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Abstract

Electronic health records (EHRs) are a rich source of data for researchers, but extracting 

meaningful information out of this highly complex data source is challenging. Phecodes represent 

one strategy for defining phenotypes for research using EHR data. They are a high-throughput 

phenotyping tool based on ICD (International Classification of Diseases) codes that can be 

used to rapidly define the case/control status of thousands of clinically meaningful diseases and 

conditions. Phecodes were originally developed to conduct phenome-wide association studies to 

scan for phenotypic associations with common genetic variants. Since then, phecodes have been 

used to support a wide range of EHR-based phenotyping methods, including the phenotype risk 

score. This review aims to comprehensively describe the development, validation, and applications 

of phecodes and suggest some future directions for phecodes and high-throughput phenotyping.
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INTRODUCTION

The growth of electronic health records (EHRs) provides today’s researchers with a wealth 

of opportunities. The primary purpose of an EHR is to facilitate patient care and hospital 

billing. In serving these purposes, the EHR stores information about patient symptoms, 

findings, and diagnoses over time. This information can be used to address scientific 

and medical questions in ways that have never before been possible. Creative methods to 

leverage EHR data have proliferated in the last decade, and it is likely that researchers have 

only begun to scratch the surface.

The sheer size and complexity of many EHRs can be overwhelming. Clinical notes, lab 

results, pathology reports, radiology reports, claims data, and medications—all these data 

elements are present in the EHR, though often not in a form that is easy to use. Information 
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about patients is incomplete and, at times, contradictory or incorrect. To harness the 

potential of EHRs, researchers must find a way to extract quality phenotypes from a dense, 

complex, fragmented, and noisy entity.

EHR-based phenotyping methods can be roughly divided into two categories. First, there are 

validated algorithms created for a specific phenotype. These algorithms tie together multiple 

sources of data from the EHR—including lab results, medications, concepts extracted from 

notes using natural language processing, and billing codes—to identify cases and controls 

with maximum performance. Second, there are high-throughput phenotyping methods that 

attempt to define a wide array of phenotypes via automated processes. Their goal is to 

capture some of the enormous breadth of the EHR to support large-scale studies of the 

medical phenome.

Phecodes belong to the latter category. They are a high-throughput means of capturing 

thousands of phenotypes from the EHR. What phecodes lack in specificity and sensitivity, 

they gain in breadth, portability, and ease of use. This review describes how phecodes 

were created and validated, gives examples of some of their applications, and explains how 

phecodes may be used by researchers to gain a foothold in the complex realm of EHR 

phenotyping.

WHAT IS A PHECODE?

Phecodes are manually curated groups of International Classification of Diseases (ICD) 

codes intended to capture clinically meaningful concepts for research. They were created 

to rapidly characterize a wide swath of diagnoses, symptoms, and findings—a phenome-

wide snapshot—needed to conduct phenome-wide association studies (PheWAS). Today, 

phecodes are used in a variety of EHR phenotyping methods.1

International Classification of Diseases Codes

The ICD is a medical classification list of codes for diseases, symptoms, findings, and 

injuries that is maintained by the World Health Organization (WHO). ICD codes are used 

by more than 100 countries to track global morbidity and mortality data (2). In some 

countries, ICD codes are integrated into the EHR to record medical findings of patients 

in a standardized format, which are then used to estimate healthcare costs by tracking the 

complexity and frequency of care. Today, over 70% of the world’s health expenditures are 

allocated with ICD (3).

The ICD has evolved significantly over its long history, and the WHO periodically releases 

new versions (4, 5). In the context of EHR-based research, only the two most recent versions 

of the ICD, the ninth and tenth revisions (ICD-9 and ICD-10, respectively), are relevant. 

The United States uses an extended version of ICD called the “clinical modification” (CM) 

1Phecodes were originally called “PheWAS codes” before the term “phecode” was introduced in 2015 (1), and they are still 
sometimes called by that name. In this review, medical findings, symptoms, and diagnoses are often referred to collectively as the 
“medical phenome” or “phenotypes,” which is a general term used to describe any observable trait in an organism and is typically 
used in the context of genetics. Calling medical diagnoses “phenotypes” reflects the initial purpose of phecodes to facilitate genetics 
research.

Bastarache Page 2

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



developed by the National Center for Health Statistics (6). While ten nations use ICD codes 

for reimbursement (including Canada, the United Kingdom, and Sweden), only the United 

States uses the CM extension (7).

In US hospitals, ICD-9-CM codes were used from the 1980s until 2015, when ICD-10-CM 

was adopted (8). While both code sets capture many of the same medical conditions, the 

coding structure is fundamentally different, and ICD-10-CM has over five times the number 

of diagnosis codes as ICD-9-CM (9). To facilitate the transition from ICD-9 to ICD-10, 

the Centers for Medicare and Medicaid Studies (CMS) released a publicly available map 

between the two versions (10).

Researchers using ICD codes should keep two key facts in mind: (a) First, ICD codes 

from the United States are not directly compatible with other countries that use ICD for 

reimbursement. (b) Second, EHR systems in the United States that have data from before 

and after 2015 contain both ICD-9-CM and ICD-10-CM codes.

Grouping International Classification of Diseases Codes into Useful Phenotypes

As ICD codes accumulated in hospital administrative databases, investigators began using 

them for healthcare research (11, 12). To facilitate secondary use, researchers have often 

defined groups of ICD codes to capture their outcome of interest (13, 14). Grouping ICD 

codes is necessary because ICD codes encode granularity that may not be useful in certain 

applications. For example, there are 20 ICD-9-CM codes and 113 ICD-10-CM for type 1 

diabetes (T1D), including codes for T1D with various complications like ketoacidosis, renal 

disease, neurological manifestations, etc. Any one of these codes may be used to indicate a 

T1D diagnosis. ICD groupings are often created for one or a small set of phenotypes, and 

typically the groupings are created using domain expertise and consensus (15, 16). Cases of 

a given disease or condition are defined based on the presence of one of the codes in the 

grouping for that disease or condition. (Cases may be required to have multiple instances of 

the same phecode, as described below in the section titled The Rule of Two.)

Phecodes are an effort to scale this grouping process to include all available ICD diagnosis 

codes. Defining which level of granularity is useful is subjective and depends on the 

application. For phecodes, the decision of which concepts to define was made on the basis 

of clinical and researcher judgement, with a focus on capturing common adult diagnoses 

that would be useful in genetic association studies. The groupings were created manually 

and informed by the Clinical Classification Software (CCS) grouping schema, as well as the 

prevalence of codes in the EHRs of multiple medical centers.

Phecodes are maintained by the Center for Precision Medicine at Vanderbilt University 

Medical Center and are available at https://www.phewascatalog.org/phecodes. Revisions are 

published periodically and users can submit feedback through the website. The latest version 

of phecodes (version 1.2) includes 1,867 phecodes for different diagnoses, symptoms, and 

findings.
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Adding International Classification of Diseases, Tenth Revision, Clinical Modification

Phecodes were developed using ICD-9-CM codes. The adoption of ICD-10-CM codes in 

2015 necessitated the definition of a new map linking ICD-10-CM codes into the existing 

phecode structure. Unlike the manual effort required to define phecodes, the ICD-10 

to phecode map was developed primarily through an automated process using general 

equivalence mappings provided by the CCS, as well as mappings available in the United 

Medical Language System (UMLS), and validated with genetic replication studies (17). 

Phecodes version 1.2 condenses roughly 15,500 ICD-9-CM codes and 90,000 ICD-10-CM 

codes into 1,867 phecodes.

Phecode Hierarchy

Phecodes are hierarchical, which allows them to capture phenotypes at multiple levels of 

granularity. The hierarchy is an attempt to accommodate different research questions and 

cohort sizes. There is a phecode for the specific “Intestinal infection due to C. difficile” 

(008.52), as well as the more general “Bacterial enteritis” (008.5) and “Intestinal infection” 

(008). Parent phecodes are three digits. Digits may be added to a parent code following a 

decimal point. Each additional digit trailing indicates a subset of the ICD codes of the parent 

code. A child code like 008.52 implies 008.5 as well as 008 (Figure 1).

Dealing with Noise

Researchers who use ICD diagnosis codes from the EHR must be mindful of potential 

inaccuracies. Accuracy of ICD codes varies widely across diagnoses and cohorts, with 

studies finding accuracies ranging from less than 50% (18) to nearly 100% (19).

There are multiple reasons why an ICD code may not reflect a patient’s true underlying 

disease (20). Some errors are simple typos (21).2 In other cases, an ICD that is more 

familiar may be incorrectly used for a related condition (22). Because ICD codes are used 

for reimbursement, some errors can be traced back to financial incentives. Upcoding is 

the practice of inappropriately assigning a code with a higher reimbursement. Upcoding is 

illegal, and insurance companies and other regulatory bodies attempt to prevent it, but it 

still happens (23). The proportion of upcoded ICD codes has been shown to vary between 

institutions and across time (24).

Sometimes the use of an ICD code is technically correct in that it adheres to CMS coding 

guidelines (25) but is incorrect with respect to the truth about the patient. As O’Mallay 

et al. have described in a marvelous review of ICD accuracy, a diagnosis is an expression 

of probability, not a black-and-white statement of fact (26). Diagnoses can evolve and 

change as more information is gathered. Along this pathway, patients may acquire codes for 

conditions that they do not actually have.

2Typos are common in ICD-9 coding for T1D and T2D due to the fact that the codes for the two are interlaced (e.g., codes 250.01, 
250.03, 250.11, 250.13, etc., are used for T1D, and 250.02, 250.04, 250.12, and 250.14 are used for T2D).
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The Rule of Two

Because of these inaccuracies, defining cases of a given disease or condition based on a 

patient’s being coded for a single phecode can result in false positives. One simple strategy 

to mitigate this problem is to require a patient to be coded for a phecode on multiple 

unique encounter dates to count as a case. In a study of 6,005 patients, the performance 

of four phecodes was tested against a manually reviewed gold standard (27) (Figure 2). 

The F1 score (a measure of a classification’s precision and recall) was calculated as a 

function of the number of codes required for defining a case. The study concluded that the 

maximum average F1 score was achieved when cases were defined as having two or more 

phecodes. Based on this and subsequent work, the so-called rule of two was defined (28, 29). 

Phecode-based analyses like PheWAS commonly use this rule, and it is the default setting 

for the PheWAS R package (30).

The rule of two is not ideal in all circumstances and phenotypes. Indeed, even in the 

initial small study (27), using two or more phecodes only maximized the F1 score for one 

of the four phenotypes tested. Requiring two codes may induce high false negative rates, 

particularly for acute and time-limited conditions. The ideal code count threshold will also 

vary based on characteristics of the EHR cohort. For example, cohorts of patients with 

records that span many years may improve phecode accuracy using a higher minimum 

code count requirement. PheProb is a method that obviates the need to define a minimum 

code count threshold by calculating the probability an individual has a phenotype based 

on the number of diagnosis codes in their EHR. In their study, the authors show that 

PheProb increases the statistical power for replicating known genetic associations (31). Such 

a method may be useful when a strict case/control status is not necessary.

Exclude Ranges and Defining Controls

Each phecode has an exclude range that can be used to filter out controls with related 

conditions. For example, phecode 555.1 (Crohn’s disease) has an exclude range of 555.00–

564.99, which en-compasses a group of phecodes for noninfective gastrointestinal disorders. 

Exclude ranges were modeled after exclusion criteria commonly used in case/control studies 

(32). Phecode version 1.2 currently defines 232 unique exclude ranges and each phecode is 

assigned an exclude range.

The primary rationale for exclude ranges was to mitigate the noisiness of ICD coding, where 

less specific or related codes may be used for a specific condition. For example, a specific 

underlying condition (e.g., Basal cell carcinoma) may only be recognized as a nonspecific 

entity (e.g., “Neoplasm of uncertain behavior of skin” in ICD-9) pending a further diagnostic 

workup.

While exclude ranges are a logical response to the noisiness of ICD codes, they have the 

potential to introduce bias. In any case/control study, exclusion criteria can compromise 

generalizability (33, 34). Applying phecode exclude ranges subtly changes the hypothesis in 

a way that is hard to understand, and so they should be used with caution. Exclude ranges 

also induce a high rate of missingness, which can be problematic for methods that require 
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every individual to be classified for a particular disease. Future study could help improve the 

function of exclude ranges and clarify their effects.

Sex-Specific Codes

Each phecode is labeled by sex specificity. Overall, 2% of phecodes are male specific and 

7% are female specific. For codes that are sex specific, the sex of the patient is used as 

an inclusion criterion. Therefore, the phecode for prostate cancer only includes males as 

either cases and controls; all others are labeled as missing. This functionality is built into 

the PheWAS R package and can also be implemented using the sex column in the phecode 

definition file (https://phewascatalog.org/files/phecode_definitions1.2.csv).

Phecode Chapters

Each phecode belongs to one of 18 chapters representing broad organ systems or categories. 

These categories are based on ICD-9 chapters. Phecode chapters are used to visualize data 

in PheWAS plots, where phecodes from the same chapter are plotted proximally along the 

x-axis and are assigned a distinct color. They can also be used to restrict a PheWAS to a 

particular domain of interest.

While PheWAS is typically used as a hypothesis-free scan of all available phenotypes, 

sometimes a researcher is only interested in phenotypes from a particular domain. Chapters 

can be used to focus a PheWAS on phenotypes of interest, excluding tests that are not 

relevant to the study and easing the multiple comparison correction by reducing the overall 

number of tests. This technique was used in an analysis of ABO blood type and cancer 

risks, where only phecodes from the neoplasm chapter were tested (35). To discourage data 

snooping, researchers must make the decision to restrict a PheWAS by chapter prior to 

running the analysis rather than applying this filtering after the full PheWAS is generated.

The number of phecodes and the degree of compression (i.e., the number of ICD codes 

per phecode) across chapters are highly variable (Figure 3). The differences reflect, in 

part, properties intrinsic to the ICD coding structure, as well as the focus of phecodes 

on capturing common adult diseases with potentially genetic etiologies. There are many 

ICD codes relating to injuries and these are highly compressed in phecodes. In contrast, 

phecodes in the endocrine/metabolic chapter maintain much of the granularity available in 

the ICD coding structure itself. Future versions of phecodes may expand the granularity of 

phenotypes in chapters like “congenital anomalies,” which currently groups many specific 

ICD codes into a single nonspecific phecode.

Validating Phecodes

Phecodes are the product of a manual curation, and the map is the culmination of a series 

of subjective decisions regarding which phenotypes to define and how to define them. Since 

their creation lacks a formal theory, efforts to validate phecodes were empirically critical to 

demonstrating their utility.

EHR phenotypes can be validated in several ways. One method is to use a gold standard 

based on manual chart review. Performance metrics like positive predictive value (PPV) 

Bastarache Page 6

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://phewascatalog.org/files/phecode_definitions1.2.csv


can be calculated to compare phecode case/control assignments to a gold standard. This 

approach was used in the eMERGE (Electronic Medical Records and Genomics) Network 

to test and validate EHR phenotype algorithms (36). Studies comparing phecodes against 

manually reviewed gold standards have found a wide range of PPVs (37, 38). The reasons 

for the heterogeneity of phecode performance is likely multifactorial. Performance depends 

on the phenotype tested, as well as the average record length, data density, and patient mix 

of the EHR cohort. The influence of these factors makes it difficult to generalize on the 

results of any one study.

When available, genetic data can be used as an alternative approach to validate EHR 

phenotypes. In this case, the performance of a phenotype is based on its ability to replicate 

known phenotype/SNP associations (32, 39). A benefit of genetic validation is that it does 

not require manual chart review and is more easily applied to multiple cohorts.

A 2013 study developed a framework to do genetic validation at scale using the NHGRI-EBI 

(National Human Genome Research Institute–European Bioinformatics Institute) GWAS 

Catalog as the source of replication candidates. The GWAS Catalog is a curated resource 

of statistically significant associations between traits and SNPs found in published GWAS 

(40). Traits in the GWAS Catalog were mapped to 86 corresponding phecodes (Figure 4). 

Through this linkage, researchers created a SNP/phecode map (SPM) that related phecodes 

to an associated SNP. Each SNP/phecode pair was annotated with the ancestries of the 

discovery cohort, and the odds ratios from the original study were used to calculate the 

minimum number of cases required to replicate the association at a nominal p < 0.05. The 

study replicated 51 out of 77 sufficiently powered associations at p < 0.05 across a diverse 

set of phenotypes (41).

In this and other phecode replication studies, the odds ratios from the phecode-based 

associations are generally closer to 1 than the original GWAS finding (32). This is likely 

due to the noisiness of phecodes relative to the phenotypes used in the initial study. The 

winner’s curse also likely plays a role, as described in an interesting paper by Palmer & 

Pe’er about internal replication rates of loci in the GWAS Catalog (42).

Replication for Calibration and Quality Control

Genetic replication rates can be used to compare phenotyping methods applied to the 

same dataset. Hughey et al. used the SPM to demonstrate the relative superiority of using 

Cox regression over logistic regression to detect known associations (43). An interesting 

alternative method for genetic validation is to use a genome-wide heritability estimate, as 

was done in a study comparing different EHR-based bipolar disorder algorithms (44).

Genetic validation may also be used as a quality control measure on EHR datasets that 

are linked to genetic data. The SPM can be used to calculate a replication rate for any 

cohort with EHR and genetic data. If a dataset were somehow corrupted (for example, if 

the genotype data were linked to the wrong patients), then the replication rate would be 

suppressed. A formal study of replication rates has not been conducted and would be useful 

for enhancing this technique as a quality control measure.
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The current version of the SPM comprises 588 catalog traits mapped to 163 phecodes (Table 

1); the map is available for download at https://www.phewascatalog.org/refmap. Because 

associations have a low replication rate across ancestries (42), subsets of the SPM were 

created to represent three genetic ancestry categories. [The relative dearth of SNP/phenotype 

associations in Asian and African ancestries is due to the unfortunate lack of genetic 

studies on individuals of non-European ancestries (45).] When calculating a replication rate, 

researchers should use the SPM that matches the ancestry of their cohort.

Other High-Throughput Coding Systems

Phecodes are not the only comprehensive mapping of ICD diagnosis codes used for 

research. Some researchers condense ICD codes into parent codes consisting of the first 

three digits/characters of the code (e.g., ICD-10 codes G61.0 through G61.9 are collapsed 

into G61). The Neale lab used this process in their massive catalog of UK Biobank GWAS 

results (46). The Agency for Health Research and Quality developed a manually curated 

grouping of ICD-9-CM and ICD-10-CM codes called CCS (47, 48). A study comparing 

phenotypes from phecodes, CCS, and ICD-9-CM top codes found that phecodes were more 

likely to replicate known genetic associations in the GWAS Catalog (49).

Rasmy et al. tested the suitability of five different ICD mappings to produce phenotypes 

for predictive modeling. Despite having far fewer unique codes, the UMLS (Unified 

Medical Language System) and phecode mapping performed similarly and were superior 

to other mappings like CCS (50). Their results suggest that phecodes represent an efficient 

compression of ICD-based data.

Zhang et al. explored a data-driven approach to grouping both ICD-9 and ICD-10 codes to 

address coding heterogeneity across health systems and reduce the bias inherent in manual 

groupings (51). Data-driven approaches may be used on their own or as a way of informing 

future manual efforts in grouping ICD codes.

PHECODE APPLICATION 1: PHEWAS

Phecodes were created to enable PheWAS, a method that requires a phenome-wide 

characterization of a cohort.3 PheWAS has been reviewed extensively elsewhere (52, 53), so 

this section will briefly describe recent developments in PheWAS as they relate to phecodes 

and high-throughput phenotyping.

PheWAS was initially used to scan for associations between the phenome and a SNP. The 

results of a PheWAS analysis on a genetic variant can reveal pleiotropy—a phenomenon 

where a single genetic variant is associated with multiple phenotypic traits (54). In 

this capacity, PheWAS is often used as a way to learn more about genetic associations 

newly discovered using EHR data. First, an EHR-based phenotype algorithm is developed, 

3“Phenome-wide association studies” is a play on the term “genome-wide association studies,” but the analogy is imperfect. A GWAS 
samples loci of human genetic variation across a large by finite string of base pairs. But a PheWAS is a not sampling of human 
variation from head to toe, and no such standardized nomenclature exists to define the full phenome. The term “PheWAS” is used 
to describe an association study that loops through many unrelated human phenotypes, and there is no consensus on how many 
phenotypes must be tested to constitute a PheWAS.
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validated, and used to conduct a GWAS. Then PheWAS is applied to the significantly 

associated SNPs to scan for additional phenotypic associations (55–59).

PheWAS has been applied to genetic data beyond SNPs, including human leukocyte antigen 

types (60), gene expression levels (61–63), functional genetic variants (64), and genetic 

instrument variables from Mendelian randomization (65–67). PheWAS has also been used to 

explore the phenome of nongenetic variables to study sleep quality (68), race (69), disease 

comorbidities (70), healthcare costs (71), COVID-19 outcomes (72), and even the health and 

wellness of musicians (73).

Not every PheWAS uses phecodes, either by necessity or by design. Some studies use raw 

ICD codes instead of condensing them into phecodes (74, 75). Other studies are based on 

non-ICD sources like imaging data (76), birth defect registries (77), or lab results (78). 

For cross-cohort studies, a hybrid approach may be necessary. Diogo et al. conducted a 

study on four cohorts with different phenotypic data (79). A cross site meta-analysis was 

conducted using a manual map to harmonize phenotypes, from phecode, medical interviews, 

and surveys.

Recent work has suggested methodological improvements of the PheWAS method by 

incorporating temporal or contextual information associated with ICD codes. One study 

showed that the ability to replicate known genetic associations with phecodes is improved 

by using a Cox regression, which takes advantage of the temporal information encoded in 

longitudinal EHR data (43). Another PheWAS found that phecodes were strongly correlated 

with the types of clinics patients visited, suggesting that visit type might be taken into 

account to improve the quality of phecode phenotypes (80).

HIGH-THROUGHPUT PHENOTYPING AND MENDELIAN GENETICS

The study of complex diseases and the study of Mendelian diseases represent two separate 

domains of human genetics research, each with its own methods, tools, and tendencies 

(Table 2). Thus far, EHR-linked biobanks have primarily been used to study complex 

diseases (81, 82). As the cost of genetic sequencing has decreased over the past decade, 

resources linking EHR data to whole-exome or whole-genome sequencing are beginning to 

proliferate (83–85). In response to this exciting development, new phenotyping tools and 

methods must be developed that reconcile two very different approaches to studying human 

genetics.

At first glance, phecodes may seem ill-suited to contribute to the study of Mendelian 

diseases. Mendelian geneticists describe phenotypes with exquisite precision, noting an 

upturn of the nose, rotation of the ears, or curve of the fourth toe. Phecode-based phenotypes 

are, in comparison, very crude. Phecodes were developed for high-throughput methods 

applied to large cohorts, sacrificing accuracy for speed, scalability, and breadth. They are the 

factory-made version of the Mendelian geneticist’s bespoke creations.

Nuanced phenotyping is a cornerstone of Mendelian genetics. Indeed, the founders of this 

field made incredible advances through careful observation of patients’ traits combined 

with the logic of Mendelian inheritance. In 1966, Victor McKusick published a catalog of 
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heritable diseases in a resource that is now known as the Online Mendelian Inheritance in 

Man (OMIM) (86). By the time the CFTR gene was identified in 1989, OMIM had more 

than 4,000 disease entries, each with its own detailed description of clinical manifestations 

(87). Advances in gene mapping technology led to the rapid discovery of genes underlying 

the conditions described in OMIM. By the year 2000, OMIM contained entries for over 

1,000 diseases linked to specific genes (88). Today, that number has grown more than 

fivefold (89).

The study of Mendelian diseases led to enormous advances in the understanding of many 

heritable conditions. However, its explanatory power only extends to a relatively small 

number of people. Doubts about the potential for Mendelian genetics to help the average 

person have been around for a while. A 1968 news article likened the medical geneticists at 

their annual meeting in Bar Harbor to medieval scholars debating how many angels could 

dance on the head of a pin: “This provided theologians with lasting employment, but did 

little to help the common man enter the kingdom of heaven.… [G]eneticists must be capable 

of more significant research” (90). While the proportion of people affected by monogenic 

conditions has increased in recent years—with some estimates as high as 10%—the majority 

of human disease cannot be attributed to rare monogenic mutations (91).

Common diseases like diabetes and heart disease are often referred to as complex. In 

contrast to monogenic conditions, complex diseases are due to the confluence of polygenic 

and environmental risks (92). The genetic study of complex diseases took off following the 

first successful GWAS in 2002 (93). In contrast to the study of Mendelian genetics, research 

in complex genetics was high throughput and hypothesis free, leveraging data from large 

populations. While Mendelian disease research identified causal variants, the associations 

discovered with GWAS were statistical in nature, typically with small effect sizes, and not 

well understood at the mechanistic level (94, 95). In short, Mendelian genetics explains a lot 

about a small number of patients, and complex genetics explains a little bit about everyone.

However, as several researchers have pointed out, the dichotomy of monogenic versus 

polygenic disease is artificial. Complex and Mendelian diseases actually exist on a 

continuum, with full-penetrance Mendelian diseases caused by rare variants on one end 

of the spectrum and complex disease risk caused by common variants on the other (96, 97).

To begin to bridge the gap, researchers have begun developing methods and resources that 

borrow the principles, knowledge, and methods from both domains. The Human Phenotype 

Ontology (HPO) was developed as a controlled vocabulary to annotate clinical descriptions 

in OMIM (98). Researchers have used HPO to find phenotypic commonalities in genes 

linked to both Mendelian and complex diseases (99) and to facilitate the development of 

population-based methodologies for the study of monogenic disease (100). A map that links 

HPO terms to phecodes was created to search for Mendelian disease patterns in the EHR at 

scale using a method called the phenotype risk score (PheRS).
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PHECODE APPLICATION 2: PHENOTYPE RISK SCORES

PheRS is a method developed to leverage EHR data for the study of Mendelian diseases. 

It is a continuous measurement of the similarity between an individual and the clinical 

description of a Mendelian disease. The disease patterns are defined using OMIM’s clinical 

descriptions of diseases, which have been mapped to HPO terms. HPO terms are linked 

to phecodes, so any given Mendelian disease in OMIM can be automatically described in 

terms of phenotypes that are easily extracted from the EHR (101) (Figure 5). Features are 

weighted based on their prevalence in a study population, such that unusual phenotypes 

contribute more to the score than common ones.

Many HPO terms do not have an exactly matching phecode. In these cases, a broader 

phecode is used. Thus, a specific feature like “exocrine pancreatic insufficiency” is mapped 

to the more general phecode 577 (“diseases of the pancreas”). The phecode 577 groups 

together the nonspecific ICD-9 code with several other conditions of the pancreas like acute 

pancreatitis. Including a broader phecode in a PheRS will decreases the specificity, while 

leaving it out would sacrifice sensitivity. Decisions about how to strike a balance between 

these two criteria need to be made based on the application of the PheRS. Future work might 

further refine phenotypic inputs to increase performance overall.

In a proof-of-concept study, the PheRS of patients diagnosed with a particular genetic 

disease were elevated compared with controls, suggesting that PheRS can be used to 

differentiate individuals affected by a Mendelian disease without using the disease label 

itself (101).

As a continuous score, PheRS can be elevated for a patient who only partially matches a 

clinical description. This is important for two reasons. First, genetic diseases vary in terms 

of their expressivity. CFTR, the gene that causes cystic fibrosis, is a case in point. Some 

CFTR mutations cause classical cystic fibrosis, while other mutations only affect the lungs 

or pancreas (102). Variable expressivity can even occur between individuals with the same 

mutation (103). An algorithmic approach to identifying individuals with CFTR mutations 

must allow for partial phenotypic overlap. Second, EHRs are known to have a substantial 

amount of missing information, which is a major challenge for using them in research (104, 

105). Thus, methods that use EHR data must be tolerant of missing data.

While the examples given thus far have focused on cystic fibrosis, a PheRS can be created 

from any one of the thousands of diseases described in OMIM, enabling a high-throughput 

scan of rare genetic variants. In one study, a PheRS was calculated for 1,204 diseases 

to scan 6,000 rare genetic variants, identifying associations with PheRS and rare genetic 

variants that were replicated in external cohorts (101). Other researchers have created 

PheRS by combining the phenotypic features of multiple Mendelian diseases. Ye et al. 

found that patients with a high PheRS for monogenic aortopathy were more likely to have 

adverse outcomes and more likely to have pathogenic mutations found in genetic testing for 

aortopathy (106).

Applications of PheRS have extended beyond Mendelian diseases and rare variants. Zhong 

et al. found that the genetically predicted expression of CFTR was associated with PheRS 
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for cystic fibrosis (107). PheRS has also been used to characterize complex non-Mendelian 

phenotypes such as pancreatic cancer (108) and major depressive disorder (109).

PheRS might be used to identify undiagnosed patients using EHR data. In a study of ten 

patients who were diagnosed with cystic fibrosis as adults, eight had a PheRS above the 

ninety-fifth percentile prior to diagnosis (110). Figure 6 illustrates the PheRS trajectory 

for one of these individuals over time. While these results are encouraging, achieving the 

specificity necessary to find ultrarare patients remains a challenge. Future developments of 

the method may incorporate more elements of EHRs (e.g., clinical notes or labs) to enhance 

the specificity of PheRS.

TOWARD SYNTHESIS: USING HYBRID PHENOTYPING MODELS

ICD-based phenotyping is powerful because it utilizes data that are ubiquitous, easy to 

manipulate, and relatively standardized. While there is undeniable heterogeneity in the way 

ICD codes are assigned across time and place, concerted efforts are made to standardize 

their use. And while ICD codes only capture a finite number of phenotypes represented in 

the EHR, they do represent many of the diagnoses and symptoms needed for research.

However, the EHR is so much more than just ICD codes. Information encoded in lab results, 

clinical notes, pathology reports, and the like can be leveraged to increase the accuracy and 

granularity of phenotypes. Several methods have been developed using machine learning 

techniques to integrate multiple EHR data types, including PheNorm, MAP (multimodal 

automated phenotyping), and PheCAP (111–113). These methods have been shown to 

increase phenotype accuracy compared to ICD or phecodes alone, although implementing 

them involves significant effort upfront.

The last decade has seen amazing progress in the development of EHR-based phenotyping 

methods, but there is still a lot of work to be done. Future development on phenotype 

methods should prioritize scalability, portability, and interpretability, alongside accuracy, in 

order to more fully realize the research potential of EHRs.
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Figure 1. 
The anatomy of a phecode. A phecode is a three-digit parent code with optional digits 

following a decimal point. Numbers after the decimal point indicate a hierarchical 

relationship. Phecodes without subordinate codes are called leaf codes. Each phecode has a 

string label and is linked to an exclude range. Cases are often defined as individuals with 

two or more unique phecodes, and controls are defined as individuals who do not have any 

code within the exclude range.
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Figure 2. 
Phecode performance based on the minimum code count required for a patient to count as 

a case. Requiring two or more phecodes on unique dates to define a case resulted in the 

highest mean F1 score across four phenotypes.
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Figure 3. 
Phecode statistics by chapter. Across phecode chapters, there is variability in the total 

number of phecodes (purple bars; left axis) as well as the average number of ICD-9 

(International Classification of Diseases, Ninth Revision) codes that define each leaf 

phecode (black points; right axis).
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Figure 4. 
Linking phecodes to single-nucleotide polymorphisms (SNPs). The GWAS (genome-wide 

association study) Catalog reports SNP–trait associations found in previous studies. Catalog 

traits are annotated with the Experimental Factory Ontology (EFO). Phecodes are linked to 

SNPs through a phecode/EFO map; three examples are shown here.
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Figure 5. 
Mapping from The Human Phenotype Ontology (HPO) to phecodes. Select features from 

Online Mendelian Inheritance in Man (OMIM) clinical description of cystic fibrosis are 

shown as HPO terms (left), along with their mapping to phecodes (right).
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Figure 6. 
Phenotype risk score (PheRS) for cystic fibrosis (CF) of a patient diagnosed late in life. The 

PheRS for CF score rises over time as the patient acquires more diagnoses that overlap with 

the disease profile. By the time this patient was diagnosed with CF, their PheRS was higher 

than that of 99% of patients.

Bastarache Page 24

Annu Rev Biomed Data Sci. Author manuscript; available in PMC 2022 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Bastarache Page 25

Table 1

Summary counts of the current phecode/SNP map, based on the GWAS Catalog

Phecode/SNP pairs Unique SNPs Unique phecodes GWAS studies

European 8,600 6,302 141 575

Asian 1,238 1,052 66 198

African 226 224 30 46

All
a 11,462 8,121 163 902

a
Includes studies with multiple or unspecified ancestries.
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Table 2

Contrasting attributes of Mendelian versus complex diseases

Mendelian diseases Complex diseases

Definition Heritable conditions that run in families and are caused by 
mutations in a single gene

Diseases that arise from the interaction of 
multiple genetic and environmental factors

Field of study Genetics Genomics

Genetic architecture Monogenic (single gene) Polygenic (many genes)

Subject of study Individuals/families Populations

Genetic variant type Rare, often exonic and nonsynonymous Common, often noncoding or intergenic

Genotype/phenotype 
relationship

Causal; high or full penetrance Statistical, often small effect size

Method Family-based studies GWAS

Genotyping data Sequence data SNP arrays

Resource catalog OMIM (Online Mendelian Inheritance in Man) GWAS Catalog
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