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Since late 2020, emerging variants of concern of severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) have 
led to substantial epidemic waves and marked increases in 

coronavirus disease 2019 (COVID-19) deaths1–5. In Brazil, the 
SARS-CoV-2 Gamma variant of concern (also known as P.1, 
20J/501Y.V3 or GR/501Y.V3, VOC-21JAN-02 or VOC202101/02) 
was first detected in December 2020 in Manaus, Amazonas state, 

in north Brazil3,6,7. Gamma is characterized by several amino acid 
substitutions in the spike protein, including L18F, N501Y, E484K 
and K417N, that have been associated with increased transmissibil-
ity and immune escape3,8,9. Three weeks after its detection, Gamma 
became the dominant lineage circulating in Manaus as measured 
by variant frequency3. The rapid spread of Gamma through the 
country was followed by waves of COVID-19-associated mortality, 
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The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Gamma variant of concern has spread rapidly across Brazil 
since late 2020, causing substantial infection and death waves. Here we used individual-level patient records after hospitaliza-
tion with suspected or confirmed coronavirus disease 2019 (COVID-19) between 20 January 2020 and 26 July 2021 to docu-
ment temporary, sweeping shocks in hospital fatality rates that followed the spread of Gamma across 14 state capitals, during 
which typically more than half of hospitalized patients aged 70 years and older died. We show that such extensive shocks in 
COVID-19 in-hospital fatality rates also existed before the detection of Gamma. Using a Bayesian fatality rate model, we found 
that the geographic and temporal fluctuations in Brazil’s COVID-19 in-hospital fatality rates were primarily associated with geo-
graphic inequities and shortages in healthcare capacity. We estimate that approximately half of the COVID-19 deaths in hos-
pitals in the 14 cities could have been avoided without pre-pandemic geographic inequities and without pandemic healthcare 
pressure. Our results suggest that investments in healthcare resources, healthcare optimization and pandemic preparedness 
are critical to minimize population-wide mortality and morbidity caused by highly transmissible and deadly pathogens such as 
SARS-CoV-2, especially in low- and middle-income countries.
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suggesting increased disease severity after infection and hospitaliza-
tion with Gamma10. However, these data have not been examined 
in the context of extensive inequities in baseline development and 
healthcare capacity across Brazil, which are common in low- and 
middle-income countries11.

In this study, we used individual-level patient histories after hos-
pitalization with suspected or confirmed COVID-19 (Fig. 1)12,13 to 
describe how the expansion of Gamma was followed by shocks in 
COVID-19 fatality rates in Brazilian hospitals, and we showed that 
in-hospital fatality rates also fluctuated extensively before the emer-
gence of Gamma. We introduced pandemic healthcare pressure 
indices that measure and monitor mismatches between healthcare 
demand and resource availability in hospital settings. We found that 
these pandemic healthcare pressure indices are strongly correlated 
with variations in in-hospital COVID-19 fatality rates across 14 
Brazilian state capitals. Using a Bayesian model, we then assessed the 
factors driving the extensive fluctuations in COVID-19 in-hospital 
fatality rates, from pre-pandemic geographic inequities in economic 
development, healthcare resources and population vulnerability14–18, 
to pandemic healthcare pressures15,19,20 and variant-specific disease 

severity as measured by in-hospital fatality rates21,22. Table 1 sum-
marizes our findings and policy implications.

Results
In-hospital fatality rates fluctuated around the emergence of 
Gamma. With the aim of characterizing longitudinal trends in 
COVID-19-attributable fatality rates since the beginning of the 
pandemic, we investigated mortality in hospitalized patients 
admitted with polymerase chain reaction (PCR)-confirmed, clini-
cally diagnosed or suspected SARS-CoV-2 infection (SARS-CoV-
2-attributable infection)16 from 20 January 2020 to 26 July 2021 
across Brazil. We focused on hospital settings, as these are the 
places where most lives are saved, and we restricted analyses to 14 
of 27 Brazilian state capitals for which SARS-CoV-2 genomic data 
were publicly available from GISAID23 to characterize the expan-
sion dynamics of Gamma and control for potentially elevated dis-
ease severity of Gamma in hospitals (Fig. 2a and Extended Data  
Fig. 1). In total, 641,618 patients with SARS-CoV-2-attributable 
infection were admitted to hospitals across the 14 cities and reported 
to Brazil’s Sistema de Informação da Vigilância Epidemiológica da 
Gripe (SIVEP-Gripe) database (Fig. 1 and Supplementary Table 1).  
To match these data to city-level transmission dynamics, we 
retained for analysis the 495,100 COVID-19-attributable hospi-
tal admissions among residents in each state capital. We further 
excluded 32,734 resident patients who were administered at least 
one vaccine dose before hospitalization to avoid confounding of 
time trends in fatality rates with vaccine rollout, which occurred 
during the same period. Thus, our study population comprised 
the remaining 462,366 COVID-19-attributable hospital admis-
sions in residents (Supplementary Fig. 1). Among those, 120,288 
(26.02%) outcomes were fatal. However, 32,585 (7%) admissions 
had unreported clinical outcomes, which occurred primarily after 
the detection of Gamma, and so it is important to account for 
potential underreporting of COVID-19-attributable deaths16,24,25. 
We estimated 10,029 additional fatalities by considering the pro-
portion of deaths among patients with known outcomes, stratified 
by age and observation week (Methods, Extended Data Fig. 2 and 
Supplementary Table 2).

Figure 2c shows the empirical COVID-19 in-hospital fatality rates 
for Manaus, defined as the proportion of underreporting-adjusted 
deaths in weekly COVID-19-attributable hospital admissions 
among residents with no evidence of vaccination before admis-
sion (see Extended Data Fig. 3 for four other state capitals). The 
observed, age-dependent patterns in COVID-19 in-hospital fatality 
rates are consistent with earlier observations that COVID-19 fatality 
rates increase with age26. Moreover, we observe, across all age bands, 
marked increases in COVID-19 in-hospital fatality rates after detec-
tion of Gamma, a pattern that is consistent across the 14 cities. 
However, the within-age band variation reveals stark geographical 
differences and temporal fluctuations since the beginning of the 
pandemic rather than just since the emergence of Gamma, reinforc-
ing previous findings on geographical heterogeneity of mortality in 
the first 3 months of the pandemic17. For example, in Belo Horizonte, 
no age group experienced shocks of COVID-19 in-hospital fatality 
rates above 50% that lasted at least four consecutive weeks, whereas, 
in Macapá, all age groups of 40 or older experienced such fatality 
shocks (Supplementary Table 3). We also found that the increases 
in COVID-19 in-hospital fatality rates after detection of Gamma 
were largely transient, declining in tandem with fewer admissions, 
as shown in Fig. 2c for Manaus.

To obtain a simple measure on the extent of spatio-temporal vari-
ation, we first estimated smoothed, non-parametric trends through 
the weekly, age-specific in-hospital fatality rates (Methods). Then, 
and because the population age compositions vary across cities, we 
weighted each age-specific trend in a location by the proportion of 
the 14 cities’ populations in the corresponding age band, resulting in 

2,390,879 hospital admissions with 
severe acute respiratory infections as 
of 26 July 2021

666,532 during the observation period in
14 state capitals where SARS-CoV-2
Gamma was detected by 31 March 2021

641,618 COVID-19-attributable hospital
admissions (PCR-confirmed, clinically
diagnosed SARS-CoV-2 infection or 
suspected SARS-CoV-2 infection)

462,366 patients with no evidence of at
least one COVID-19 vaccine dose before
hospital admission

495,100 in residents in 14 state capitals

At least one vaccine dose 
prior to hospital admission 
32,734

Infection confirmed with
other respiratory pathogens
or unreported cause
24,914

Non-residents
146,518

Other locations or 
not in observation period
1,724,347

Discharged
309,493 observed
22,556 estimated

Deaths
120,288 observed
10,029 estimated

32,585 patients with
unreported outcomes

Fig. 1 | Analysis flow chart. Individual-level records of hospital admissions 
with severe acute respiratory infection across Brazil are mandatory to 
report to the SIVEP-Gripe database, and publicly available records between 
20 January 2020 and 26 July 2021 were downloaded on 31 January 2022. 
Data used to derive COVID-19 in-hospital fatality rates are shown in blue, 
and data used to derive the healthcare pressure indices are shown in  
yellow (Methods).
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age-standardized estimates of weekly COVID-19 in-hospital fatality 
rates. Figure 3a shows the age-standardized COVID-19 in-hospital 
fatality rates since the beginning of the pandemic across locations 
in black lines, and Table 2 reports the minimum and maximum 
observed values in each location. The minimum age-standardized 
in-hospital fatality rates occurred either at the start of the observa-
tion period or between waves of hospital admissions in each location 
for all cities except Belo Horizonte, where the lowest fatality rates 
were seen at the end of the observation period. We performed addi-
tional analyses suggesting that this further drop in fatality rates in 
Belo Horizonte at the end of the observation period is likely related 
to missing data on vaccine status in hospitalized patients in Belo 
Horizonte (Supplementary Fig. 2). For this reason, and to guard 
our analyses against other potential confounders, such as improved 
treatment with dexamethasone, we evaluated the minimum fatal-
ity rates over the period until the detection of Gamma. In Belo 
Horizonte, the minimum age-standardized COVID-19 in-hospital 
fatality rate before detection of Gamma was 7.7%, and the maximum 
value over the entire study period was 12.7%, a 1.64-fold increase. 
We observed higher fold increases in all other state capitals, apart 
from Rio de Janeiro where age-standardized in-hospital fatality 
rates were very high throughout the study period. Rates tended to 
reach similar baseline values between shock periods in each loca-
tion and were lowest in state capitals from the South and Southeast 
regions of Brazil. The maximum rates occurred in most locations 

after the first detection of Gamma, except for João Pessoa, Macapá 
and Rio de Janeiro where they occurred before the first detection of 
Gamma. Overall, rates tended to be highest in the North, Northeast 
and Center-West regions of Brazil.

Healthcare pressure indices track in-hospital fatality rates. Since 
the early phase of the COVID-19 pandemic, investments to avoid a 
widespread collapse of Brazil’s unified health system have resulted in 
increased availability of equipment such as ventilators and intensive 
care unit (ICU) beds as well as trained healthcare professionals—but 
with considerable geographic differences19,27. In the wider context 
of substantial underfunding of Brazil’s unified health system before 
the pandemic14,28 and disparities in healthcare resources across and 
within Brazil’s states29, here we introduce pandemic healthcare pres-
sure indices that monitor in-hospital healthcare load at the city 
level. We obtained healthcare-facility-level microdata on personnel 
(nurses, nurse assistants, physiotherapists, physicians and intensive 
care specialists) and equipment (critical care beds, ICU beds and ven-
tilators) from Brazil’s National Register of Health Facilities (Cadastro 
Nacional de Estabelecimentos de Saúde (CNES)), which we consoli-
dated into monthly time series for each location (Methods).

We found large inequities in healthcare resources across Brazil. 
In March 2020 the number of available ventilators per 100,000 pop-
ulation ranged from 21.7 in Macapá to 102 in Porto Alegre, and the 
number of physicians per 100,000 population ranged from 124 in 
Macapá to 631 in Belo Horizonte (Supplementary Table 4). From 
these data, we constructed healthcare pressure indices that capture 
changes in hospital demand per available resource, with demand 
comprising all hospitalized patients with severe acute respiratory 
infection, including non-residents and individuals with vaccine 
breakthrough infections (Fig. 1 and Methods). One such index, the 
moving sum of ICU admissions over 3 weeks per ICU bed, is shown 
in Fig. 3a, and four further indices are shown in Extended Data Figs. 
4 and 5. We found that all healthcare pressure indices are strongly 
correlated with the age-standardized, weekly COVID-19 in-hospital 
fatality rates in most cities, except Florianópolis (Fig. 3b).

The effects of severity, location and pandemic healthcare pressure. 
We next developed a Bayesian multi-strain fatality model to disen-
tangle the effects of location-specific inequities, pandemic health-
care pressures and Gamma-specific disease severity on fluctuating 
COVID-19 in-hospital fatality rates while accounting for the substan-
tial cumulated loss of life30 and age-prioritized vaccine rollout10,21,22. In 
brief, the model reconstructs the replacement dynamics of Gamma 
in each of the 14 state capitals from weekly SARS-CoV-2 sequence 
metadata and estimates the weekly number of patients who are hos-
pitalized, respectively, with Gamma and non-Gamma SARS-CoV-2 
infection in 11 age strata. We modeled age-specific in-hospital fatal-
ity rates for each variant through a regression equation that captures 
non-parametric location effects, fixed non-negative effects associ-
ated with the healthcare pressure indices and non-parametric virus 
variant effects associated with the replacement dynamics of Gamma 
(Methods). In the model, the non-parametric location effects do not 
vary in time and account for a variety of constant social, economic 
or healthcare-related factors that differentiate one city from another 
in the weeks when their observed fatality rates were lowest, such as 
the prevalence of comorbidities that might modify disease severity or 
pre-existing inequities in both the quality and the quantity of available 
healthcare resources15,31. By contrast, the healthcare pressure indices 
vary in time, and the strength of their association with the fatality 
rates is estimated through the regression equation. Patients estimated 
to have been infected with the Gamma variant are in the model con-
sidered separately from those estimated to have been infected with 
non-Gamma variants of SARS-CoV-2, which allowed us to control 
for Gamma-specific expansion and in-hospital disease severity when 
inferring associations between fatality rates and healthcare pressure.

Table 1 | Policy summary

Background Little research has put the evolving COVID-19 
pandemic into the wider focus of healthcare 
inequities and pandemic healthcare pressure in low- 
and middle-income countries.

Main findings and 
limitations

For Brazil, we show that COVID-19 fatality rates 
in hospitals have fluctuated substantially both 
geographically and temporally since the beginning 
of the pandemic. In several cities, shock periods are 
characterized by in-hospital fatality rates exceeding 
50% in patients aged 70 years and older. Using 
healthcare-facility-level microdata on personnel 
and equipment, we measured healthcare pressure 
at the city level and found strong associations with 
the fluctuating COVID-19 in-hospital fatality rates. 
These associations are confirmed in a Bayesian 
model that accounts for the emergence and rapid 
spread of the SARS-CoV-2 Gamma variant. We 
estimate that approximately half of Brazil’s COVID-
19 deaths in hospitals could have been avoided 
without pre-pandemic geographic inequities and 
without the multitude of pandemic healthcare 
pressures. Limitations of this study include sparsely 
available data on patient comorbidity factors and 
incomplete data on patient outcomes.

Policy implications Our findings show that COVID-19 fatality rate 
shocks seen in Brazilian hospitals can be explained 
by a substantially increased demand on limited 
healthcare resources that follow SARS-CoV-2 
infection waves. The conclusions are relevant for 
other countries and show that responding to acute 
healthcare shocks is challenging. Without sustained 
investments in healthcare resources, healthcare 
optimization and pandemic preparedness to minimize 
population-wide mortality and morbidity, countries 
will continue to experience high fatality rates caused 
by immune-escape SARS-CoV-2 variants and other 
highly transmissible viruses.
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Brazil’s rapid vaccination rollout overlapped with the tempo-
ral expansion of Gamma as well as changes in Brazil’s age-specific 
population structure30. To account for this, we used all-cause death 
records from Brazil’s Civil Registry and vaccine administration 
records from the Brazilian Ministry of Health to adjust down-
wards the population at risk of hospitalization per location and age 
group in the model (Methods). We observed substantial variation 
in the timing of vaccine rollout, time to second dose and vaccine 
type administered (Supplementary Figs. 3–7). Accounting for this  
variation was important to obtain good model fit to age-specific 

shifts in hospital admissions, deaths in hospitalized patients, 
in-hospital fatality rates and variant frequencies of Gamma 
(Extended Data Figs. 1 and 6–9).

Regional and healthcare inequities drive in-hospital fatality 
rates. Figure 4a compares the fitted age-standardized COVID-19 
in-hospital fatality rates across Brazil’s macroregions—the North, 
Northeast, Central-West, Southeast and South—revealing consider-
able geographical heterogeneity. Before the first detection of Gamma 
in each location, the fitted age-standardized in-hospital fatality rate 
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was lowest in Belo Horizonte and highest in Rio de Janeiro (shown 
as dotted horizontal lines in Fig. 4a). The high estimates for Rio 
de Janeiro prompted us to compare excess deaths derived from 
Brazilian’s Civil Registry to the COVID-19-attributable in-hospital 
deaths, which suggested that a smaller than expected proportion of 
hospitalized patients with unreported clinical outcomes may have 
died. However, Rio de Janeiro’s age-standardized COVID-19 fatality 
rates remained the highest even when we assume that all patients 
with unreported clinical outcomes were successfully treated and 
survived COVID-19 (Methods and Supplementary Fig. 8).

Figure 4b–d compares the estimated location and the Gamma 
and healthcare pressure contributions to in-hospital fatality rates 
(Methods). We found that the marked increase in COVID-19 
in-hospital fatality rates is better explained by changes in health-
care pressures rather than a direct effect of Gamma on fatality rates 
in hospitalized patients. This result is inferred from three observa-
tions. First, the empirical in-hospital fatality rates also fluctuated 
before the detection of Gamma; second, the rates largely decreased 
after the initial shock after Gamma detection; and third, the rates 
were strongly associated with the time-varying pandemic healthcare 
pressure indices (Extended Data Fig. 8). Relative to Belo Horizonte, 
the lowest fatality rates were an estimated 1.95-fold (95% credible 
interval (CrI): 1.11–3.25) higher in all other state capitals, a location 
effect that was consistent across all age groups. Although we do not 
explore the exact drivers of this location effect, it is likely shaped by 
a combination of socioeconomic factors specific to each city, in con-
junction with city-specific, pre-existing inequities in the availability, 
quality and accessibility of healthcare32,33. At peak times, pandemic 
healthcare pressures as measured by our indices were associated 
with a 2.33-fold (95% CrI: 1.39–4.27) multiplicative effect across the 
14 cities, and this contribution was stronger in places that already 

had high in-hospital fatality rates at baseline. Gamma was not asso-
ciated with a statistically significant effect on in-hospital fatality 
rates after controlling for healthcare pressures (posterior P = 0.14 
that Gamma-specific in-hospital disease severity is lower than or 
equal to that of non-Gamma variants in patients aged 30–39 years 
compared to non-Gamma variants of SARS-CoV-2 and larger in 
those younger than 30 years and older than 39 years).

Avoidable deaths in the absence of resource limitations. To 
quantify the effect that the observed fluctuations in COVID-
19-attributable in-hospital rates had on the death toll in the 14 state 
capitals, we considered counterfactual simulations where infection 
waves and resource limitations did not result in surging in-hospital 
fatality rates (Methods). We consider this counterfactual scenario 
conservative as it assumes, for each location, achievable in-hospital 
fatality rates that are based on the lowest values observed before the 
first detection of Gamma in each state capital and, thus, before sub-
sequent improvements in clinical management, patient triage and 
treatments (for example, dexamethasone). Across the 14 state capi-
tals, we found that, in the absence of pandemic resource limitations, 
deaths could have been reduced by an estimated 29.8% (95% CrI: 
28.7–30.9%) (Table 2).

Using additional counterfactual simulations, we further evalu-
ated how many in-hospital deaths could have been avoided in the 
absence of regional inequities and pandemic resource limitations—
that is, if all 14 state capitals would have experienced throughout 
the pandemic the lowest observed in-hospital fatality rates across 
all 14 cities, which were found in Belo Horizonte. We consider these 
estimations less conservative, because the observed, low in-hospital 
fatality rates in Belo Horizonte could reflect a large range of factors 
that might not be translatable to other locations in Brazil. We found 

Table 2 | Temporal fluctuations in COVID-19-attributable in-hospital fatality rate and avoidable COVID-19-attributable deaths in 
hospitals

Location Observation period COVID-19 attributable 
hospital admissions in 
unvaccinated residents

Age-standardized weekly COVID-19 
in-hospital fatality rate (HFR)

Estimated avoidable COVID-19 deaths in 
hospitals

Total Deathsa Lowest 
(%)b

Highest 
(%)b

Fold increaseb Assuming the 
lowest HFR in each 
city (%)c

Assuming the lowest 
HFR across all 14 
cities (%)c

Belo Horizonte 06/04/20–26/07/21 42,113 7,692 7.7 12.7 1.64 29.1 (24.6–33.7) 29.1 (24.6–33.7)

Curitiba 02/03/20–26/07/21 33,015 7,535 8.1 18.1 2.23 39.6 (34.2–44.7) 47.3 (43.9–50.8)

Florianópolis 09/03/20–26/07/21 4,032 893 7.8 17.1 2.20 22.9 (12.5–32.6) 44.5 (40.9–48.1)

Goiânia 16/03/20–26/07/21 20,044 6,246 11.6 25.9 2.23 44.7 (39.0–50.0) 61.2 (58.6–63.7)

João Pessoa 09/03/20–26/07/21 10,552 3,636 15.3 29.7 1.94 18.8 (13.0–25.1) 65.9 (63.7–68.1)

Macapá 30/03/20–26/07/21 3,169 1,011 11.0 41.5 3.78 41.6 (30.5–51.8) 68.4 (66.2–70.6)

Manaus 24/02/20–26/07/21 26,260 10,168 16.4 33.4 2.04 39.3 (35.9–42.3) 70.9 (69–72.9)

Natal 16/03/20–26/07/21 9,344 3,512 11.4 32.9 2.87 35.4 (30.2–40.5) 66.9 (64.8–69)

Porto Alegre 02/03/20–26/07/21 16,106 5,266 8.6 27.1 3.16 41.8 (37.7–45.7) 59.6 (57.1–62.3)

Porto Velho 30/03/20–26/07/21 6,795 2,473 11.5 32.2 2.79 39.1 (32.2–45.5) 70.3 (68.3–72.4)

Rio de Janeiro 16/03/20–26/07/21 73,139 28,053 19.2 26.0 1.35 10.2 (8.5–11.9) 66.9 (64.8–69)

Salvador 16/03/20–26/07/21 26,964 8,509 9.7 26.9 2.76 20.8 (16.2–25.2) 61.3 (58.8–63.9)

São Luís 24/02/20–26/07/21 8,545 2,547 8.2 26.5 3.25 35.7 (28.4–42.4) 60.5 (57.9–63.1)

São Paulo 20/01/20–26/07/21 182,288 42,769 8.8 19.8 2.24 36.2 (33.9%-–38.4) 50.1 (46.9–53.4)

All 14 cities 20/01/20–26/07/21 462,366 130,317 29.8 (28.7–30.9) 57.1 (54.3–59.9)
aObserved deaths plus expected deaths in COVID-19-attributable hospital admissions with unreported outcome. bAge-specific COVID-19-attributable in-hospital fatality rates were estimated from linked 
data on underreporting-adjusted deaths in COVID-19-attributable hospital admissions. Non-parametric loess estimates were obtained and weighted by the population age composition across cities. Lowest 
fatality rates were calculated in the period before Gamma’s first detection in each location, and highest fatality rates were calculated including the time after Gamma’s first detection. The lowest fatality 
rates in the period before Gamma’s first detection agreed with those observed across the entire study period for all cities except Belo Horizonte. See the main text for further details and analyses. cEstimates 
are based on hypothetical scenarios evaluated under the Bayesian multi-strain fatality model, assuming the lowest observed in-hospital fatality rates seen in the periods before Gamma’s first detection in 
each location.
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that in-hospital deaths could have been reduced by an estimated 
57.1% (95% CrI: 54.3–59.9%) in the 14 state capitals (Table 2).

Discussion
This study highlights extensive geographic and temporal varia-
tion in COVID-19 in-hospital fatality rates since the beginning of 
the epidemic in 14 state capitals across Brazil. Our analyses indi-
cate that the observed variation is driven primarily by shortages in 
healthcare capacity, which, in turn, emerged from a combination of 
pre-pandemic regional inequities and increased healthcare pressure 
brought about by epidemic waves of SARS-CoV-2 transmission. 
The extent and degree of this mismatch between supply (of staff 
and equipment) and demand (patients requiring hospitalization 
for COVID-19) is highly dynamic, varying considerably over the 
course of the epidemic with the magnitude of each infection wave.

Our findings should be considered in the context of the following 
limitations. First, Brazil’s inpatient records are limited in that comor-
bidity factors, vaccination status or SARS-CoV-2 variant informa-
tion are either frequently missing or not available at the individual 
level34. This makes it challenging to comprehensively control for 
individual-level factors that can modulate fatality rates35,36. However, 
Brazil’s freely accessible inpatient data constitute one of the world’s 
largest databases to characterize the pandemic effect of COVID-19 
in a middle-income country and across areas that differ substan-
tially in baseline development and available healthcare resources. 
In sensitivity analyses, we considered SARS-CoV-2 sequence data 
from alternative sources as well as alternative patient inclusion cri-
teria, which suggest that our estimates of location and healthcare 
pressure effect sizes are robust (Supplementary Figs. 9–14).

Second, here we delineate fluctuations in COVID-19 in-hospital 
fatality rates at city level to focus on the extensive spatio-temporal 
heterogeneity in fatality rates across Brazil. We recognize that this 
broader geographic focus masks important differences within cities, 
and, thus, we cannot identify the exact factors determining the sub-
stantial location effects that we measure. However, these are likely 
related to (1) differences in catchment populations, as vulnerable 
populations with poor healthcare access are highly clustered across 
Brazil’s largest cities29,37; (2) underfunding of the public healthcare 
system14,28 and emerging discrepancies in healthcare resources com-
pared to private hospitals17,32,37,38; or (3) inequities in the quality and 
capabilities of healthcare systems that are well-documented—for 
example, for pre-pandemic sepsis survival rates39. Additional rel-
evant factors could include (4) differences in demand reflecting 
variation in epidemic magnitude32 and (5) the timing and extent of 
public health measures aimed at controlling spread and preventing 
infection in vulnerable groups19,27,33. As such, the location effects 
could also reflect healthcare pressures that are present already at 
the lowest incidences of COVID-19 hospital admissions in each 
location. We observed substantial fluctuations in in-hospital fatal-
ity rates even in private hospitals of São Paulo city (Supplementary 
Fig. 15), suggesting that large effects of healthcare pressure on 
in-hospital fatality rates are common across Brazil.

Third, the pandemic healthcare pressure indices that we derived 
are based on data reported to CNES, which does not capture all 
resource limitations, such as the acute shortages in oxygen supply 
that were experienced in January 2021 in Manaus40, and is prone to 
potential reporting biases20. In our view, the inferred associations 
between healthcare pressure indices and fatality rates demonstrate 
that, where resources are limited, real-time monitoring of avail-
able resources is especially important to identify critical resource 
limitations and avoid the lamentable shocks in death rates that we 
describe for many state capitals across Brazil.

Fourth, in characterizing hospital fatality rates in a broad 
Brazilian context, we are ignoring historical policy aspects that can 
be a source of heterogeneity. The standard of healthcare per unit 
staff member can be improved by federal coordinated actions and 

policies on training as well as unambiguous governmental medi-
cal policies to prevent disinformation41. These federal policies also 
extend to financing to ensure that the underlying structure of pri-
mary care and emergency services all present a standardized quality 
of care42.

Finally, our analyses start with hospitalization, which is a limi-
tation because in-hospital fatality rates also depend on which, and 
under what circumstances, severely ill patients are admitted to hos-
pitals. Thus, it is possible that healthcare demand was amplified due 
to an increased risk of hospitalization after infection with a vari-
ant of concern with higher infection severity, as has been shown 
for SARS-CoV-2 Alpha35,43. We also found evidence that, in several 
locations, out-of-hospital deaths surged at times of peak demand 
(Extended Data Fig. 2), and that, in hospitalized patients with a fatal 
outcome, the time to death after admission tended to be shorter 
during peak demand (Supplementary Fig. 16). These observations 
indicate that increased healthcare pressure acts to shape in-hospital 
fatality rates through distinct mechanisms, likely through a com-
bination of both the reduced ability to provide adequate care and 
an increase in the average severity of admitted patients (with only 
the most severely ill admitted during periods of highest pressure). 
In this context, if less severe COVID-19 cases could also have been 
admitted, we expect that the estimated proportion of avoidable 
COVID-19 in-hospital deaths in the absence of healthcare pressure 
effects would be lower than what is reported here. At the same time, 
the projected numbers are likely an underestimate of COVID-19 
deaths that could have been avoided in the absence of healthcare 
pressure effects because we did not account for deaths in severely ill 
individuals who were not cared for in hospitals.

It can be challenging to generalize the effects of healthcare 
pressure indices to other countries and in different temporal 
waves of the pandemic. The concept of health system resilience is 
well-studied44–46. However, our results highlight that established 
indices such as the Global Health Security Index47 are inadequate 
to reliably measure healthcare resilience. Similar results to what 
we have presented in this study have been found in Greece, Israel 
and the United States48–50. The factors affecting in-hospital fatality 
rates in Brazil are universal and highlight that healthcare resilience 
cannot be simply solved by responding to short-term shocks or 
attempting to dynamically redistribute capacity. Instead, it requires 
an investment in long-term measures, such as training healthcare 
workers, strengthening public health functions and funding in 
excess of current need51.

The implications of the inferred scale of location inequities 
and healthcare shortages in Brazil are substantial. As of 26 July 
2021, we estimate that approximately one-quarter of the COVID-
19-attributable deaths in the hospitals in the 14 cities studied 
could have been avoided if healthcare pressure had not exacer-
bated baseline fatality rates. Taking the percent reduction across 
the 14 state capitals as indicative and generalizable to all of Brazil, 
we estimate that, as of 26 July 2021, 176,399 (169,888–182,911) of 
Brazil’s observed 591,945 COVID-19-attributable deaths in hospi-
tals could have been avoided in the absence of pandemic resource 
limitations. We also estimate that approximately half of the COVID-
19-attributable deaths in the hospitals in the 14 cities studied could 
have been avoided if, in addition, all hospitals would have had 
the same baseline COVID-19 fatality rates as those observed in 
Belo Horizonte. Extrapolating Belo Horizonte’s lowest observed 
in-hospital fatality rates to all of Brazil, we estimate that, as of 26 July 
2021, 337,763 (321,485–354,575) of Brazil’s COVID-19-attributable 
in-hospital deaths could have been avoided. Our findings are partic-
ularly important in calibrating the risk posed by new SARS-CoV-2 
variants of concern. We find that the effect of Gamma in Brazil’s 
hospitals has predominantly been indirect and mediated through 
pre-existing geographic inequities, transient infection waves and 
concomitant shocks in healthcare demand. In conclusion, our 
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Fig. 4 | Estimated contribution of location effects, infection severity of Gamma and pandemic healthcare pressure on COVID-19 in-hospital fatality rates. 
a, Estimated weekly age-standardized COVID-19 in-hospital fatality rates, averaged across SARS-CoV-2 variants. Posterior median estimates (line) are 
shown with 95% CrIs (ribbon) and the lowest estimated fatality rates before detection of Gamma in each state capital (dotted horizontal line). b, Estimated 
ratio in lowest in-hospital fatality rates in each location relative to that seen in Belo Horizonte. c, Estimated ratio in in-hospital fatality rates for Gamma 
versus non-Gamma lineages of SARS-CoV-2. d, Estimated multiplier to the lowest age-standardized fatality rates before Gamma’s detection shown in  
a, which is associated with the pandemic healthcare pressure indices. In each plot, posterior median estimates are shown as dots and 95% CrIs as 
linerange. Box plots summarize posterior medians across locations (n = 14): the middle line is the median; the box limits represent the upper and lower 
quartiles; and the whiskers extend to the extreme values that are no further than 1.5 times the interquartile range. Multipliers and ratios in b–d are reported 
on a logarithmic scale. Posterior estimates with CrI width larger than 3 were removed for clarity of presentation.
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results suggest that investments in healthcare resources, healthcare 
optimization and pandemic preparedness are critical to minimize 
population-wide mortality and morbidity caused by highly trans-
missible and deadly pathogens such as SARS-CoV-2, especially in 
low- and middle-income countries.
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Methods
To characterize the role of pre-pandemic geographic inequities and increased 
healthcare pressure brought about by epidemic waves of SARS-CoV-2 transmission, 
we took a systematic approach that involved longitudinal statistical analyses of 
hospitalized patients with suspected or confirmed COVID-19 infection in 14 state 
capitals of 27 Brazilian federal states, longitudinal analyses of healthcare resources 
in each city, mathematical modellng to disentangle the effect of geographic 
inequities and healthcare pressure from Gamma’s rapid expansion across Brazil and 
validation against external data. The following sections summarize our methods. 
All data used are publicly available, and no further ethics consent was required. 
Code and data are fully available (see ‘Data availability’ section).

Data to characterize in-hospital fatality rates. We obtained publicly available 
individual records of patients with severe acute respiratory infection in public or 
private hospitals across Brazil that were reported in the SIVEP-Gripe database, 
release 31 January 2022 (https://opendatasus.saude.gov.br/dataset/srag-2020, 
https://opendatasus.saude.gov.br/dataset/srag-2021-e-2022).

Individual patient records in Brazil’s SIVEP-Gripe database do not contain 
linked SARS-CoV-2 sequence data. To characterize the associations and effect 
sizes of geographic inequities and healthcare pressure on COVID-19 in-hospital 
fatality rates while controlling for variant-specific effects of Gamma on in-hospital 
severity, we focused analyses on geographically well-defined locations where 
SARS-CoV-2 sequence metadata were independently and freely available. We 
searched GISAID (https://www.gisaid.org) on 14 June 2021 for sequence data 
associated with SARS-CoV-2 Gamma virus genome sequences in the 27 federal 
units (26 Brazilian states and the Federal District). Gamma genome data were 
available for 16 federal units: Amapá, Amazonas, Bahia, Goiás, Maranhão, Mato 
Grosso do Sul, Minas Gerais, Paraíba, Paraná, Rio de Janeiro, Rio Grande do 
Norte, Rio Grande do Sul, Rondônia, Santa Catarina, São Paulo and Tocantins. 
We focused our analysis on the state capitals in these federal units because key 
variables, such as population size, vaccination coverage and healthcare indicators, 
were more directly available at the level of state capitals. We assumed that the 
frequency of Gamma in state capitals is similar to the frequency of Gamma across 
that state, measured by available sequence metadata. Two state capitals, Palmas 
and Campo Grande, were excluded from further analysis due to limited, weekly 
age-specific COVID-19 hospital admission and death counts of residents reported 
to the SIVEP-Gripe database. The cities in our sampling frame were, thus, Belo 
Horizonte, Curitiba, Florianópolis, Goiânia, João Pessoa, Macapá, Manaus, Natal, 
Porto Alegre, Porto Velho, Rio de Janeiro, Salvador, São Luís and São Paulo. 
Reflecting the geographical expansion of COVID-19 through Brazil over time, 
our observation periods varied across cities. The start dates were defined as the 
Monday after the date on which at least 2.5 patients with suspected or confirmed 
COVID-19 per 100,000 population were hospitalized in each location. The end 
date was set to 26 July 2021 (Supplementary Table 1). Records were filtered to 
exclude out-of-hospital deaths, defined as individuals with a missing hospital 
admission date or who died on the day of admission; to exclude confirmed 
infections with other respiratory pathogens or with missing diagnosis; to exclude 
non-residents to match city-level population denominators; and to exclude patients 
with at least one vaccine dose before hospital admission to that ensure that trends 
in fatality rates were not confounded with vaccine status. To avoid bias16, our data, 
thus, included patients with PCR-confirmed, clinically diagnosed or suspected 
COVID-19 infection (Supplementary Fig. 17). Alternative inclusion criteria were 
considered in sensitivity analyses and are reported below. The data are available at 
inst/data/SIVEP_hospital_31-01-2022-all.rds in the GitHub repository.

Population size estimates in each city were retrieved by sex and 1-year age 
bands from the 2020 National Household Sample Survey COVID-19, Pesquisa 
Nacional por Amostra de Domicílios COVID-19 (ref. 52). The projections were 
reconciled with available vaccination records of residents in each city, so that, at 
most, 99% of residents received at least one vaccine dose during the observation 
period (Supplementary Fig. 18). The data are available at inst/data/PNADc_
vaxadj_ population_210802.csv in the GitHub repository.

To further investigate the shocks in in-hospital fatality rates before and after 
Gamma’s emergence, we obtained monthly data on healthcare resources reported 
by healthcare facilities to the National Register of Health Facilities (CNES)53, 
release 15 September 2021. Data on healthcare resources are mandatory to report 
by both public and private healthcare facilities and comprised personnel and 
equipment. Nurses (CBO 2235), nurse assistants (CBO 3222), physiotherapists 
(CBO 2236), physicians (CBO 2231, 2251, 2252 and 2253) and intensive care 
physicians (CBO 225150) were summed per month and location according to the 
2002 Brazilian Classification of Occupations (Classificação Brasileira de Ocupações 
(CBO)), and, where possible, records were validated by name and professional 
health card number. ICU beds summed per month and location reported ICU 
type II, ICU type III and COVID type II beds. ICU type I beds (code 74) refer to 
an older standard that is being phased out since 2017 and were not counted. Type 
II ICU beds (code 75) represent the minimum requirement for severe cases of 
COVID-19 requiring ventilation. Type III ICU beds (code 76) are, by regulation, 
reserved to ICU patients with multiple acute failures of vital organs, or to patients 
at risk of developing them, with an immediate threat to life54. Since March 2020, 
new ICU beds were created to try to minimize the immediate risk of healthcare 

system collapse. These ICU beds were intended exclusively for treatment of 
COVID-19 and are designated COVID-19 type II ICU beds (code 51). At least one 
microprocessor-controlled lung ventilator must be available for every two ICU 
beds. Considering that both a ventilator and an ICU bed are necessary for adequate 
treatment of severe COVID-19, we counted only adult ICU beds with a matched 
ventilator per month and location, defined as the minimum number of available 
ventilators (respirador or ventilador) and the number of adult ICU beds in the 
same healthcare facility that are reported to CNES, which we then aggregated 
across healthcare facilities in the same location29. Critical care beds summed ICU 
beds and intermediate care beds (code 95), and we considered counts with and 
without controlling for available reported ventilators. To guard against potential 
reporting differences or bias in reported bed types20, we also considered monthly 
counts of available ventilators as resource. The number of reported ventilators 
(respirador or ventilador, code 64) does not include ventilators already held for 
ICU or critical care beds. Thus, for each healthcare facility, we counted the number 
of lung ventilators reported to CNES and added one ventilator for every two 
reported ICU type II, type III or COVID-19 type II beds, added one ventilator 
for every three reported intermediate beds and then aggregated across healthcare 
facilities in the same location. The data are available at inst/data/IPEA_ICUbeds_
physicians_210928.csv in the GitHub repository.

Statistical analysis of in-hospital fatality rates. To characterize longitudinal 
trends to in-hospital fatality rates, we considered the age strata

A = {0–15, 16–29, 30–39, 40–49, 50–59, 60–69,

70–74, 75–79, 80–84, 85–89, 90+} ,
(1)

to control for age dependence in fatality rates. To capture temporal shocks in 
fatality rates, all data were aggregated to weeks. In COVID-19-attributable patients 
with unreported outcomes, deaths were predicted independently in each location, 
week and age strata based on the fatality rates in COVID-19-attributable patients 
with observed outcomes in the two previous weeks, assuming data were missing 
at random over the 3 weeks w − 1, w − 2, w in each age group and each location. 
Empirical fatality rates zl,a,w were defined as the ratio of underreporting-adjusted 
fatalities in unvaccinated, resident, COVID-19-attributable hospital admissions 
in location l, age strata a and week w except for weeks with no such hospital 
admissions. Longitudinal trends ẑl,a,w were obtained by fitting the non-parametric 
loess smoother as implemented in the R stats package version 4.0.3 with argument 
span = 0.3 to the empirical fatality rates zl,a,w, separately for each location and 
age band, and starting from the first week with non-zero hospital admissions in 
each age band. To compare fatality rates across cities in a simple statistic while 
accounting for the substantial differences in age demographics (Supplementary  
Fig. 18), we calculated age-standardized, weekly in-hospital fatality rates with

ẑl,w =

∑

a

ncitiesa∑
b ncitiesb

ẑl,a,w, (2)

where ẑl,a,w are the smoothed fatality rates in location l, age strata a and week w, 
and ncitiesa  are our 2020 projected population sizes in age band a across the 14 cities 
(see above). To avoid extrapolation, the smoothed rates (2) were generated onward 
from the first week for which the ẑl,a,w were defined for all age groups.

We next defined 12 pandemic healthcare pressure indices that quantified 
hospital demand over time in each location. Demand was defined in terms of 
all hospital admissions for severe acute respiratory infections (that is, including 
non-residents, cases caused by other pathogens and vaccinated individuals) and all 
ICU admissions among patients hospitalized for severe acute respiratory infection. 
Records were again filtered to exclude out-of-hospital deaths as defined above. The 
healthcare pressure indices were calculated by considering demand per available 
healthcare resource over time. To account for the fact that admitted patients 
remain in care for several weeks, we considered rolling sums of the form

x3-wk ICU adm per ICU bed
l,w =

( 3∑

i=0
hICUl,w+i

)
/
rICU beds
l,w , (3)

where hICUl,w  are the number of ICU admissions, and rICU beds
l,w  are the number of 

ICU beds in location l and week w. Data on resources were available per month. 
In weeks overlapping months, we used weighted averages of the resources in the 
corresponding months to define the weekly resources, and, otherwise, we used 
the monthly values. Supplementary Table 5 provides definitions for all healthcare 
pressure indices considered. Associations between the healthcare pressure indices 
and smoothed, age-standardized in-hospital fatality rates were quantified with 
Pearson correlation coefficients.

Data to account for Gamma’s expansion dynamics. To assess fluctuating 
in-hospital fatality rates in the context of the spatio-temporal expansion of the 
SARS-CoV-2 Gamma variant, we obtained from GISAID23 publicly available viral 
genome sequences across Brazilian states with collection date from 1 November 
2020 to 31 March 2021 on 28 June 2021. Acknowledgment tables with GISAID IDs 
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are available in the acknowledgments_GISAID_Tables directory in the GitHub 
repository. Records with incomplete collection dates were removed, de-duplicated 
and classified as Gamma or non-Gamma variants with pangolin version 3.0.6, 
Pangolearn version 1.2.12, scorpio lineage (https://github.com/cov-lineages/
pangolin). In total, we retained sequences and metadata from 7,221 samples, 
most of which were from São Paulo (1,104 viral genomes), with an average of 
158 genomes per state. Gamma and non-Gamma frequencies were calculated for 
each week and location, assuming that the frequency of Gamma in state capitals 
was similar to the state-level frequency of Gamma in the GISAID data. The data 
are available at inst/data/genomic_data_210702.csv in the GitHub repository and 
shown in Supplementary Fig. 19. Supplementary Table 1 reports the weeks in 
which Gamma was first detected in each location, and Extended Data Fig. 1 shows 
the proportion of Gamma sequences over time in each location. Throughout, we 
denote the week index in which Gamma was in each location first detected by 
Wdetect-Γ

l , the number of sequenced genotypes in location l and collection week w 
by sl,w and the number sequenced genotypes attributed to the Gamma variant with 
pangolin by sΓ

l,w.

Dating Gamma’s emergence. To guide our modeling, we dated the emergence 
of the SARS-CoV-2 Gamma variant in each location using viral phylogenetic 
methods based on a subset of 2,212 high-coverage SARS-CoV-2 Gamma genome 
sequences across the 14 locations under study. This dataset included five sequences 
that had been recovered from the International Guarulhos Airport in São Paulo. 
The reference strain WH04 (GISAID EPI_ISL_406801) was appended to the 
sequence dataset before multiple sequence alignment using MAFFT version 7 
(ref. 55). After removing untranscribed terminal regions, the resulting multiple 
sequence alignment had a length of 29,409 nucleotides. Maximum likelihood 
phylogenetic trees were estimated using IQTree version 2 (ref. 56) under the Jukes 
Cantor (JC69) substitution model57. We next used TempEst version 1.5.3 (ref. 58) 
to regress root-to-tip distances against sampling dates and identify data quality 
and data annotation problems before further phylogenetic analysis. Specifically, 
we discarded virus genomes characterized by a genetic distance to WH04 of more 
than 4 standard deviations from the epi-week mean genetic distance to WH04 (ref. 
59). A total of ten sequences were excluded from subsequent phylogenetic analysis. 
The GISAID identifiers of the excluded sequences were EPI_ISL_1821206, 
EPI_ISL_2249444, EPI_ISL_1821208 (earliest available sequence from São 
Paulo, dated 2020-11-03), EPI_ISL_1821217, EPI_ISL_2249440 (earliest 
available sequence from Rio de Janeiro, dated 2020-11-18), EPI_ISL_2249443, 
EPI_ISL_2241496 (earliest available sequence from Paraíba, dated 2020-10-01) and 
EPI_ISL_1715135, EPI_ISL_ 1821257 and EPI_ISL_2249437.

Estimating time trees for large alignments can be computationally intractable. 
Thus, we follow a computation strategy similar to du Plessis et al.59 and Gutierrez 
et al.60 that involves (1) estimating an evolutionary rate using a subsample of the 
genome dataset of interest and (2) using a simpler computational approach to 
estimate time trees for the complete genome dataset. For step (1), we randomly 
selected a maximum of 20 sequences per state (except for Paraíba and Rondônia, 
which had only 15 and nine sequences available, respectively, during the study 
period). This generated a dataset of 264 genome sequences. Sequences with earliest 
and latest dates of collection from each state were kept in the alignment to increase 
temporal signal of the resulting dataset. We used BEAST version 1.10 (ref. 61) to 
estimate an evolutionary rate under a Hasegawa–Kishino–Yano62 substitution 
model and a strict molecular clock with a continuous-time Markov chain prior. 
We used a Bayesian skygrid with ten grid points as a demographic tree prior63. The 
BEAST.xml file is available at inst/utils/BEAST_thorney_P1.xml in the GitHub 
repository. Four Markov chain Monte Carlo (MCMC) chains were run for 50 
million steps, sampling parameters and trees every 50,000 steps. Convergence of 
the MCMC chains was assessed using Tracer version 1.7 (ref. 64). For step (2), the 
complete dataset was analyzed using BEAST version 1.10.5 (ref. 65) using a newly 
developed approach that significantly reduces computation time. This approach 
takes in a rooted phylogenetic maximum likelihood tree (instead of an alignment) 
and rescales its branches into time units. The likelihood of each branch length 
is modeled as a Poisson distribution with a mean that is directly proportional to 
the clock rate66,67. We used a rate of 4.864 × 10−4 substitutions/site/year based on 
the median clock rate estimate obtained from step (1). We defined a coalescent 
skygrid prior and used the best-fitting IQTree maximum likelihood tree rooted 
in TempEst as a starting data tree. Two independent MCMC chains were run 
for 1,000 million MCMC steps and combined after discarding 10% of the run as 
burn-in to generate an empirical posterior tree distribution. Convergence was 
assessed using Tracer version 1.7 (ref. 64). We next used a 14-state asymmetric 
discrete Bayesian molecular clock phylogeographic approach68 implemented in 
BEAST version 1.10.4 (ref. 61) to infer ancestral state locations on an empirical 
distribution of 500 posterior time trees. For sequences with known travel history, 
we assigned the state of infection instead of state of reporting. We estimated 
unknown state locations for the sequences collected at the International Guarulhos 
Airport in São Paulo. We tracked the complete jump history of viral movement 
events between each pair of states69–71. We used a recently developed tool, the 
TreeMarkovJumpHistoryAnalyzer, which collects Markov jumps and their timings 
from a posterior tree distribution with Markov jump histories72, available at inst/
utils/P.1_MJumps_complete_history.xml in the GitHub repository. To date the 

most common recent ancestor of the earliest local transmission cluster in each 
state, we used a customised R script to summarize the posterior probability 
distribution densities for the earliest time of the introduction leading to two 
or more descendants in each of the 14 states. The phylogenetically estimated 
dates of emergence of Gamma in each city are shown in Supplementary Table 1. 
Throughout, we denote the week of the posterior median estimate with Wemerge-Γ

l .

Modeling to disentangle factors associated with shocks in in-hospital fatality 
rates. We developed a Bayesian multi-strain fatality model to disentangle the 
effects of pre-pandemic geographic inequities, pandemic healthcare pressures and 
Gamma’s in-hospital disease severity on fluctuating COVID-19 in-hospital fatality 
rates. This section describes the modeling framework, and full details are given in 
the final section below.

Overall, the model is structured in three components. In the first model 
component, a logistic function is fitted to the Gamma variant frequency data to 
estimate the proportion of Gamma infections in location l and week w, which, 
throughout, we denote by αl,w. We here use the phylogenetically derived emergence 
times of the Gamma variant in each city and specify that αl,w is essentially zero 
for all weeks before Wemerge-Γ

l . In the second model component, the proportion 
of hospitalized patients with Gamma and non-Gamma infections in the weekly 
hospital admissions are estimated by city, age and week of admission. The 
model-based attribution of hospital admissions to Gamma and non-Gamma 
variants is based on the estimated expansion of the Gamma variant in each city 
through the αl,w. In the third model component, we describe the fatality rates 
in the Gamma-attributable hospital admissions and non-Gamma-attributable 
hospital admissions through two corresponding regression equations. The 
regression equations comprise non-parametric location effects, fixed effects 
associated with the healthcare pressure indices and non-parametric virus variant 
effects of Gamma-specific disease severity in hospitals. The free parameters of 
the model, and, in particular, the parameters in the regression equations, can be 
well-identified from the weekly Gamma variant frequency data (denoted by sΓ

l,w), 
the weekly COVID-19-attributable hospital admissions (denoted by hresl,a,w) and 
the number of deaths occurring in the linked, individual-level records of weekly 
age-specific hospital admissions during follow-up (denoted by hres-adj-Dl,a,w ) (Extended 
Data Figs. 1 and 6–9). Recall that the deaths count the observed deaths in patients 
with known outcome and the expected deaths in patients with unreported 
outcome, indexed by week w of hospital admission. In the rest of this section, we 
provide more detail on the second and third component of the model.

In the second model component, the proportion of hospitalized patients 
with Gamma infection is estimated by city, age and week of admission. To build 
intuition, we considered modeling the expected values of the hospital admissions 
hresl,a,w with

E
(
hresl,a,w

)
=

(
αl,wπ

Γ
l,a + (1 − αl,w) π

non-Γ
l,a

)
hresl,w, (4)

where hresl,w is the sum of hospital admissions across age strata; πnon-Γ
l,a  is the 

characteristic age composition of non-Gamma hospital admissions in location 
l that is independent of time; and πΓ

l,a is the characteristic age composition of 
Gamma hospital admissions. It is clear that πnon-Γ

l,a  can be inferred from patient 
records when αl,w ≈ 0—that is, from before Gamma’s expansion—and πΓ

l,a can be 
inferred from patient records when αl,w ≈ 1—that is, from after Gamma’s expansion. 
Across time, the proportion of hospital admissions in age band a is described as 
a mixture of the Gamma and non-Gamma proportions that is determined by the 
increasing weights of Gamma’s variant frequency αl,w and the decreasing weights of 
the non-Gamma variant frequencies 1 − αl,w. The model encodes robustness in the 
sense that good model fit can be obtained only when the observed age distributions 
of hospitalized patients shift over time according to Gamma’s expansion. Following 
(4), in a particular age stratum a and week w, the expected number of hospital 
admissions attributable to Gamma is described by

αl,wπΓ
l,a

αl,wπΓ
l,a + (1 − αl,w) πnon-Γ

l,a
hresl,w. (5)

Equations (4) and (5) are extended in the full model to account for the fact 
that the age distribution of hospitalized patients is also changing with higher 
cumulative mortality in older age groups and with prioritized vaccination of older 
age groups (see below).

In the third model component, we quantify and model the fatality rates in the 
Gamma-attributable hospital admissions (recall (5)) and non-Gamma-attributable 
hospital admissions (analogous to (5)) separately. We model in-hospital fatality 
rates in week w, location l and age group a that are respectively infected with 
non-Gamma and Gamma variants with the decomposition

ζ
non-Γ
l,a,w = logit−1

(
η
non-Γ
l,a + Xl,wβl

)
(6a)

ζ
Γ
l,a,w = logit−1

(
η
non-Γ
l,a + η

Γ-random-effect
l,a + Xl,wβl

)
, (6b)
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where Xl,w ∈ R
1×p are p standardized healthcare pressure indices in location l 

and week w and βl ∈ R
p are constrained to be non-negative. For each location, 

we standardized the healthcare pressure indices to zero for the week in which 
the empirical fatality rates (2) are lowest before Gamma’s detection, which was 
typically at the beginning of the pandemic and observation period. Specifically, we 
standardized each index according to

x̃l,p,w =

xl,p,w − xl,p,w̃l

s.d.
(
xl,p,w

) , (7)

where w̃l = argminw=1:(Wdetect-Γ
l −1) ẑl,w and s.d. denotes the standard deviation of 

the indicator across all weeks in location l, using the notation in (2) and (3). The p 
regression coefficients βl were constrained to be positive so that each standardized 
index of increasing hospital demand pressure could only have an increasing effect 
on fatality rates when βl > 0, or no effect when βl = 0, and not offset each other and 
artifactually increase the effect of another index.

Thus, we can interpret the logit−1 (ηnon-Γ
l,a

)
 as the lowest observed fatality 

rate in each location and age group (technically defined before the emergence 
of Gamma to guard against potential confounders in Belo Horizonte as 
described in the main text, and except for Belo Horizonte equivalent to over the 
entire study period) and take ratios of these terms across locations to quantify 
the effect of geographic inequities (location effect). These ratios measure 
non-specific baseline differences in fatality rates across the state capitals that 
are not captured in our healthcare pressure indices. Next, for each location, we 
can interpret the ratio of logit−1 (ηnon-Γ

l,a + Xl,wβl
)
 divided by logit−1 (ηnon-Γ

l,a
)
 

as the multiplier to in-hospital fatality rates in week w and age group a that 
is associated with the increasing healthcare pressure indices (healthcare 
pressure effect). In (6b), ηΓ-random-effect

l,a  are non-parametric random effects 
that measure age-specific deviations in fatality rates in hospitalized patients 
attributed to Gamma infection. So, for each location, we can interpret the ratio of 
logit−1

(
ηnon-Γ
l,a + ηΓ-random-effect

l,a

)
 divided by logit−1 (ηnon-Γ

l,a
)
 as the multiplier to 

fatality rates in hospitalized patients that is attributable to Gamma infection versus 
non-Gamma infection (variant effect in hospitals), controlling for differences 
in healthcare pressure in the weeks before and after the emergence of Gamma 
(because the Xl,wβl are zeroed) as well as cumulative mortality and vaccination 
in the full model (see below). We note that the regression model is measuring 
associations and is not guaranteed to identify causal relationships.

It follows again from (4) that, in a particular age group a and week w, the 
in-hospital fatality rate in Gamma and non-Gamma patients is described by

ζl,a,w =
(1−αl,w)πnon-Γ

l,a
αl,wπΓ

l,a+(1−αl,w)πnon-Γ
l,a

ζnon-Γ
l,a,w +

αl,wπΓ
l,a

αl,wπΓ
l,a+(1−αl,w)πnon-Γ

l,a
ζΓ
l,a,w. (8)

Equation (8) enables us to estimate, for each location, the unknowns in 
(6) from the longitudinal records of age-specific deaths in the denominator of 
hospitalized patients with COVID-19 in location l, age group a and week w and 
expanding variant frequency of Gamma in weekly SARS-CoV-2 sequence data.

Model validation and sensitivity analyses. Concerns on SARS-CoV-2 sequence 
sample representativeness73 prompted us to re-evaluate our findings using monthly 
state-level variant frequency data reported by Rede Genômica FioCruz (http://
wwwgenomahcov.fiocruz.br/dashboard/). Data on monthly Gamma variant 
frequencies in each Brazilian federal unit or state between November 2020 and 
May 2021 were retrieved from the dashboard on 15 June 2021. We again assumed 
that the variant frequencies reported at state level are representative of the variant 
frequencies in state capitals. We also considered weekly city-level Gamma variant 
frequency data from Manaus, Belo Horizonte and São Paulo obtained under 
controlled sampling frames. In Manaus, samples from PCR-positive residents 
testing in two private laboratories through nasal and oropharyngeal swabs were 
selected at random regardless of cycle threshold values for sequencing. The 
samples were sequenced and processed using the ARTIC bioinformatics pipeline74 
as described in Faria et al.3. Viral genomes recovered from 147 samples collected 
between 1 November 2020 and 10 January 2021 had sufficient genome coverage 
enabling lineage classification with pangolin version 2.2.1 (refs. 75,76). In Belo 
Horizonte, samples were selected at random from PCR-positive residents in three 
laboratories (Laboratório Hermes Pardini, Laboratório de Biologia Integrativa, 
UFMG, and Laboratório Municipal de Referência, PBH). The samples were 
sequenced on the Illumina MiSeq platform and processed using a custom pipeline. 
Identified mutations were manually inspected, and the sequences were classified 
using pangolin version 2.2.1 (ref. 75). In total, 27 samples were classified as Gamma 
and 47 samples to other lineages. For São Paulo, sequences were generated by the 
Adolf Lutz Institute, a national public health and reference laboratory for São Paulo 
State, Brazil, retrieved from GISAID (https://www.gisaid.org) for the period 1 
November 2020 to 31 March 2021. In total, 76 sequences were analyzed between 1 
November 2020 and 31 March 2021. The data are shown in Supplementary Table 
6. We found only minor differences in our primary findings depending on what 
SARS-CoV-2 variant frequency data were used (Supplementary Figs. 9–14).

Given long-term underfunding of Brazil’s public healthcare system, we 
investigated if geographic inequities could be modulated by different proportions 

of patients in public and private hospitals and if the strong fluctuations in COVID-
19 in-hospital fatality rates are also observed in private hospitals. For São Paulo, 
we could classify most hospitals as either private or public. We found consistently 
lower in-hospital fatality rates in private hospitals that, however, fluctuated 
in synchrony with those in public hospitals, in line with our primary findings 
(Supplementary Fig. 15).

In Belo Horizonte, the age-standardized COVID-19 in-hospital fatality rates 
declined over the summer months of 2021 to levels well below those seen during 
earlier time periods (Fig. 4a). We hypothesized that larger numbers of patients 
hospitalized in Belo Horizonte may have been vaccinated, with no vaccination 
record reported to SIVEP-Gripe. To address this possibility, we performed a 
sub-analysis in which we excluded patients with unreported vaccination status 
in the SIVEP-Gripe dataset (Supplementary Fig. 2). In the figure, fatality rate 
estimates are not shown for weeks in which patient denominators were too small. 
In this sub-analysis, we found larger discrepancies in fatality rates compared to the 
main analysis only for Belo Horizonte, suggesting that missing data on vaccination 
status have likely no substantial effect on our overall findings. However, for Belo 
Horizonte, it is possible that our in-hospital fatality rate estimates are confounded 
with unreported vaccination status.

The highest age-standardized COVID-19 in-hospital fatality rates were 
observed in Rio de Janeiro, against the national trend of declining rates in Brazil’s 
South and Southeast macroregions. It is possible that smaller proportions of 
hospitalized patients with unreported clinical outcomes may have died, and 
analyses were repeated assuming that all patients with unreported clinical 
outcomes survived. We found, in comparison to other cities, that Rio de Janeiro’s 
baseline in-hospital fatality rates were, in this sensitivity analysis, considerably 
lower than in the main analysis but remained overall largest and showed the same 
strong fluctuations as in the main analysis (Supplementary Fig. 8).

In-hospital fatality rates also depend on which, and under what circumstances, 
severely ill patients are admitted to hospitals. This prompted us to investigate if 
the observed fluctuations in COVID-19 fatality rates could, in part, be the result of 
concomitant changes in the profile of admitted patients. There are limited data on 
disease severity at time of hospital admission available in SIVEP-Gripe; however, 
one indicator that can be readily calculated is the time between hospital admission 
and death in patients with a fatal outcome (Supplementary Fig. 16). In Macapá, 
Manaus, Porto Alegre and Porto Velho, we found substantially shorter times to 
death when the number of COVID-19-attributable hospital admissions peaked, 
suggesting that admitted patients may already have been at a more severe clinical 
stage when admitted or that, during times of peak demand, healthcare pressure in 
hospitals both increased fatality rates and led to faster progression to death. Further 
data on out-of-hospital deaths shows that COVID-19-attributable out-of-hospital 
deaths typically occurred during times of peak demand, with the exception of 
Rio de Janeiro (Extended Data Fig. 2). Together, these data suggest that increased 
healthcare pressure likely acts to shape in-hospital fatality rates through distinct 
mechanisms, through a combination of both a reduced ability to provide adequate 
care and an increase in the average severity of admitted patients.

Full statistical model, generated quantities and counterfactuals. We begin by 
describing the three components of the full statistical model, which were already 
motivated and introduced above. The first model component describes the 
temporal expansion of Gamma in hospital admissions through a logistic function 
and is given by

sΓ
l,w ∼ Beta-Binomial

(
sl,w,

αl,w
θ1

, 1 − αl,w
θ1

)
, (9a)

αl,w =
1

1 + exp
(
−α

growth
l

(
w − αmid

l
)) (9b)

α
growth
l ∼ Normal

(
0, 0.22

)
(9c)

α
mid
l ∼ Normal

(
α
mid-mean
l , 32

)
(9d)

αl,1:
(

Wemerge-Γ
l −1

)

∼ Normal-ccdf
(
0, 0.00252

)
(9e)

θ1 ∼ Exponential (20) , (9f)

where the Beta-Binomial is specified in terms of the shape–shape parameterization 
with mean sl,wαl,w and variance equal to the binomial variance component 

sl,wαl,w (1 − αl,w) multiplied by 
(
1 + (sl,w − 1) 1

θ
−1
1 +1

)
 to allow for 

overdispersion in the variant frequency data. Time runs in units of weeks from 
the start of the first wave until the end of the observation period in each location. 
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The prior mean for the midpoint of the logistic function, αmid-mean
l , was set to the 

week in which the ratio sΓ
l,w/sl,w was closest to 0.5 in location l. We force the variant 

frequencies of Gamma to close to zero before the week of Gamma’s emergence in 
each location, which is implemented through the informative prior (9e), where 
normal-ccdf denotes the survival function of a normal density. The prior in (9f) 
peaks at zero and, thus, favors the least complex model with no overdispersion.

In the second model component, we couple (9b) to decompose the COVID-
19-attributable hospital admissions hresl,a,w by admissions with Gamma and 
non-Gamma variant. We expand on equation (4) to account for demographic 
changes in the population at risk of severe infection, either through higher 
cumulative mortality in older ages or through prioritized vaccination of older ages, 
and denote the population that remains at risk of severe infection in location l, 
age group a and week w by nRl,a,w. Then, we assumed characteristic per-capita rates 
λΓ
l,a, λ

non-Γ
l,a  of severe infection and hospitalization with Gamma and non-Gamma 

variants, respectively, and considered modeling the expected values of the hospital 
admissions hresl,a,w with

E
(
hresl,a,w

)
=

(
αl,wπ

Γ
l,a,w + (1 − αl,w) π

non-Γ
l,a,w

)
hresl,w, (10a)

π
Γ
l,a,w = λ

Γ
l,an

R
l,a,w

/∑

a
λ

Γ
l,an

R
l,a,w, (10b)

π
non-Γ
l,a,w = λ

non-Γ
l,a nRl,a,w

/∑

a
λ
non-Γ
l,a nRl,a,w, (10c)

and used πnon-Γ
l,a,w , πΓ

l,a,w in lieu of πnon-Γ
l,a , πΓ

l,a in equations (4), (5) and (8). We 
specified nRl,a,w as follows. First, to account for cumulative mortality, we calculated 
excess deaths based on the all-cause deaths reported by Brazil’s Civil Registry 
(https://transparencia.registrocivil.org.br/registros) and subtracted from the 
population size projections the larger of cumulated excess deaths or all reported 
COVID-19 deaths in the SIVEP-Gripe database (Supplementary Fig. 6). Second, 
to account for increasing vaccine protection, we calculated vaccination coverage 
by vaccine administered in each location, age group and week (Supplementary 
Figs. 3–5), based on vaccine administration records from the Brazilian Ministry of 
Health (https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao). We then 
calculated the population at risk of severe infection, nRl,a,w, by subtracting further a 
proportion of the individuals vaccinated with one or two doses for at least 2 weeks 
according to the vaccine-specific efficacy values77–81 listed in Supplementary Table 
7. Following the mean structure of (10), the second model component is given by

hresl,w ∼ Dirichlet-Multinomial
(
hres-suml,w , ϕl,wπl,w

)
(11a)

πl,a,w = αl,wπ
Γ
l,a,w + (1 − αl,w) π

non-Γ
l,a,w (11b)

π
Γ
l,a,w = softmax

(
log λ

Γ
l,a + log nRl,a,w

)
(11c)

π
non-Γ
l,a,w = softmax

(
log λ

non-Γ
l,a + log nRl,a,w

)
(11d)

log λ
Γ
l,a ∼ N (0, 1) (11e)

log λ
non-Γ
l,a ∼ N (0, 1) (11f)

ϕl,w =

(
hres-suml,w − 1

)
/ (θ2 + 1) (11g)

θ2 ∼ Exponential (20) , (11h)

where we denote the vector of age-specific hospital admissions in location l 
and week w by hresl,w =

(
hresl,a,w

)
a∈A

 and the vector of the age composition of 
hospital admissions in location l and week w by πl,w = (πl,a,w)a∈A

 again such 
that ∑

a
πl,a,w = 1. The Dirichlet-Multinomial is in standard sample size-scale 

parameterization such that the means are given by hres-suml,w πl,a,w as in (9b). The 
softmax transformations (11c) and (11d) allow for convenient prior specifications 
of the log hospital admission rates on the real line and run over age bands a for 
fixed location l and fixed week w. The scale parameter ϕl,w is conditional on the 
known hres-suml,w  re-parameterized into the overdispersion parameter θ2, with θ2>0, 
and the prior on θ2 in (11h) peaks at zero and favors the least complex model with 
no overdispersion.

In the third model component, we describe the expected fatality rates in the 
COVID-19-attributable hospital admissions according to the modeled Gamma and 

non-Gamma fatality rates (6) and their corresponding contributions to the overall 
fatality rates according to Gamma’s increasing frequency (8), which is given by

hres-adj-Dl,a,w ∼ Beta-Binomial
(
hresl,a,w, ζl,a,w/θ3,

(
1 − ζl,a,w

)
/θ3

)
(12a)

ζl,a,w =

(1 − αl,w) πnon-Γ
l,a,w

αl,wπΓ
l,a,w + (1 − αl,w) πnon-Γ

l,a,w
ζ
non-Γ
l,a,w +

αl,wπΓ
l,a,w

αl,wπΓ
l,a,w + (1 − αl,w) πnon-Γ

l,a,w
ζ

Γ
l,a,w

(12b)

logit ζ
non-Γ
l,a,w = η

non-Γ
l,a + Xl,wβl (12c)

logit ζ
Γ
l,a,w = η

non-Γ
l,a + η

Γ-random-effect
l,a + Xl,wβl (12d)

η
non-Γ
l,a ∼ Normal

(
−0.25, 1.52

)
(12e)

η
Γ-random-effect
l,a ∼ Normal

(
0, σ2

ζ

)
(12f)

βl,i ∼ Normal[0,∞]

(
0, κ

2
l,iτ

2
)

(12g)

κl,i ∼ Half-Cauchy (0, 1) (12h)

τ ∼ Half-Cauchy (0, 0.01) (12i)

σζ ∼ Exponential (2) (12j)

θ3 ∼ Exponential (100) , (12k)

where w = 1, …, Wl. Importantly, we note that the deaths hres-adj-Dl,a,w  in (12a) are 
derived from the individual-level line list of hospital admissions in week w, 
adjusted only for underreporting, and so hres-adj-Dl,a,w  counts the deaths in exactly 
the hresl,a,w individual patients who were admitted in week w. The Beta-Binomial 
is in the shape–shape parameterization with mean hresl,a,wζl,a,w and variance 
equal to the binomial variance component hresl,a,wζl,a,w

(
1 − ζl,a,w

)
 multiplied by (

1 +

(
hresl,a,w − 1

) 1
θ
−1
3 +1

)
 to allow for overdispersion. The priors in (12e) were 

chosen to place the non-Gamma in-hospital fatality rate around the empirically 
observed range. In (12f), we model the Gamma in-hospital fatality rate as a 
random effect around the non-Gamma in-hospital fatality rate. In the model, 
we conservatively sought to favor no dependence of in-hospital fatality rates on 
the hospital pressure indices, which we implemented using the horseshoe-type 
shrinkage prior in (12g–12i). The prior in (12k) peaks at zero and favors the least 
complex model with no overdispersion.

The model described through equations (9)–(12) was implemented in the 
Stan probabilistic computing language, is available at inst/stan-models/age_
hfr_210719d.stan in the GitHub repository and was independently fitted to data 
from each location using cmdstanr version 0.3.0.9 (refs. 82,83). Because inferences 
were performed separately for each location, the estimates from each location 
provide independent support into the inferred relationships among in-hospital 
fatality rates, healthcare inequities and healthcare pressure. Each inference was 
conducted in four Hamiltonian Monte Carlo chains, each over 500 warmup 
iterations, and 50,500 sampling iterations. The smallest bulk effective sample size 
was 1,687.

From the Monte Carlo samples of the joint posterior distribution of the 
fitted Bayesian multi-strain fatality model, we generate the following quantities. 
We calculate the expected, COVID-19-attributable hospital admissions among 
residents in location l, age band a and week w for non-Gamma and Gamma 
variants that had no evidence of vaccination before hospitalization, respectively, by

hres-non-Γ
l,a,w = (1 − αl,w) π

non-Γ
l,a,w hresl,a,w (13a)

hres-Γ
l,a,w = αl,wπ

Γ
l,a,wh

res
l,a,w, (13b)

where hresl,a,w are observed and αl,w, πnon-Γ
l,a,w , πΓ

l,a,w are from the joint posterior. The 
expected, COVID-19-attributable hospital admissions among residents in location 
l, age band a and week w across all variants are

hres-alll,a,w = hres-non-Γ
l,a,w + hres-Γ

l,a,w . (14)
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We, thus, have that the expected share of age group a among hospital 
admissions among residents of location l in week w with non-Gamma variants is 

hres-non-Γ
l,a,w

∑

b hres-non-Γ
l,b,w

= πnon-Γ
l,a,w  and similarly for Gamma. The expected share of age group 

a among hospital admissions among residents of location l in week w across 
all variants is πl,a,w = (1 − αl,w) πnon-Γ

l,a,w + αl,wπΓ
l,a,w. We calculate the expected, 

COVID-19-attributable deaths among hospital admissions in residents in location 
l, age band a and week w for non-Gamma and Gamma variants, respectively, by

hres-non-Γ-D
l,a,w = (1 − αl,w) π

non-Γ
l,a,w hresl,a,wζ

non-Γ
l,a,w (15a)

hres-Γ-D
l,a,w = αl,wπ

Γ
l,a,wh

res
l,a,wζ

Γ
l,a,w, (15b)

where hresl,a,w are observed and αl,w, πnon-Γ
l,a,w , πΓ

l,a,w, ζnon-Γ
l,a,w , ζΓ

l,a,w are from the joint 
posterior. The expected, COVID-19-attributable deaths among hospital admissions 
in residents in location l, age band a and week w for all variants are

hres-all-Dl,a,w = hres-non-Γ-D
l,a,w + hres-Γ-D

l,a,w . (16)

To compare COVID-19 in-hospital fatality rates across locations, we define 
the overall in-hospital fatality rate in location l and week w in an age-standardized 
population that adjusts for differences in age composition across locations. 
Specifically, we calculate

ζ
age-std
l,w =

∑

a

ncitiesa∑
b ncitiesb

ζl,a,w, (17)

where ncitiesa  is the population size in age band a across all cities considered, and 
ζl,a,w is from the joint posterior. Then, for each location, we define the week w*  
with lowest in-hospital fatality rate as the week that minimizes the posterior 
median of (17),

w⋆

l = argminw∈1:Wdetect-Γ
l

(
posteriormedian of ζ

age-std
l,w

)
, (18)

and calculate the lowest, age-standardized COVID-19 in-hospital fatality rates 
before the first detection of Gamma through

ζ
lowest
l = ζ

age-std
l,w⋆l

. (19)

We recall that the healthcare pressure indices are standardized and evaluate 
to zero in the reference week of each location—that is, the week before the first 
detection of Gamma with lowest empirical, age-standardized in-hospital fatality 
rate. The week w⋆

l  typically corresponds to the week with lowest empirical, 
age-standardized in-hospital fatality rate, and so ζlowestl  is evaluated when the 
healthcare pressure effect Xl,wβl is zero. The estimated Gamma frequencies αl,w are, 
of course, also very small before the first detection of Gamma, and so the lowest, 
age-standardized COVID-19 in-hospital fatality rate are to good approximation 
given by

ζ
lowest
l ≈

∑

a

ncitiesa∑
b ncitiesb

logit−1
(

η
non-Γ
l,a

)
, (20)

where ηnon-Γ
l,a  are the intercept terms in our regression (6) and from the joint 

posterior. Then, to compare (19) across locations, we find the location with overall 
lowest age-standardised in-hospital fatality rate by

l⋆ = argminl ζ
lowest
l , (21)

and compute for all other locations l the ratio

ζ
lowest-ratio
l = ζ

lowest
l

/
ζ
lowest
l⋆ . (22)

We interpret (22) as the location effect on COVID-19 in-hospital fatality rates. 
Because of (20), the location effect does not include contributions attributable to 
the healthcare pressure indices (Xl,wβl) nor any contributions attributable to the 
non-parametric Gamma effects (ηΓ

l,a) on in-hospital fatality rates.
To compare time trends to in-hospital fatality rates in each location, we 

calculate for each location the multiplicative effect of changes in healthcare 
demand and resources in week w in location l by

ζ
multiplier
l,w =

∑

a

ncitiesa∑
b ncitiesb

(
ζ
non-Γ
l,a,w

/
ζ
non-Γ
l,a,w⋆l

)
, (23)

where ζnon-Γ
l,a,w  are from the joint posterior. Recalling equation (6a), we have

ζ
multiplier
l,w ≈

∑

a

ncitiesa∑
b ncitiesb

logit−1 (ηnon-Γ
l,a + Xl,wβl

)

logit−1
(

ηnon-Γ
l,a

) . (24)

Here, the approximation is because the Gamma frequencies αl,w are very 
small but not exactly zero and because the week in which the loess-smoothed 
fatality rates are lowest may not exactly coincide with the week w⋆

l  in which the 
model-based fatality rates are lowest. We interpret (23) as the healthcare pressure 
effect on COVID-19 in-hospital fatality rates. Because of (24), the healthcare 
pressure effect does not include contributions attributable to the non-parametric 
Gamma effects (ηΓ

l,a) on in-hospital fatality rates and corresponds to the multiplier 
to the minimum fatality rates in each location that is associated with the healthcare 
pressure indices (Xl,wβl).

Finally, we describe the effect of Gamma on in-hospital fatality rates in the 
model. Standardizing across age bands, we calculate the ratio in Gamma versus 
non-Gamma in-hospital fatality rates in location l by

ζ
Γ−ratio
l =

∑

a

ncitiesa∑
b ncitiesb

ζ
Γ
l,a,w⋆l

/ζnon-Γ
l,a,w⋆l

, (25)

where ζΓ
l,a,w⋆l

, ζnon-Γ
l,a,w⋆l

 are from the joint posterior. We interpret (25) as the Gamma 
effect on in-hospital fatality rates. It is again helpful to recall equation (6), which 
shows that we can approximate the Gamma effect through

ζ
Γ−ratio
l ≈

∑

a

ncitiesa∑
b ncitiesb

logit−1 (ηnon-Γ
l,a + ηΓ

l,a
)

logit−1
(

ηnon-Γ
l,a

) . (26)

The ratio ζΓ−ratio
l  does not include contributions attributable to the healthcare 

pressure indices (Xl,wβl) and corresponds to the multiplier to the minimum  
fatality rates in each location that is associated with the non-parametric Gamma 
effects (ηnon-Γ

l,a ).
To quantify the effect that the observed fluctuations in COVID-19-attributable 

in-hospital rates had on the death toll in the 14 state capitals, we performed two 
counterfactual analyses. The aim of the first counterfactual (Scenario 1) was to 
estimate how many COVID-19-attributable deaths could have been avoided with 
sufficient healthcare resources so that healthcare pressures would not have resulted 
in shocks in in-hospital fatality rates in each city. We implemented Scenario 1 by 
predicting deaths in each city under the minimum in-hospital fatality rate that 
was observed in each age group in that city. Specifically, for each location l, we 
considered the estimated age-specific in-hospital fatality rates (8) in the week (18) 
and computed

hhyp1-res-Dl =

Wl∑

w=1

∑

a∈A

hresl,a,wζl,a,w⋆l
, (27)

where the week indices range over the entire observation period. We define the 
expected COVID-19-attributable deaths that could have been avoided in the 
absence of healthcare pressures in location l during the observation period relative 
to this hypothetical scenario by

hhyp1-avoidable-Dl =

( Wl∑

w=1

∑

a∈A

hres-adj-Dl,a,w

)
− hhyp1-res-Dl . (28)

Similarly, we define the expected percentage reduction in COVID-
19-attributable deaths relative to this hypothetical scenario by

phyp1-avoidable-Dl = 1 −

hhyp1-res-Dl∑Wl
w=1

∑
a∈A

hres-adj-Dl,a,w

. (29)

The aim of the second counterfactual (Scenario 2) was to estimate how many 
COVID-19-attributable deaths could have been avoided with sufficient healthcare 
resources and without healthcare inequities across the cities. We implemented 
Scenario 2 by predicting deaths in each city under the minimum in-hospital 
fatality rate seen across all cities, which we observed in Belo Horizonte. Specifically, 
we considered the location l⋆⋆ in which we found the lowest age-standardized 
in-hospital fatality rate before Gamma’s detection in each location

l⋆⋆ = argminl

(
min

w∈1:Wdetect-Γ
l

(
posteriormedian of ξ

age-std
l,w

))
(30)

and computed

hhyp2-res-Dl =

Wl∑

w=1

∑

a∈A

hresl,a,wζl⋆⋆ ,a,w⋆ , (31)

where, again, the week indices range over the entire observation period. In analogy 
to the first counterfactual, we then calculate

hhyp2-avoidable-Dl =

( Wl∑

w=1

∑

a∈A

hres-adj-Dl,a,w

)
− hhyp2-res-Dl , (32)
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and then the expected percentage reduction

phyp2-avoidable-Dl = 1 −

hhyp2-res-Dl∑Wl
w=1

∑
a∈A

hres-adj-Dl,a,w

. (33)

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data necessary for the replication of our results are available at https://
github.com/CADDE-CENTRE/covid19_brazil_hfr (https://doi.org/10.5281/
zenodo.6373425). These datasets were derived from the following public domain 
resources: the SIVEP-Gripe platform (https://opendatasus.saude.gov.br/dataset/
srag-2020, https://opendatasus.saude.gov.br/dataset/srag-2021-e2022); the 
Brazilian Civil Registry (https://transparencia.registrocivil.org.br/); the Brazilian 
Ministry of Health (https://opendatasus.saude.gov.br/dataset/covid-19-vacinacao); 
the National Household Sample Survey COVID-19 (https://www.ibge.gov.br/
estatisticas/sociais/populacao/9171-pesquisa-nacional-poramostra-de-dom
icilios-continua-mensal.html?=&t=o-que-e); and Brazil’s National Register 
of Health Facilities (https://datasus.saude.gov.br/transferencia-de-arquivos/). 
Data from the Brazilian Civil Registry were accessed on 9 August 2021 through 
https://github.com/capyvara/brazil-civil-registry-data. The downloaded and 
processed versions are also available in our GitHub repository at inst/data/SIVEP_
hospital_31-01-2022-all.rds; inst/data/registry_covid_detailed_09-08-2021.
csv; inst/data/aggregated_vaccinations_210805.rds; inst/data/PNADc_
populationpyramids_210617.csv; inst/data/genomic_data_210702.csv; and inst/
data/IPEA_ICUbeds_physicians_210928.csv.

Code availability
The code necessary to reproduce the analysis are available in the GitHub repository 
at https://github.com/CADDE-CENTRE/COVID-19_brazil_hfr (https://doi.org/ 
10.5281/zenodo.6373425).
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Extended Data Fig. 1 | Spatiotemporal expansion of the SARS-CoV-2 Gamma variant across Brazil. SARS-CoV-2 genome sequences were obtained from 
the GISAID repository23 along with confirmed lineage assignments. The frequency of the Gamma variant (dots) in weekly SARS-CoV-2 genome sequence 
counts (size of dots) is shown along with posterior median estimates of Gamma’s variant frequencies (black line) under the Bayesian multi-strain fatality 
model and 95% credible intervals (grey ribbon).
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Extended Data Fig. 2 | Underreporting-adjusted COVID-19 attributable deaths. Reported COVID-19 attributable deaths in the SIVEP-Gripe platform 
were adjusted for in-hospital underreporting, by counting a proportion of hospitalised patients with as of yet unreported outcome as fatal, and for likely 
out-of-hospital under-reporting, by comparison against population excess deaths derived from all-cause mortality data of the Brazilian Civil Registry 
(Supplementary Information). The date of Gamma’s first detection in each city is shown as a vertical dotted line.
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Extended Data Fig. 3 | Time trends in age-specific COVID-19 in-hospital fatality rates. Weekly, age-specific COVID-19 in-hospital fatality rates are shown 
as dots, and non-parametric loess mean estimates of time trends are shown as block solid line along with 95% confidence intervals as grey ribbon. The 
date of Gamma’s first detection is indicated with vertical black lines. Data are shown for Goiânia (a), Natal (b), Rio de Janeiro (c), and São Paulo (d).
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Time evolution of pandemic healthcare pressure indices, part 1. SARI admissions in this and the following two weeks per hospital 
resource are shown in colour, with y-axis on the left. In (a), demand per critical care bed is shown, and in (b) demand per physician. Non-parametric mean 
estimates of age-standardised COVID-19 in-hospital fatality rates are shown in black, with 95% confidence intervals as grey ribbons, and y-axis on the 
right. Pearson correlation coefficients (r) are shown in the upper left corner, and dates of Gamma’s first detection as vertical black lines.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Time evolution of pandemic healthcare pressure indices, part 2. ICU admissions in this and the following two weeks per hospital 
resource are shown in colour, with y-axis on the left. In (a), demand per ventilator is shown, and in (b) demand per intensive care specialist. Non-
parametric mean estimates of age-standardised COVID-19 in-hospital fatality rates are shown in black, with 95% confidence intervals as grey ribbons, and 
y-axis on the right. Pearson correlation coefficients (r) are shown in the upper left corner, and dates of Gamma’s first detection as vertical lines.
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Extended Data Fig. 6 | Estimated COVID-19 attributable hospital admissions by SARS-CoV-2 variant. Posterior median estimates of hospital admissions 
among residents in each location, that are attributed to non-Gamma variants are shown for each age band (color) in lighter shades, while those for the 
Gamma variant are shown in darker shades. Estimates are derived using the Bayesian multi-strain fatality model. Locations are shown across facets. The 
date of Gamma’s detection is shown as a grey vertical line. Observed weekly hospital admissions in residents are shown as black dots.
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Extended Data Fig. 7 | Estimated COVID-19 attributable deaths in hospitals by SARS-CoV-2 variant. Posterior median estimates of deaths following 
hospital admissions of residents in each location, that are attributed to non-Gamma variants are shown for each age band (color) in lighter shades, while 
those for the Gamma variant are shown in darker shades. Estimates are derived using the Bayesian multi-strain fatality model. Locations are shown across 
facets. The date of Gamma’s detection is shown as a grey vertical line. Observed weekly deaths following hospital admissions in residents are shown as 
black dots.
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Extended Data Fig. 8 | Model fits to age-specific COVID-19 in-hospital fatality rates. Weekly, age-specific in-hospital fatality rates are shown as dots. 
Posterior median estimates of the expected in-hospital fatality rates across variants from the Bayesian multi-strain fatality model, Equation. (8), are shown 
on the y-axis (black line) along with 95% credible intervals (grey ribbon). The expected in-hospital fatality rates of non-Gamma variants, Equation (6a), 
are shown as dotted line. The date of Gamma’s first detection is indicated as a vertical line. Data are shown for Goiânia (a), Manaus (b), Rio de Janeiro (c), 
and São Paulo (d).
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Extended Data Fig. 9 | Model fits of the expected age composition of COVID-19 attributable hospital admissions. Posterior median estimates of the 
expected age composition of hospital admissions in each location, age band, and week, obtained with the Bayesian multi-strain fatality model are shown 
on the y-axis as a black line along with 95% credible intervals. Time trends are shown by week of hospital admission (x-axis). The empirical proportions 
are shown as dots. Data are shown for Goiânia (a), Manaus (b), Rio de Janeiro (c), and São Paulo (d).

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine







	Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals

	Results

	In-hospital fatality rates fluctuated around the emergence of Gamma. 
	Healthcare pressure indices track in-hospital fatality rates. 
	The effects of severity, location and pandemic healthcare pressure. 
	Regional and healthcare inequities drive in-hospital fatality rates. 
	Avoidable deaths in the absence of resource limitations. 

	Discussion

	Online content

	Fig. 1 Analysis flow chart.
	Fig. 2 Spatio-temporal expansion of SARS-CoV-2 Gamma in Brazil and associated shocks in COVID-19 fatality rates in hospitals.
	Fig. 3 Time trends in age-standardized COVID-19 in-hospital fatality rates and pandemic healthcare pressure.
	Fig. 4 Estimated contribution of location effects, infection severity of Gamma and pandemic healthcare pressure on COVID-19 in-hospital fatality rates.
	Extended Data Fig. 1 Spatiotemporal expansion of the SARS-CoV-2 Gamma variant across Brazil.
	Extended Data Fig. 2 Underreporting-adjusted COVID-19 attributable deaths.
	Extended Data Fig. 3 Time trends in age-specific COVID-19 in-hospital fatality rates.
	Extended Data Fig. 4 Time evolution of pandemic healthcare pressure indices, part 1.
	Extended Data Fig. 5 Time evolution of pandemic healthcare pressure indices, part 2.
	Extended Data Fig. 6 Estimated COVID-19 attributable hospital admissions by SARS-CoV-2 variant.
	Extended Data Fig. 7 Estimated COVID-19 attributable deaths in hospitals by SARS-CoV-2 variant.
	Extended Data Fig. 8 Model fits to age-specific COVID-19 in-hospital fatality rates.
	Extended Data Fig. 9 Model fits of the expected age composition of COVID-19 attributable hospital admissions.
	Table 1 Policy summary.
	Table 2 Temporal fluctuations in COVID-19-attributable in-hospital fatality rate and avoidable COVID-19-attributable deaths in hospitals.




