset of ILC3, and a minor 
T cell population [99]. Like NKp30 and FcγRIIIA, NKp46 
associates with ITAM-containing FcƐRI γ or TCR ζ chains 
for intracellular signal transduction. Ligands for NKp46 in-
clude hemagglutinin and other viral components, the soluble 
complement factor P as well as heparan sulfate proteoglycan, 
which is expressed by different tumors [100, 101]. A specific 
cellular cell surface ligand for NKp46 however has not been 
identified yet. Several findings support a cancer-protective 
role for NKp46. For example, the growth of certain murine 
lymphoma cells in Ncr1 knock-out mice was increased [102]. 
Moreover, tumor growth was enhanced upon antibody-
mediated NKp46 neutralization in models of malignant mel-
anoma [103]. The engagement of NKp46 induces NK cell 
cytotoxicity and cytokine release [98], making NKp46 an 
interesting trigger molecule for immunotherapeutic interven-
tion. Recently, bispecific antibodies engaging NKp46 and a 
tumor antigen, i.e. either CD19 or CD20 for targeting malig-
nant B cells, have been generated. Bispecific antibodies were 
produced in a format containing a functional Fc domain to 
trigger FcγRIIIA in parallel to NKp46. These trifunctional 
NK cell engagers were highly effective in inducing NK cell 
cytotoxicity and proved efficacy in a lymphoma xenograft 
model in mice [104]. These types of molecules were recently 
also evaluated for their ability to control pediatric B-cell pre-
cursor acute lymphoblastic leukemia [97].

Specific targeting of NK-cell receptor ligands
Regarding their paucity in healthy tissues ligands for 
activating receptors such as NKG2D or NCR may represent 
valid target antigens on malignant cells for antibody-based 

approaches. Of note, the expression of these antigens by 
different tumor types may result in a broad application 
spectrum of such strategies and render them particularly 
attractive. To date, several approaches targeting ligands of 
NKG2D, NKp30, or NKp46 have been evaluated in pre-
clinical studies. These include antibodies, antibody-drug 
conjugates (ADC), bispecific molecules as well as chimeric 
antigen receptors (CAR) for cellular therapies with genetic-
ally modified effector cells (Fig. 3).

For example, antibodies with a dual specificity for the 
NKG2D ligands MICA and MICB such as antibody IPH4301 
have been designed [105]. These antibodies may mediate dual 
functions. On the one side, they may target and eradicate 
cancer cells directly by mediating immune-mediated effector 
functions such as ADCC or complement-dependent cyto-
toxicity. On the other side, they may modulate the immune 
response by neutralizing soluble, shed MICA and MICB mol-
ecules, which impair NK and T cell activities in the tumor 
microenvironment [106]. In another approach, MICA and 
MICB were employed as targets for ADC to deliver cytotoxic 
payloads to the tumor cells. Thus, a MICA/B specific antibody 
was coupled to DNA cross-linking pyrrolobenzodiazepine di-
mers and the resulting ADC proved therapeutic efficacy in 
xenograft models of solid tumors in mice [107].

Considering that NKG2D and other NK-cell receptors rec-
ognize multiple ligands, the extracellular domain (ECD) of 
NKG2D was employed as a targeting device as an alternative 
to antigen-binding domains from antibodies. The rationale 
for this approach is that the NKG2D receptor domain allows 
targeting all different NKG2D ligands, whereas antibodies 
are specific for individual antigens. For example, the NKG2D 
ECD was fused to an IgG Fc domain. In murine models of 
Epstein-Barr virus protein LMP1 driven lymphomas, such a 
murine NKG2D-Fc fusion protein demonstrated therapeutic 
efficacy in vivo and triggered cytotoxicity against lymphoma 
cells, but, importantly, not against normal B cells in vitro 
[108]. To further optimize the efficacy of such constructs, 
the human NKG2D ECD was fused to a modified Fc domain 
that was engineered by amino acid sequence alterations to 
establish a higher affinity to activating FcγR and to achieve 
a potency to mediate ADCC [109, 110]. This fusion protein 
efficiently triggered ADCC with NK cells as effector cells 
against leukemia or breast cancer cells.

Moreover, T cells were redirected to tumor cells expressing 
danger signaling NK-cell receptor ligands. For example, the 
NKG2D ECD was fused to a scFv or Fab fragment directed 
to the activating T cell trigger molecule CD3 [111, 112]. To 
redirect T-cell cytotoxicity against B7-H6 expressing tumors, 
a bispecific [anti-B7H6 × CD3] tandem scFv antibody was de-
signed [113]. This BiTE-like molecule triggered human T cells 
to produce IFNγ in the presence of B7-H6-positive tumor 
cells. A bispecific variant directed to murine CD3 triggered 
cytotoxicity of T cells and prolonged survival of mice har-
boring murine tumors that had been transduced with human 
B7-H6 expression.

In addition, CAR were designed for genetic T cell and NK 
cell engineering. Thus CAR based on ECD from NKG2D 
[114–116], NKp46 [117], NKp30 [118], or DNAM-1 [119] 
have been generated. In addition, the efficacy of an anti-
B7-H6 CAR was described [120, 121]. Most advanced are 
NKG2D CAR T cells engineered with an expression con-
struct consisting of full-length NKG2D that is fused to the 
CD3 ζ signaling domain [122]. By pairing with endogenously 
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expressed DAP10 like the natural NKG2D, triggering of this 
CAR results also in the costimulatory signal. The potential 
of this concept was suggested in initial studies showing func-
tional in vitro activity and therapeutic activity of murine 
NKG2D CAR T cells in models of ovarian cancer, lymphoma, 
and multiple myeloma [116, 123–125], and also human 
NKG2D CAR T cells demonstrated therapeutic potential in 
pre-clinical studies [122]. In a phase I clinical study in patients 
with AML/myelodysplastic syndrome or relapsed/refractory 
multiple myeloma however no objective responses at a single 
injection of low cell doses were observed, and persistence of 
CAR T cells in the patients was limited [126]. Thus, further 
optimizations are needed to achieve CAR T cell expansion. 
Whether this may be achieved by other CAR designs in which 
for example NKG2D ECD was fused to CD3 ζ as well as 
co-stimulation domains from either 4-1BB or CD28 as sug-
gested in other studies will have to be determined [115, 127].

Besides CAR T cells also NKG2D-based CAR NK cells 
have been pre-clinically evaluated. Recently, CAR NK cells 
targeting multiple myeloma have been described [128]. In 
addition, NK cells derived from induced pluripotent stem 
cells (iPSC) were engineered to express an NKG2D CAR con-
taining the 2B4 co-stimulatory as well as the CD3ζ signaling 
domain [129]. These NKG2D CAR NK cells inhibited tumor 
growth, prolonged survival and may provide attractive en-
gineered “off-the-shelf” lymphocytes for tumor immuno-
therapy that deserve further investigation. In a recent study, 
NKG2D CAR NK cells have been combined with NKG2D-
directed bispecific antibodies. In an immunocompetent 

mouse glioblastoma model mimicking low or absent NKG2D 
ligand expression, the combination of CAR NK cells and 
an NKG2D-ErbB2-directed bispecific antibody effectively 
suppressed the outgrowth of tumors, resulting in treatment-
induced endogenous antitumor immunity [130, 131].

Conclusions
Activating NK-cell receptors and their ligands play an im-
portant role in the immunosurveillance of cancer cells under 
physiological conditions. In cancer patients, these receptor 
systems represent promising target structures for therapeutic 
intervention. Various approaches are at different stages of 
pre-clinical and clinical development.

Limitations of approaches aiming at engaging NK cells 
against tumor cells may occur by tumor-induced NK cell 
dysfunction resulting from down-regulation of activating 
NK-cell receptors and induced NK cell anergy. Reduced ex-
pression of individual activating NK-cell receptors has been 
observed frequently in tumor patients. Also, shed ligands may 
hamper the efficacy of selected approaches because in add-
ition to inducing receptor internalization they may compete 
for receptor binding. The therapeutic efficacy of the described 
strategies may be further enhanced by combination with com-
pounds that interfere with the shedding of ligands or promote 
expression levels. For example, the combination with im-
mune checkpoint blockade, cytokines, or immunomodulatory 
agents may lead to further improvements and may allow 
overcoming these limitations. In situations in which NK cells 

Figure 3: Targeting the surface-expressed ligands of activating NK-cell receptors. Activating NK-cell receptors can be downregulated in cancer patients. 
In this situation concepts targeting these quite tumor-restricted ligands may be beneficial: (a) monoclonal antibodies targeting stress-ligands such as 
MICA/B prevent shedding and trigger ADCC, (b) the extracellular domain (ECD) of an activating receptor (e.g. NKG2D) is used as targeting domain and 
fused to an IgG-Fc domain thereby redirecting NK cell cytotoxicity by FcγRIIIa engagement. Since macrophages and subsets of monocytes express 
FcγRIIIa recruitment of other effector cells may be possible, (c) and (e) bifunctional fusion proteins consisting of the ECD of an activating NK-cell 
receptor and an antibody fragment triggering FcγRIIIa or CD3 for redirecting NK cell or T cell cytotoxicity, respectively, (d) and (f) the ECD of activating 
NK-cell receptors are used as targeting domains in CAR receptors to generate CAR NK or CAR T cells.
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remain dysfunctional and cannot be sufficiently activated by 
the outlined strategies, approaches making use of the ECD 
of activating NK-cell receptors for the targeting of their cog-
nate tumor-expressed ligands may represent promising alter-
native approaches. In principle, the described concepts may 
perfectly complement actual approaches in modulating T-cell 
activity and myeloid effector cells. Combining such strategies 
triggering complex anti-tumor responses may be possible. It 
will be interesting to see how these novel approaches perform 
in the clinical situation and how they can be integrated into 
existing treatment regimens.
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