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Abstract

Previous genome-wide association studies (GWAS) of hematological traits have identified over 10 000 distinct trait-specific risk loci.
However, at these loci, the underlying causal mechanisms remain incompletely characterized. To elucidate novel biology and better
understand causal mechanisms at known loci, we performed a transcriptome-wide association study (TWAS) of 29 hematological
traits in 399 835 UK Biobank (UKB) participants of European ancestry using gene expression prediction models trained from whole
blood RNA-seq data in 922 individuals. We discovered 557 gene-trait associations for hematological traits distinct from previously
reported GWAS variants in European populations. Among the 557 associations, 301 were available for replication in a cohort of
141 286 participants of European ancestry from the Million Veteran Program. Of these 301 associations, 108 replicated at a strict
Bonferroni adjusted threshold (α= 0.05/301). Using our TWAS results, we systematically assigned 4261 out of 16 900 previously
identified hematological trait GWAS variants to putative target genes. Compared to coloc, our TWAS results show reduced specificity
and increased sensitivity in external datasets to assign variants to target genes.

Introduction
The study of blood cells in humans is well motivated by
the role of blood cells as both facilitators of physiological
processes and endophenotypes for complex diseases.
Blood cells facilitate key physiological processes in
human health such as immunity, oxygen transport
and clotting. Additionally, measures of blood cells in
humans are endophenotypes for complex diseases
including asthma, several autoimmune conditions
and cardiovascular disease. Thousands of genetic loci
associated with blood cell traits have been previously
discovered in large genome-wide association studies
(GWAS) in both European cohorts and multipopulation
studies (1–4).

While GWAS provide general insights into the genetic
architecture of blood cell traits, transcriptome-wide
association studies (TWAS) are an alternative study
design to both identify new genetic loci for complex traits
and prioritize potential causal genes at known loci (5–8).
A TWAS tests the association between a phenotype of
interest and imputed gene expression from genotype-
based prediction models trained in a reference dataset.
TWAS can have increased statistical power to discover
trait-associated genetic loci compared to single variant
association tests when a trait association is driven
by multiple variants mediated by the expression of a
gene or genes. TWAS can gain power by aggregating
these multiple mediated single variant signals into a
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combined test (9). Additionally, TWAS results can shed
light on the functional mechanisms underlying variant-
trait associations by linking variants to target genes
through the gene expression prediction models. Design-
ing appropriate functional experiments to interrogate
biological mechanisms or to identify potential drug
targets necessitates accurately assigning GWAS variants
to target genes. Often, variants are linked to target genes
using distance-based approaches, which can lead to
inaccurate assignments (10,11). Colocalization-based
methods evaluate the evidence that a GWAS variant
coincides with an expression quantitative trait locus
(eQTL) signal for a gene in a relevant cell type and if
these signals are likely driven by the same biological
process or the same set of variants. If there is evidence
of colocalization, these methods can be used to assign
the GWAS variant to a target gene via the eQTL signal.
While useful, colocalization methods may be unreliable
in situations where there are multiple variants which
are associated both with a complex trait in GWAS and
linked to the same target gene but with low or moderate
effect size. By explicitly linking variants to target genes
by including them in gene expression prediction models,
TWAS results can provide similar target gene suggestions
for GWAS-associated variants.

In this study, we conducted a large TWAS of 29 hema-
tological traits by studying 399 835 participants of Euro-
pean ancestry from the UKB to discover novel loci and
assign known GWAS variants to potential target genes
(Fig. 1) (12). First, we trained gene expression prediction
models using a reference dataset of 922 participants
of European ancestry from the Depression Genes and
Networks (DGN) cohort with both genotype and RNA-
seq data from whole blood (13). Second, we applied the
gene expression prediction models trained in DGN to
our discovery UKB participants (n = 399 835) to obtain
predicted gene expression levels and performed associ-
ation testing between predicted gene expression values
and blood cell phenotypes. Third, we attempted to repli-
cate associations identified in UKB in 141 286 European
ancestry participants from the Million Veteran Program
(MVP) study (14). Fourth, we performed follow-up anal-
yses including conditional association tests on known
GWAS variants, fine-mapping of TWAS loci and path-
way analysis in order to interpret TWAS loci. Finally, we
systematically assigned the 16 900 conditionally distinct
variant-trait associations identified by Vuckovic et al.
to target genes and compared our TWAS-based assign-
ments to those from coloc, a commonly used eQTL colo-
calization method (Fig. 2). By conducting a TWAS with
thorough secondary analyses and systematic variant-to-
gene assignments in UKB Europeans, our study reveals
novel biology and increases functional understanding of
genetic loci associated with blood cell traits. We compare
the results of our study to a recent GWAS of blood cell
traits in UKB Europeans to understand the advantages of
TWAS compared to single-variant analyses (3).

Results
Marginal TWAS results
Using an elastic net-based pipeline, we trained gene
expression prediction models using imputed genotypes
and whole blood RNA-seq data from 922 European
ancestry participants from the DGN cohort (13). In total,
we trained prediction models for 12 989 genes, 10 004 of
which passed our quality control filter (model R2 > 0.05
and >1 variant selected in model) (Supplementary
Material, Fig. S1).

We conducted a TWAS in 399 835 participants of Euro-
pean ancestry from the UKB for 29 blood cell phenotypes:
11 white blood cell indices, 4 platelet indices and 14
red blood cell indices (see Supplementary Material, Table
S1). 11 759 gene-trait associations were transcriptome-
wide significant at the Bonferroni adjusted threshold of
1.72 × 10−7. The 11 759 associations were grouped into
4835 trait-specific TWAS loci (see Methods) with the most
significant gene at each TWAS locus assigned as the
sentinel TWAS gene. This procedure resulted in 1792
unique sentinel genes. Among these 1792 sentinel genes,
1112 were sentinel genes for more than one trait (see
Supplementary Material, Fig. S2). Of the 4835 TWAS loci,
2375 (49.1%) had multiple TWAS significant genes. We
examined the utility of TWAS conditional analysis (CA)
for fine-mapping loci with multiple TWAS significant
genes and highlighted one such TWAS loci near the ery-
thropoietin gene, EPO (Supplementary Material, Results).

We generated credible sets at all TWAS loci using
FINEMAP (see Methods for details) (15). 8928 out of 11 759
(76%) marginal TWAS associations were included in the
FINEMAP credible sets for their trait-specific loci. The
average number of genes in each FINEMAP credible set
was 3.97 (SD = 2.3) and the median was 4 (see Supple-
mentary Material, Table S2). In 297 (6.1%) trait-specific
loci, the sentinel TWAS gene was not included in the
credible set.

Next, to explore potential biological pathways identi-
fied through our TWAS, we performed pathway analy-
sis with clusterProfiler on genes in the FINEMAP cred-
ible sets for each phenotype to test for enrichment for
gene ontology (GO) terms (see Methods). Thirteen out
of the 29 gene sets were enriched for at least one GO
term at FDR = 0.05 when compared to the set of all
genes that passed QC for their gene expression prediction
model (see Supplementary Material, Table S3). Several
gene sets were enriched for biologically plausible GO
terms: immune response was enriched in the lymphocyte
count gene set, erythrocyte development was enriched in
the red blood cell distribution width gene set and platelet
degranulation was enriched in the platelet count gene
set (Supplementary Material, Table S3). These results
suggest that TWAS can identify biologically plausible
genes associated with complex hematological traits.

In order to replicate significant results from our
marginal TWAS analysis, we predicted gene expression
values in 141 286 European ancestry participants from
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Figure 1. UKB TWAS of blood cell traits overview. (A) We trained gene expression prediction models using whole blood gene expression data from 922
Depression Genes and Networks (DGN) European ancestry participants by fitting an elastic net model on the cis-SNPs (±1 Mb) for each gene. Models with
r2 > 0.05 are considered sufficiently predicted, and are subject to association testing in UKB. w represents the TWAS weights in the prediction model. (B)
Using our DGN-trained models, we predicted gene expression in 399 835 UKB participants of European ancestry and performed association testing with
29 hematological traits. 11 759 gene-trait associations were significant at the Bonferroni adjusted threshold (out of 290116 tested). (C) TWAS results from
UKB were replicated in 141 286 MVP participants of European ancestry for 15 hematological traits available in MVP. (D) We further conditioned our TWAS
significant associations in UKB on GWAS signals reported from Vuckovic et al. to determine which TWAS gene-trait associations were driven by previously
reported GWAS variants (TWAS CA for TWAS CA). (E) We used the TWAS associations and prediction models (blue stars) to assign GWAS signals from
Vuckovic et al. (gold star) to plausible target genes (see Fig. 2), assessing correlation between each GWAS variant and predicted gene expression of each
TWAS significant gene.

MVP using models trained in DGN (see Methods) (14). For
the replication analysis, 15 out of the 29 UKB analyzed
blood cell traits were available in MVP. 9492 out of
the 10 004 (94.8%) gene expression prediction models
were comprised of variants that overlapped completely
with variants available in MVP. Replication was thus
attempted in MVP for 5993 gene-trait associations
with fully matching phenotype and gene expression
prediction model variants. Among the attempted 5993
gene-trait associations marginally significant in UKB

(marginal in contrast to conditional on nearby GWAS
variants), 2357 (39.3%) replicated in MVP at the Bonfer-
roni corrected threshold (α = 8.34 × 10−6) with the same
direction of effect (Supplementary Material, Fig. S3).

Conditional analyses adjusting for nearby
GWAS variants
We then used CA to determine which of the 11 759 gene-
trait associations in UKB represent novel findings beyond
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Figure 2. TWAS variant-to-gene approach. Comparison of our TWAS-based approach to variant-to-gene assignment with two commonly used
approaches: distance-based and colocalization-based assignments. We consider the problem of assigning a GWAS variant (gold star) in a non-coding
region to a target gene. The nearest gene approach assigns the variant to the closest gene at the locus (Gene A), but ignores epigenomic evidence at
the locus. Colocalization-based approaches assign the variant to a target gene based on evidence that the GWAS signal is not distinct from an eQTL
signal for a target gene (green star, Gene B). Our TWAS-based approach assesses the correlation between the GWAS variant and TWAS predicted gene
expression which aggregates smaller effect cis-eQTLs for a gene (blue stars, Gene C). For presentation brevity, we use ‘high r2’ but the threshold to define
high correlation can be lenient.

a recently published GWAS in UKB Europeans (see Meth-
ods for details) (3). Of the 11 759 marginal gene-trait asso-
ciations, 557 were conditionally significant at the Bon-
ferroni corrected threshold (α = 0.05/11 759 = 4.25 × 10−6,
Fig. 3). These 557 associations represent 395 distinct
genes in 463 trait-specific TWAS loci; 276 genes were
conditionally significant for one trait and 119 for multiple
traits (Supplementary Material, Fig. S4). Of the 557
conditionally significant associations, 256 associations
could not be replicated in MVP. First, 222 associations
did not have matching phenotypes available in MVP.
An additional 34 associations did not have complete
matching in MVP for variants in the TWAS gene expres-
sion prediction model. Thus, we tested 301 genes for
replication in MVP. 108 associations (35.9%) replicate at
a Bonferroni adjusted threshold (0.05/301 = 1.66 × 10−4)
with matching direction of effect (Supplementary
Material, Fig. S5).

Below, we discuss two subsets of our TWAS CA results
which demonstrate the advantages of TWAS over single-
variant analyses in UKB and may reveal novel blood cell
biology. First, 9 of the 557 conditionally significant gene-
trait associations were not within 1 Mb of any distinct
GWAS variants for any blood cell trait from Vuckovic et al.
(Table 1). These nine TWAS associations are therefore
considered loci discovered only by TWAS in UKB Euro-
peans. The RBCK1, IRAK1BP1, SNHG5 and BNIP3 regions
were recently reported as associated with their respec-
tive traits in large multipopulation GWAS meta-analyses
(2,4) validating these TWAS only associations from UKB
Europeans. Second, we identified 92 conditionally dis-
tinct associations grouped into 70 TWAS loci with no
distinct GWAS variants for the corresponding phenotype

category within 1 Mb of the gene. This second subset
supports that the previously reported GWAS association
at the locus is extended to a new class of blood pheno-
types. For example, this second subset might include the
extension of a locus already associated with red blood
cell-related traits to platelet indices.

TWAS discovers loci missed by UKB
European GWAS
We identified nine gene-trait associations that had no
distinct GWAS variants within ±1 Mb of the locus for any
blood cell trait in Vuckovic et al. Among the nine associa-
tions, three were unable to be assessed for replication in
MVP due to phenotype unavailability and one was unable
to be assessed due to missing variants in the gene expres-
sion prediction model. Three out of the remaining five
associations replicated in MVP at a nominal significance
threshold (α = 0.05) with the same direction of effect as
in UKB, namely, interleukin 1 receptor-associated kinase
1 binding protein 1 (IRAK1BP1) for mean platelet volume
(beta = 0.025, P = 3.4 × 10−6), and SNHG5 for neutrophil
count (beta = −0.0146, P = 0.0061) and white blood cell
count (beta = −0.0134, P = 0.013). Below, we highlight the
biological implications of the IRAK1BP1 association with
mean platelet volume. These results represent gene-trait
associations identified by TWAS that were not discovered
by single variant analyses in UKB Europeans (3).

IRAK1BP1 (chr6:79577189–79656157)

In our TWAS, IRAK1BP1 demonstrated evidence of associ-
ation with mean platelet volume despite no conditionally
distinct GWAS variants within 1 Mb of the gene. The
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Figure 3. Manhattan Plot of TWAS conditional analysis results. Figure shows the −log10(P-value) for TWAS gene-trait associations after conditioning on
distinct GWAS variants from Vuckovic et al. for a given phenotype category. The red dashed line denotes the Bonferroni adjusted significance threshold
(α = 4.25 × 10−6). Named genes have −log10(P-value) > 12. The conditional TWAS analysis assesses whether a TWAS signal is driven primarily from
signals at previously discovered GWAS loci, which is a crucial step for our analysis of well-studied hematological traits. The maximum −log10(P-value)
for each gene is plotted and stratified by phenotype category.

Table 1. Blood cell trait genes discovered by TWAS

Phenotype Gene Name Chr TSS Model R2 TWAS Beta Log10
REGENIE_p

CA Beta Log10
Conditional_p

MVP Beta Log10
MVP_p

Eosinophil count RBCK1 20 407 498 0.48 −0.03 (0.006) 7.00 −0.029 (−0.029) 6.91 −0.007 (0.006) 0.57

Mean platelet volume MFAP3L 4 170 033 031 0.07 0.034 (0.006) 7.83 0.033 (0.033) 7.53 −0.006 (0.007) 0.36

Mean platelet volume IRAK1BP1 6 78 867 472 0.23 0.03 (0.004) 11.02 0.033 (0.033) 13.27 0.025 (0.005) 5.47

Mean platelet volume LPCAT4 15 34 367 278 0.10 −0.025 (0.004) 9.63 −0.024 (−0.024) 9.46 −0.005 (0.006) 0.43

Neutrophil count SNHG5 6 85 678 736 0.87 −0.015 (0.003) 7.88 −0.013 (−0.013) 6.18 −0.009 (0.004) 2.21

Eosinophil percentage RBCK1 20 407 498 0.48 −0.033 (0.006) 8.77 −0.033 (−0.033) 8.74 NA NA

Monocyte percentage TMEM144 4 158 201 604 0.53 0.031 (0.006) 6.88 0.03 (0.03) 6.61 NA NA

Neutrophil count BNIP3 10 131 982 013 0.08 0.022 (0.004) 6.83 0.022 (0.022) 6.86 NA NA

Platelet distribution width GTF2H2 5 71 067 689 0.24 −0.037 (0.005) 12.93 −0.036 (−0.036) 12.46 NA NA

Four genes could not be replicated in MVP: genes names followed by an asterisk did not have available matching phenotypes in MVP and gene names followed
by a plus sign did not have complete variants for the respective gene expression prediction model. Abbreviations: transcription start site (TSS), conditional
analysis (CA)

1 Mb region around IRAK1BP1 contains several genome-
wide significant variants in Vuckovic et al., with lead
variant chr6:79617522_T_C (P = 6.4 × 10−13, all variants
in this manuscript are formatted with the following
fields: chromosome number, hg19 position, reference
allele and alternate allele) (Fig. 4A). However, this region
was grouped into a mean platelet volume locus over
8 Mb away via individual-level CA (sentinel variant
chr6:71326034_G_A). Importantly, in the Vuckovic et al.
results, no target gene was identified based on proximity
for chr6:71326034_G_A via Ensembl Variant Effect
Predictor (VEP) (16) limiting the biological interpretation
of the findings at the GWAS locus. Our TWAS prediction
model for IRAK1BP1 is primarily driven by variants in high
LD with chr6:79617522; of the top 15 variants in terms of

absolute value of the TWAS weights, 13/15 are in high LD
(r2 > 0.8 in TOP-LD Europeans) with chr6:79617522_T_C
(Fig. 4B).

After conditioning on all distinct platelet-related vari-
ants on chromosome 6, including chr6:71326034_G_A,
the marginal TWAS association for IRAK1BP1 and mean
platelet volume (beta =0.030, P = 9.47 × 10−12) was
not attenuated (beta = 0.033, P = 5.33 × 10−14), demon-
strating that the IRAK1BP1 TWAS signal is distinct
from previously reported GWAS variants. Further-
more, the association between IRAK1BP1 and mean
platelet volume was replicated in MVP Europeans
at the Bonferroni adjusted threshold (P = 3.4 × 10−6).
Thus, with TWAS, we combined several trait-associated
variants at the IRAK1BP1 locus into a stronger signal
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Figure 4. IRAK1BP1 locus EpiGenome browser. Figure demonstrates the cell type-specific epigenetic information linking IRAK1BP1 and mean platelet
volume. Figure A shows that variants within IRAK1BP1 were identified as GWAS significant variants in Vuckovic et al. (3), but the signal at this locus was
attenuated after conditioning on a locus 8 Mb away (sentinel variant chr6:71326034_G_A). (B) Several of these variants are included in the IRAK1BP1
TWAS prediction model. (C) Promoter-capture Hi-C data support that TWAS model variants for IRAK1BP1 form a loop with the promoter region of LCA5,
a Mendelian disease gene for Leber congenital amaurosis. LCA5 was not available in our DGN expression dataset. (D) LCA5 is more strongly expressed
in MK cell lines compared to IRAK1BP1. (E) TWAS model variants overlap with MK ATACseq peaks.

which demonstrated statistical independence from
the previously reported chr6:71326034_G_A signal and
all other distinct platelet variants on chromosome 6.
Additionally, these results link the variants to puta-
tive target genes via our gene expression prediction
models.

Figure 4 shows that there is cell type-specific epige-
netic evidence that supports our findings. IRAK1BP1 is a
component of the IRAK1-dependent TNFRSF1A signaling
pathway, which can activate NF-kappa-B and regulate
cellular apoptosis and inflammation (17). Variants in the
gene expression prediction model for IRAK1BP1 in high
LD with chr6:79617522_T_C overlapped with megakary-
ocyte ATACseq peaks from BLUEPRINT (Fig. 4E) (18). Addi-
tionally, we observed via megakaryocyte pcHi-C data
that these same variants in the IRAK1BP1 prediction
model interact with the promoter region for the nearby
gene, lebercilin LCA5 (LCA5) (Fig. 4C). LCA5 plays roles
in centrosomal functions in non-ciliary cells (19). While
both IRAK1BP1 and LCA5 are expressed in megakary-
ocyte cells using expression data from BLUEPRINT, the
expression level is higher for LCA5, suggesting a poten-
tial role for LCA5 in platelet trait variability, despite not
being captured by TWAS (Fig. 4D). LCA5 is not present
in the DGN reference panel, and thus, unavailable to
fit a prediction model, likely because of low expression
in whole blood (median transcripts per million 0.018 in
Genotype-Tissue Expression (GTEx v8) (20). Integration of
our TWAS results with expression and chromatin confor-
mation data in platelet producing megakaryocyte cells
revealed candidate genes at this genomic locus; it is pos-
sible that the variants in the IRAK1BP1 locus aggregated
by the TWAS prediction model impact the expression of
LCA5 through spatial proximity to the promoter region of
the gene. The IRAK1BP1 locus shows the importance of
full consideration of other potential target genes as well
as complementary functional annotation resources in
the biological interpretation of a TWAS identified signal.

TWAS implicates genes in novel
phenotype categories
To further understand the biological significance of our
TWAS results, we partitioned the distinct GWAS variants
for 29 traits from Vuckovic et al. into three phenotype cat-
egories: red blood cell, white blood cell and platelet traits
(3). A phenotype category represents a group of biologi-
cally related phenotypes. Our TWAS CA identified 92 con-
ditionally significant associations grouped into 70 TWAS
loci with no distinct GWAS variants for the corresponding
phenotype category within 1 Mb of the gene. Our results
support that the previously reported association at the
locus is extended to a new class of correlated phenotypes.
Of the 92 associations, 42 associations could not be repli-
cated in MVP. First, 33 associations did not have matching
phenotypes available in MVP. An additional nine associa-
tions did not have complete matching in MVP for variants
in the TWAS gene expression prediction model. Thus, we
tested 50 genes for replication in MVP. Seventeen out of
50 are replicated at the Bonferroni adjusted threshold for
the total number of conditionally significant associations
(α= 0.05/557 = 8.98 × 10−5). CD79B is highlighted as an
example of the biological significance of these findings.

CD79B (chr17:62006100–62009714)

One such example is the 1 Mb region surrounding B-cell
antigen receptor complex-associated protein beta chain
(CD79B), which was associated with lymphocyte count
(P = 9.81 × 10−10), hematocrit (P = 1.22 × 10−9), plateletcrit
(P = 3.37 × 10−9), white blood cell count (P = 8.49 × 10−9)
and hemoglobin percentage (P = 1.21 × 10−7) in our TWAS
marginal analysis. Supporting the role of this gene in
blood cell indices, an extremely rare mutation in CD79B,
rs267606711, has been reported to cause agammaglobu-
linemia 6 [MIM: 612692], an immunodeficiency charac-
terized by profoundly low or absent serum antibodies
and low or absent circulating B cells due to an early block
of B-cell development (21,22).
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In Vuckovic et al., the region surrounding CD79B
contained several borderline genome-wide signifi-
cant variants for lymphocyte count, with lead variant
17:62008437_C_T (P = 2.3 × 10−9). However, in their
CA, the region was clumped into nearby lympho-
cyte count GWAS signals, namely, 17:57929535_A_G
(P = 1.16 × 10−25) with annotated target gene RNA,
U6 small nuclear 450, pseudogene (RNU6-450P) and
17:65087308_G_C (P = 4.34 × 10−10) with target gene
helicase with zinc finger (HELZ) (with both genes
assigned based on distance). After conditioning on
the set of 186 white blood cell count distinct variants
identified by GWAS CA on chromosome 17, including
17:57929535_A_G and 17:65087308_G_C, CD79B con-
tinued to demonstrate evidence of association with
lymphocyte count (P = 9.8 × 10−10) and white blood cell
count (P = 8.5 × 10−9).

Further, there were six distinct GWAS variants from
individual-level GWAS CA across both red blood cell
and platelet traits within 1 Mb of CD79B. To control for
confounding due to correlated hematological traits, we
further conditioned on the six distinct variants for red
blood cell and platelet traits in addition to the set of
186 white blood cell distinct variants. The association
with lymphocyte count remained nominally significant
(P = 3.03 × 10−4) and the white blood cell count asso-
ciation was attenuated (P = 0.16). CD79B demonstrated
some evidence of association with lymphocyte count in
MVP Europeans as well (P = 1.1 × 10−5) with matching
direction of association, despite not achieving the Bon-
ferroni adjusted threshold (α = 8.34 × 10−6). Our findings
suggest the biologically plausible CD79B association with
lymphocyte count was likely distinct from previously
reported genetic loci in the neighborhood, supporting
the increased power of TWAS above single variant TWAS.

TWAS-based assignment of variants
to target genes
In addition to identifying gene-trait associations, our
study also aimed to assign blood cell trait-associated
variants to target genes via TWAS. Our TWAS results
allowed us to assign putative target genes to 10 239
variant-trait associations across 10 hematological traits
from Vuckovic et al. These 10 239 variant-trait asso-
ciations had previously been analyzed in an eQTL
colocalization analysis with coloc (see Methods). In
order to explore the properties of our TWAS-based
assignments, we compared the TWAS assignments to
those generated by coloc for the same set of GWAS
variants.

In their analyses, coloc identified 427 out of 10 239
associations (4.2%) that colocalized with at least one
eQTL (Fig. 5A). We assigned the eGene(s) corresponding
to these eQTLs as the coloc target gene(s). Our TWAS-
based approach assigned target genes to 1738 variant-
trait associations, a 4-fold increase compared to coloc.
Of the 269 associations assigned to at least one gene by
both methods, 80% of the associations have at least one

assigned gene in common, demonstrating that the two
methods tend to assign variants to the same genes where
they both assign a target gene. Of the 158 associations
assigned to genes by coloc but not by our TWAS-based
approach, 13 were assigned to genes with no expression
data in our DGN reference dataset, 23 were assigned to
genes with poor model predictive performance (model
R2 ≤ 0.05), 51 variant-trait associations were not within
±1 MB of any TWAS loci, 49 were only nearby TWAS
loci with a non-significant sentinel gene and 22 had low
correlations between variant dosage for the lead GWAS
variant and imputed TWAS gene expression (r2 < 0.2)
(Supplementary Material, Fig. S6).

To illustrate one example where the two methods
agree, Figure 6 highlights the concordant TWAS and
coloc assignment of rs6062304 (chr20:62351539_A_T),
a distinct variant for lymphocyte percentage, to Lck-
interacting transmembrane adaptor 1 (LIME1), a gene
with known involvement in T cell signaling (23,24). In
Vuckovic et al., rs6062304 was assigned via VEP anno-
tation to zinc finger CCCH-type and G-patch domain
containing (ZGPAT), which has no clear link to blood cells.
Figure 6A shows Vuckovic et al. GWAS results overlaid
with the marginal TWAS results for lymphocyte percent-
age. Six TWAS gene-trait associations are significant, and
a subset of three genes are included in the FINEMAP
95% credible set: LIME1, ZGPAT and regulator of telomere
elongation helicase 1 (RTEL1). Figure 6A shows that LIME1
predicted expression is highly correlated (r2 = 0.905)
with rs6062304, while ZGPAT is moderately correlated
(r2 = 0.556). Coloc assigns LIME1 as an eGene because
of the high LD (r2 = 0.916) between rs6062304 and an
eQTL for LIME1, rs6062497 (Fig. 6B). Similarly, Fig. 6C
demonstrates that variants with the largest weights
in the LIME1 gene expression prediction model are in
high LD with rs6062304. In contrast, Figure 6D reveals
that variants in high LD with rs6062304 have smaller
TWAS weights in the ZGPAT model, suggesting that the
ZGPAT association with lymphocytes at this locus is
not primarily due to rs6062304. While both LIME1 and
ZGPAT correlations pass the r2 cutoff for the TWAS-based
gene assignment (r2 > 0.2), LIME1 predicted expression is
much more correlated with rs6062304, and is the most
likely target gene at this locus according to the TWAS-
based approach. This highlights the value of considering
correlation of predicted gene expression with the lead
GWAS variant in TWAS assignment of likely target genes,
as done in our pipeline. Thus, using different approaches,
TWAS-based and coloc-based variant-to-gene assignment
methods assign rs6062304 to a biologically plausible
target gene, improving upon distance-based approaches.

As reported above, the TWAS based approach assigned
four times as many variants to target genes. Figure 5A
shows that there are 1469 variant-trait pairs which are
assigned to a target gene via TWAS not assigned to a gene
by coloc. One such example is the TWAS assignment of
rs1985157 to leucine-rich repeat containing 25 (LRRC25)
(chr19:18513594_T_C), a distinct variant for neutrophil

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac011#supplementary-data
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Figure 5. TWAS and coloc variant-to-gene assignments. We compare our TWAS-based variant-to-gene assignments with assignments from coloc using
a set of 10 239 variants associated with 10 hematological traits. (A) Coloc successfully assigns 427 variants to target causal genes, while our TWAS-
based approach assigns 1738 to target genes. (B, C) We compare these assignments to several external datasets, using variant-to-gene assignments both
considering phenotype-specific and phenotype-agnostic approaches. BLUEPRINT Any indicates the target gene is specifically expressed in any cell type
in BLUEPRINT dataset, while BLUEPRINT Exact means that the phenotype matches the cell type in BLUEPRINT. OT Any corresponds to the target gene
matching any gene indicated as a target gene, while OT Max indicates the target gene was the most likely target for OT. The TWAS-based approach has
increased sensitivity to assign genes to potentially causal genes (B) and decreased specificity to coloc (C).

Figure 6. TWAS and coloc variant-to-gene assignments agree at LIME1 locus. The LIME1-lymphocyte percentage associated locus illustrates one example
where the TWAS- and coloc-based variant-to-gene assignments agree. (A) Genes in the FINEMAP credible set are colored by their correlation with
rs6062304. The predicted gene expression with LIME1 is highly correlated with rs6062304, whereas neither ZGPAT nor RTEL1 are. (B) An eQTL for LIME1,
rs6062497, is in high LD with rs6062304, and in turn coloc assigns LIME1 as an eGene. (C, D) Model variants for LIME1 and ZGPAT are colored by their LD
with rs6062304, respectively. The variants with the largest effect sizes in the TWAS prediction model for LIME1 are in high LD with rs6062304, whereas
those for ZGPAT are not.

count and neutrophil percentage. Neither VEP nor
coloc assigned rs1985157 to a target gene. Our TWAS
marginal analysis identified four significant genes for
neutrophil count at this locus, LRRC25, elongation factor
for RNA polymerase II (ELL), single-stranded DNA binding
protein 4 (SSBP4) and inositol-3-phosphate synthase
1 (ISYNA1) (Fig. 7A). However, only LRRC25 predicted
gene expression values have a strong correlation with
rs1985157 (r2 = 0.863). Two other TWAS-assigned genes

are moderately correlated with rs1985157 (ELL r2 = 0.46)
and (SSBP4 r2 = 0.47). Figure 7C shows that variants in
the LRRC25 prediction model that are in high LD with
rs1985157 have the largest weights in absolute value. In
contrast, Figure 7D shows that SSBP4 predicted expres-
sion is driven by variants in moderate LD with rs1985157.
Several studies have suggested that LRRC25 plays a
key role in innate immune response and autophagy
(25,26). Further, cell type-specific gene expression data
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Figure 7. TWAS assigns rs1985157 to LRRC25. Figure illustrates how TWAS assigned rs1985157 to LRRC25 when coloc failed to do so with no individual
significant eQTL in the region. (A) LRRC25 predicted gene expression was highly correlated with rs1985157 (r2 = 0.863), whereas the prediction from
SSBP4 (r2 = 0.47) and ELL (r2 = 0.457) were not as highly correlated despite both genes being significant. (B) LD patterns for variants at the locus. (C, D)
Only model variants for LRRC25 and SSBP4 are colored by their LD with rs1985157, respectively. Variants with the largest TWAS weights (in absolute
values) for LRRC25 are in high LD with rs1985157, whereas those for SSBP4 are not.

from BLUEPRINT suggest that LRRC25 is specifically
expressed in neutrophils (18). Our results show that
TWAS-based variant-to-gene assignment methods can
identify biologically plausible target genes, even when
coloc fails to do so.

Annotating target genes assigned
by TWAS and coloc
In order to understand the differences in the TWAS and
coloc gene assignments and to examine whether the addi-
tional variants assigned to genes by TWAS over coloc have
relevant epigenetic evidence to the phenotype of interest,
we compared the gene assignments of TWAS and coloc
using BLUEPRINT cell type-specific expression data and
Open Targets V2G scores (see Methods for details) (27).
While the presence of evidence from BLUEPRINT cell
type-specific expression analyses or Open Targets scores
does not prove that an assigned gene is the true target
gene, a similar preponderance of evidence in external
datasets is often used in practice to select genes for
functional validation experiments. Therefore, we are pri-
marily interested in exploring the utility of TWAS and
coloc to generate plausible hypotheses of target genes for
GWAS variants.

We found that the TWAS-based approach assigned
GWAS variants to genes identified by external datasets
at a slightly lower rate than the coloc assignments, but
identified target genes for more than double the number

of variants (see Fig. 5B and C). Specifically, Figure 5C
shows that 84% of the TWAS-based variant-to-gene
assignments are supported by Open Targets (OT Any
genes), and 64% of genes assigned by TWAS are the
most likely target gene as identified by Open Targets
(OT Max gene). In comparison, 88% of the coloc assigned
genes are supported by OT Any genes and 78% as the
OT Max gene. On the other hand, Figure 5C shows that
294 TWAS pairs are assigned to an OT Any gene and 226
pairs assigned to an OT Max gene, much larger number
of supported assignments than the 85 and 76 coloc pairs, a
3.46- and 1.97-fold increase, respectively. The proportion
of variants assigned to cell type specifically expressed
genes in BLUEPRINT expression data is lower compared
to the Open Targets assignments (Fig. 5C). However, the
TWAS-based approach matches 3.12-fold more variants
to specifically expressed genes in trait-relevant cell types
and 3.73-fold more genes to specifically expressed genes
for any blood cell compared to coloc. Therefore, our results
suggest that TWAS, compared to coloc, is less specific but
more sensitive when assigning variants to target genes
supported by external annotations.

Since not all traits were considered for the previous
eQTL colocalization analysis in UKB Europeans, we
applied our TWAS-based variant-to-gene assignment to
all 29 hematological traits considered in our UKB TWAS.
We successfully assigned 4261 variant-trait associations
to 1842 distinct potentially causal genes with an average
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of 1.45 (SD = 0.81) genes assigned per variant-trait associ-
ation (see Supplementary Material, Table S4). Of the 4261
associations, 746 (17.5%) were assigned to specifically
expressed genes in trait-relevant cell types, and 1982
(46.5%) were assigned to specifically expressed genes
for any blood cell. Both rates were comparable to the
performance of the TWAS variant-to-gene assignments
in the phenotype restricted results above. For the 813
overlapping variant-to-gene assignments from the Open
Targets datasets, the replication rates were similar to the
phenotype restricted results for OT Any genes (78.2%),
but the replication rate decreased for the OT Max gene
(54.5%).

Discussion
Our TWAS of blood cell traits in UKB Europeans identified
loci missed by a GWAS in UKB Europeans and extended
known loci to additional phenotype categories, even in
well-studied hematological traits for which over 10 000
loci have been reported by previous GWAS (2,3). We iden-
tified nine loci that were undiscovered by GWAS of UKB
Europeans for blood cell traits. For example, the IRAK1BP1
locus was associated with mean platelet volume, and our
secondary analyses suggest that both IRAK1BP1 and LCA5
may be plausible target genes for genetic variants at this
locus. As noted above, five of the nine loci were reported
in large multipopulation or cross-cohort meta-analyses
(2,4), but had not been previously reported in the UKB
GWAS, supporting the validity of the additional TWAS
findings. These results demonstrate advantages of TWAS
over single-variant analyses for novel locus identification
within the same cohort.

Further, we extended 92 previously reported asso-
ciations at genomic loci to a new class of correlated
phenotypes. Due to the shared genetic architecture of
blood cell traits which is mediated through the differ-
entiation of common progenitor cells, variants which
impact one class of blood cell traits may have an effect on
other hematological traits. For example, the CD79B locus
demonstrated a robust association with lymphocyte
count despite conditioning on previously identified
white blood cell, red blood cell and platelet distinct
variants at the locus. This robust association confirms
previously reported biological roles for CD79B with
lymphocyte function, and establishes relevant variant-
level candidates for functional validation through the
TWAS prediction model (21,22). Our results suggest
several insights into the genetic architecture of blood cell
traits through TWAS loci discovery above single-variant
studies and extension of known loci to new phenotypes.

We addressed challenges with interpreting TWAS
loci at the scale of biobank-sized analyses through
our adapted TWAS fine-mapping via FINEMAP (28). To
our knowledge, all TWAS fine-mapping methods and
software are currently designed for summary statistics-
based TWAS approaches, including the recently pub-
lished FOCUS method, with limited functionality to

input user-generated TWAS statistics from individual-
level data such as those generated by our REGENIE-
based approach (29,30). To overcome this challenge, we
substituted the variant-level LD matrix for the predicted
expression correlation matrix in our UKB sample in the
FINEMAP software to generate credible sets of genes.
Using fine-mapped sets of TWAS results, we conducted
pathway analysis, and the identified gene sets were
enriched for trait-relevant GO terms (Supplementary
Material, Table S3), highlighting the biological plausibility
of our fine-mapped gene sets. One shortcoming of
our approach is that we addressed correlation at the
gene level via predicted expression values, and this
substitution for TWAS fine-mapping may not be valid
since FINEMAP was originally designed for GWAS fine-
mapping. Our extension of FINEMAP is an ad hoc solution
to the problem of TWAS loci fine-mapping, which is
more complex than variant-level fine-mapping due to
correlations at both the variant and gene levels (30,31).
In addition to previous research, future methodological
research and software development should be done to
address this challenge (28,30,31).

Additionally, we performed systematic variant-to-gene
assignment for distinct hematological trait GWAS sig-
nals using a TWAS-based approach, and demonstrated
that many of our assignments are supported by external
datasets. While the use of external datasets such as Open
Targets or BLUEPRINT does not prove that the TWAS or
coloc gene is the true causal gene, a preponderance of
evidence from tissue-specific external datasets suggest
that a gene could be a good candidate for follow-up with
functional experiments. As identifying candidates for
functional follow-up is often one goal of large association
studies, we believe that this in silico external replication
metric is reasonable for our TWAS and colocalization
comparisons.

Our variant-to-gene assignment results support
complementary roles of TWAS and colocalization
approaches. The TWAS-based approach of assigning
GWAS variants to target genes mapped more variants
to target genes using biobank scale data compared to an
eQTL colocalization approach. However, this increased
number of variants assigned to target genes decreased
sensitivity in external annotations. One possible expla-
nation of this result is that in scenarios where eQTLs
have not been identified in a target tissue of interest,
likely due to small sample size for a given expression
dataset, TWAS-based methods, which combine multiple
potential eQTLs which may be in LD with a GWAS
variant, are more likely to assign GWAS variants to target
genes. To systematically assign GWAS variants to target
genes, we propose first using colocalization to assign
GWAS variants to target genes using available cell type-
specific eQTL data relevant to the trait of interest, and
then leveraging the additional assignments generated by
TWAS for GWAS variants not assigned to a target gene.

There are still several future directions for the
improvement of biobank-scale TWAS. First, increasing

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddac011#supplementary-data
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sample sizes in tissue-specific expression datasets will
allow future TWAS studies to train gene expression
prediction models in cell/tissue types which are directly
relevant to traits of interest. Already, several TWAS
methods have been developed to leverage multiple
tissues to train better gene expression prediction models
(7,8,32). For example, at the identified IRAK1BP1 locus, it
would be useful to have larger megakaryocyte-specific
gene expression datasets available for TWAS model
training; similar cell type-specific panels would be useful
for other hematological indices and for complex trait
analysis more generally. Additionally, the TWAS variant-
to-gene assignment approach would benefit from larger
expression datasets to train cell/tissue type-specific gene
expression prediction models to assess the correlation
between predicted expression and a GWAS variant of
interest across several relevant models. Such cell type-
specific reference panels are becoming increasingly
available, though not always in adequate sample sizes for
TWAS and not always with publicly available individual-
level data (33). Second, extending the variable selection
procedure for prediction models past the 1 Mb cis-
region surrounding genes either via trans-eQTL datasets
or by selecting variants which are highly likely to be
in interesting epigenomic regions will improve TWAS
models (34,35).

In summary, we conducted a large-scale TWAS of well-
studied hematological traits and identified loci undiscov-
ered by GWAS in the same cohort. We showed that TWAS-
based approaches for assigning variants to their target
genes were comparable in specificity to co-localization-
based approaches, but were able to assign many more
variants (4.07-fold increase) to target genes. Our careful
use of CA, TWAS-based fine-mapping and TWAS-based
variant-to-gene assignments in the context of blood cell
traits will be broadly useful to the practice of TWAS for
other complex traits.

Materials and Methods
Included cohorts
Depression genes and networks (DGN)

The DGN study was designed to collect samples of
individuals with and without major depressive disorder,
ages 21–60, from a survey research panel broadly
representative of the United States population (13).
Genotyping and RNA-sequencing procedures have been
described previously (13). For 922 European ancestry
participants from the DGN study, we obtained both
genotype data imputed to the Trans-Omics in Precision
Medicine (TOPMed) Freeze 8 reference panel and RNA-
seq data (36,37). Whole blood samples were from
PAXgene tubes, which retain red blood cells unlike
peripheral blood mononuclear cells. Therefore, we may
be more likely to detect associations with blood cell traits
in DGN versus peripheral blood mononuclear cell-based
datasets.

Quality control in DGN

For training gene expression prediction models, we
included bi-allelic variants that are common and well-
imputed (MAF > 0.05, Rsq > 0.8) in both DGN and in
the UKB. In all, 5 652 397 variants were included, here
forward referred to as QC variants. DGN whole-blood
RNA-seq data for both coding and non-coding genes was
obtained for 922 European ancestry participants (13). As
described previously, quantified gene expression values
were normalized using the hidden covariates with the
prior method (38), correcting for technical and biological
factors, including blood cell type frequencies and the
time of the blood draw (13).

UK Biobank (UKB) Europeans

UKB recruited 500 000 people aged between 40 and
69 years in 2006–2010, establishing a prospective biobank
study to understand risk factors for common dis-
eases such as cancer, heart disease, stroke, diabetes,
and dementia (12). Participants are being followed-up
through health records from the UK National Health
Service. UKB has genotype data, imputed with UK10K as
reference, on all enrolled participants, as well as exten-
sive baseline questionnaires and physical measures and
stored blood and urine samples. Hematological traits
were assayed as previously described (1). Genotyping on
custom Axiom arrays, subsequent quality control and
imputation has been previously described (12).

For our TWAS, we analyzed UKB participants of Euro-
pean ancestry to match the genetic ancestry of DGN
participants used for model training. Participants were
included in our analysis if identified as European through
a combination of self-reported ethnicity and k-means
clustering of genetic principal components (PCs) in order
to minimize genomic inflation due to population strat-
ification, and for consistency with previously published
blood cell trait GWAS in UKB (3). First, we calculated PCs
and their loadings for all 488 377 genotyped UKB partic-
ipants using LD pruned variants (pairwise r2 < 0.1) with
MAF ≥0.01 and missing rate ≤0.015 in the UKB data set
that overlapped with the participants in the 1000G Phase
3 v5 (1KG) reference panel (12). Reference ancestries used
included 504 European, 347 American, 661 African, 504
East Asian and 489 South Asian samples (overall 2504).
We projected the 1KG reference panel dataset on the
calculated PC loadings from UKB. We then used k-means
clustering with four dimensions, defined by the first
four PCs, to identify individuals that clustered with the
majority of 1KG reference panels in each ancestry. We
used self-reported ethnicity, in some circumstances, to
adjust these groups. UKB participants defined as Euro-
pean ancestry include those that cluster with most 1KG
Europeans by k-means clustering. We adjusted this group
by removing those that self-reported as Indian, Pakistani,
Bangladeshi, any other Asian background, Black or Black
British, Caribbean, African, any other Black background
or Chinese (n = 32). Additionally, we removed any indi-
viduals with self-reported mixed ancestry (n = 402). A
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total of 451 305 participants remained in the European
ancestry group. Participants were also excluded based on
factors likely to cause major perturbations in hemato-
logical indices including positive pregnancy status, drug
treatments, cancer self-report, ICD9 and ICD10 disease
codes (see Supplementary Material, Supplemental Text)
and surgical procedures. Participants were included only
if they had complete data for all covariates and phe-
notypes. In total, 399 835 samples were included in the
analysis.

Quality control in UKB

As mentioned previously, we included only bi-allelic and
well-imputed common variants (Rsq > 0.8, MAF > 0.05)
in UKB. All 29 blood cell phenotypes were adjusted for
age, age2, top 10 genotype PCs, center, genotyping array
and sex. For white blood cell traits, phenotypes were
log10(x + 1) transformed before regression. Residuals
from these regression models were inverse normal
transformed and serve as phenotypes.

Million veteran program (MVP) Europeans

The MVP is an observational cohort study and mega-
biobank in the Department of Veteran Affairs healthcare
system which began enrollment in 2011. As of Release
3, 318 725 individuals of European ancestry (as defined
by HARE (39)) have available electronic health records,
survey and genotype data. After quality control largely
following the guidelines established in Marees et al. (40),
308 778 individuals of European ancestry remained.

Quality control in MVP

Only a subset of 15 hematological traits out of the 29
analyzed in UKB was available for replication in MVP. For
our replication study, participants were limited to those
with available data among these 15 traits (n = 141 286).
Phenotypes were adjusted for covariates following the
same procedure as in UKB.

Training of gene expression prediction models

We trained gene expression prediction models using an
elastic net pipeline following the well-established PrediX-
can methodology (9). We set α = 0.5 for all gene expres-
sion prediction models since the Elastic Net with α = 0.5
has been previously demonstrated to be a robust choice
for modeling gene expression compared to LASSO or
Ridge Regression (9,41).

Our decision to use an in-house pipeline rather than
the publicly available weights from PrediXcan was
2-fold. First, we performed TOPMed freeze 8-based
imputation, enhancing genome coverage and imputation
quality compared to the reference panel underlying the
PrediXcan weights, the 1000G Phase 1 v3 ShapeIt2 (no
singletons) panel. Second, by training our own prediction
models, we ensured that every variant present in the
prediction models was available in our UKB dataset.

For each gene, we included variants within a 1 Mb
window of the gene start and end positions and excluded

variants in high pairwise LD (r2 > 0.9) with other variants
in the window. We tuned the elastic net penalty parame-
ters using 5-fold cross-validation with the ‘glmnet’ func-
tion in R. We obtained 12 898 elastic net models where
more than one variant was included in the prediction
model. Models with a single variant were excluded from
our TWAS. This modeling decision was made in order
to differentiate our TWAS from previous single-variant
analyses of hematological traits. Single-variant predic-
tion models could still provide useful information linking
a single-variant to a target gene, but are not considered
here. We further excluded models with model R2 ≤ 0.05,
leading to 10 004 models for subsequent analysis (Sup-
plementary Material, Fig. S1).

Association testing with REGENIE

Using the 10 004 models trained in DGN, we predicted
gene expression values in UKB European ancestry partic-
ipants. We then performed association testing between
predicted gene expression and covariate-adjusted blood
cell phenotypes with REGENIE (42). We used an LD (link-
age disequilibrium) pruned (plink—indep-pairwise 50 5
0.1) set of 174 957 variants with MAF > 0.01 in the geno-
type data available for UKB Europeans to fit the REGENIE
null model accounting for cryptic relatedness. We ana-
lyze all 29 phenotypes simultaneously using the grouping
option available in REGENIE and set the number of blocks
to 1000.

To control Type I error at α= 0.05, we considered
a TWAS association significant if P < 0.05/(10 004 ∗

29) = 1.72∗10−7. Note that this Bonferroni adjusted
significance threshold is rather conservative due to
correlations among the blood cell phenotypes and among
predicted expressions of genes. Results from this TWAS
association analysis are referred to throughout the
manuscript as the marginal TWAS results.

For each trait, we grouped multiple significant TWAS
gene-trait associations within the same region into TWAS
loci via the following procedure. First, we selected the
most significant TWAS gene as the TWAS sentinel gene
for the locus. Second, we assigned all genes within 1 Mb
of the gene as a member of the locus defined by the
TWAS sentinel gene. Third, we repeated this process only
considering genes not yet assigned to a TWAS locus. The
procedure is complete when all TWAS significant genes
for a given trait are assigned a locus.

Conditional analysis

In order to assess which marginally significant TWAS
gene-trait associations provide novel findings above and
beyond the single variant discoveries in GWAS of blood
cell traits in Europeans (3), we tested the association
between predicted gene expression and phenotype while
conditioning on reported blood cell trait GWAS variants.
This methodology has been described in a previous TWAS
of blood cell traits from our group (28). We partitioned
the distinct GWAS variants from Vuckovic et al. into
three phenotype categories: red blood cell, white blood
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cell and platelet traits (3). We considered all distinct
GWAS variants as determined by CA on individual-level
data, referred to as conditionally independent variants by
Vuckovic et al. For a TWAS gene associated with one trait
in the above categories, we conditioned on any distinct
variant reported as associated with any trait within the
corresponding phenotype category on the same chromo-
some.

Replication analysis in MVP

We conducted two replication analyses in MVP Euro-
peans to follow-up on our results from the UKB TWAS:
one for the marginal TWAS results and a second
restricted to only conditionally significant genes. In both
analyses, our DGN trained gene expression prediction
models were used to impute gene expression values in
MVP Europeans. Association testing was performed via
boltLMM (43). The Bonferroni adjusted thresholds for
replication were determined by the number of marginal
or conditional associations in the UKB available for
replication, respectively.

TWAS fine-mapping via FINEMAP

We modified the FINEMAP software to compute credi-
ble sets of genes from our marginal TWAS results (15).
We substituted GWAS summary statistics for our TWAS
summary statistics from the marginal TWAS analysis.
In place of an LD matrix, we used a gene–gene correla-
tion matrix computed on the predicted gene expression
values in UKB Europeans. We compute the FINEMAP
credible sets and posterior probabilities of inclusion for
all TWAS loci with at least two genes.

Pathway analysis

We conducted a pathway analysis using the clusterPro-
filer R package to search for GO terms that were enriched
among FINEMAP credible sets of TWAS significant genes
(44). For each phenotype, we defined the gene set for
each phenotype as the set of TWAS significant genes
with FINEMAP posterior probability of inclusion in the
credible set >0.5. The universe of genes was the set of
10 004 genes with gene expression prediction models that
passed prediction QC. Multiple testing was addressed by
setting the false discovery rate for each phenotype to
0.05. The minimum gene set size for genes annotated
with a GO term was set to 10.

TWAS variant-to-gene assignments
We assigned the distinct GWAS variants from Vuckovic
et al. to putative target genes using our TWAS results (3).
For a GWAS variant-trait association, we considered all
significant TWAS gene-trait associations for the match-
ing trait in any TWAS locus within 1 Mb of the variant.
We assigned the variant to a gene if the TWAS gene had
both a FINEMAP posterior probability of inclusion greater
than 0.5, and evidence of correlation (r2 > 0.2) between
the variant genotype and predicted gene expression. We
performed our TWAS assignments on 10 239 variant-trait

associations across 10 hematological traits from Vuck-
ovic et al. (3) In their original paper, these 10 traits were
chosen by Vuckovic et al. based on data availability for
eQTLs in relevant cell types including platelets, CD4+,
CD8+, CD14+, CD15+ and CD19+ cells. In their work,
they performed eQTL colocalization analyses using coloc.
For a GWAS variant, we assigned the eGene(s) corre-
sponding to any colocalizing eQTL as the target gene.

Open targets

Open Targets Genetics is an open-access integrative
resource which aggregates human GWAS and functional
genomics data including gene expression, protein
abundance, chromatin interaction and conformation
data in order to make robust connections between GWAS
loci and potentially causal genes (27). In order to assign
potentially causal genes to a given GWAS variant, Open
Targets provides a disease-agnostic variant-to-gene (V2G)
score which combines a single aggregated score for each
GWAS variant-gene prediction. This analysis combines
four different data types: eQTL and pQTL datasets,
chromatin interaction and conformation datasets, VEP
scores and distance from the canonical transcription
start site for a target gene. We compare the TWAS
and coloc variant-to-gene assignments to the sets of
potentially causal genes identified by Open Targets.
Performance is assessed by checking if any TWAS/coloc
assigned gene for a given variant is either the most likely
gene identified by Open Targets (OT Max) or any gene
identified by Open Targets (OT Any).

BLUEPRINT specifically expressed genes

We also assessed the quality of the gene assignments for
the TWAS and coloc-based methods by determining if the
assigned gene is cell type specifically expressed in gene
expression data from BLUEPRINT (18). We group available
expression data into five cell type groups: erythrocytes,
megakaryocytes, macrophages and monocytes, nCD4
cells and neutrophils. We classified genes as cell type
group-specific or shared via Shannon entropy across
the five cell type groups. We first exponentiated the
BLUEPRINT MMSEQ expression quantifications, to be
comparable to RPKM. Then, for each gene, we calcu-
lated the normalized gene expression by dividing gene
expression in each cell type group by the sum across
all five cell type groups. Next, we calculated Shannon
entropy using the normalized gene expression values.
We defined the shared genes across cell type groups
as those with entropy <0.1 and the cell type-specific
genes as those with entropy >0.5 and gene expression
>1 in the respective cell type. Biologically plausible cell
type groups selected for the 29 phenotypes analyzed are
detailed in Supplementary Material, Table S1.

Supplementary Material
Supplementary Material is available at HMG online.
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