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Recent trends in bioartificial muscle engineering
and their applications in cultured meat, biorobotic
systems and biohybrid implants

Eva Schatzlein® ! & Andreas Blaeser® 2%

Recent advances in tissue engineering and biofabrication technology have yielded a plethora
of biological tissues. Among these, engineering of bioartificial muscle stands out for its
exceptional versatility and its wide range of applications. From the food industry to the
technology sector and medicine, the development of this tissue has the potential to affect
many different industries at once. However, to date, the biofabrication of cultured meat,
biorobotic systems, and bioartificial muscle implants are still considered in isolation by
individual peer groups. To establish common ground and share advances, this review outlines
application-specific requirements for muscle tissue generation and provides a comprehensive
overview of commonly used biofabrication strategies and current application trends. By
solving the individual challenges and merging various expertise, synergetic leaps of innova-
tion that inspire each other can be expected in all three industries in the future.

to its diverse applicability, for example as cultured meat!, biorobotic systems?, biohybrid

implants in regenerative medicine?, or in disease modeling?, the popularity of this field of
research steadily increased.

This article provides a comprehensive overview on recent biofabrication strategies dedicated
to the production of muscle tissue for the first three fields of application (Fig. 1a). Latest success
stories will be highlighted and critically discussed.

Muscle is a vascularized and innervated tissue composed of 90 % muscle cells, like myoblast
and satellite cells and 10% fibroblasts and adipocytes®. While fibroblasts and adipocytes occur in
bulk, muscle cells are composed of a hierarchical structure with aligned myofibers formed in
a maturation process from fused elongated multinucleated myotubes influenced by chemical,
mechanical and electrical cues®’. Skeletal muscle tissue is embedded in an extracellular matrix
(ECM) consisting mainly of collagen (Col) type I and III3°. The artificial production of muscle
tissue follows the generally known biofabrication process, comprising of three steps: pre-
processing, manufacturing, and maturation!?. First, the three-dimensional (3D) design and the
required scaffold materials are defined. Next, cells and materials are assembled to form the tissue
precursor. Commonly known biofabrication methods, such as cell seeding!!12, hydrogel
casting!®14, or 3D-bioprinting!>-17, are routinely applied. Ultimately, the tissue precursor
undergoes a maturation phase. In muscle fabrication, this step is of particular relevance, since it
determines the biological and mechanical functionality of the tissue®7-18,

This review illustrates the diverse fields of muscle tissue fabrication and highlights what
specifications and what strategies need to be considered for its application as cultured meat,
biorobotic systems, and muscle implants. Finally, opportunities to further boost developments in
muscle tissue engineering are elucidated.

I n the recent decade, the artificial biofabrication of muscle tissue attracted great interest. Due
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Fig. 1 Biofabrication of muscle tissue and merging the expertise of the different fields of applications. Biofabrication of muscle tissue enables multiple
applications (a) ranging from cultured meat'> (assembly of fibrous muscle, fat, and vascular tissues to cultured steak by Kang et al (CC BY 4.0)), over
biorobotic systems (from ref. 2. Reprinted with permission from AAAS.) to biohybrid implants3 (the pectoral branch of the thoracoacromial artery was
identified beneath the pectoralis major by Liu et al (CC BY 4.0)). This review provides a comprehensive overview on the most important cellular and
material-specific requirements as well as dedicated biofabrication strategies(adapted from refs. 22148 (Schematic illustration of the concept, experimental
procedure, goal, and outlook of the study by Schafer et al. (CC BY 4.0))) for each of the three fields of application. While biofabrication of cultured meat,
biorobotic systems, and bioartificial muscle implants has mostly been studied in isolation so far, the technological fusion will unleash unexpected
innovations and determine future trends. The recently published combination of biorobotic systems and biohybrid implants is a path-breaking pointer to
what lies ahead (b, adapted from Srinivasan and co-workers'3 (reprinted with permission from Springer Nature Limited: Nature Biomedical Engineering, A
cutaneous mechanoneural interface for neuroprosthetic feedback, Srinivasan et al., Copyright 2021).

Fabrication strategies

Biofabrication faces various hurdles when recreating the micro-
structure and biological properties of muscle tissue. Due to their
ECM-like structure involving high water retention potential, high
porosity, and the possible presence of cell-adhesion ligands,
hydrogels are often the material of choice in biofabrication!®.
However, they exhibit weak mechanical strength and stiffness,
which challenge resolution and shape fidelity during
fabrication?0. In addition, nutrient and respiratory gas diffusion is
limited to approximately 500 um?!. The aforementioned limita-
tions pose a major hurdle, particularly for the biofabrication of
muscle implants and meat structures, where nutrient delivery in
several millimeter thick tissue as well as mechanical strength
sufficient for implantation must be achieved.

To overcome these limitations and at the same time accom-
modate the application-specific ~demands (see chapter
Application-specific muscle tissue fabrication), different strategies
for muscle biofabrication evolved (Fig. 2a). These can be generally
distinguished in bulk material modification (Table 1) as well as
spatio-temporal modification strategies. The latter can be further
classified in supply structure integration (Fig. 2b-d), such as the
dedicated fabrication of vascular channels, and biohybrid rein-
forcement (Fig. 2e-g), where multi-material composites are
generated to temporarily enhance the mechanical properties of
the material?2 or foster cell alignment?3. Each strategy impacts
different physico-chemical as well as biological properties of the
biofabricated structure. Ultimately, the achievable properties need

to be matched with the tissue-specific demands (Table 2) in order
to select the most efficient strategies for the biofabrication of
cultured meat, biorobotic systems, or biohybrid implants.

Physico-chemical composition of the bulk material. For the
fabrication of muscle tissue different cell types (e.g. myoblasts),
cell media, matrix materials (e.g. hydrogels), and supporting
materials need to be joined in a coordinated way. While this sub-
chapter focuses on the general bulk material characteristics, the
following sub-chapter emphasizes the biofabrication strategies
that describe the spatio-temporal arrangement of the individual
components. The following paragraphs outline how selection and
composition of the bulk material differ for the three fields of
applications: cultured meat, biorobotic systems, and biohybrid
implants (Table 1).

While muscle-specific cells are the key component in muscle
biofabrication, the types and sources might differ according to the
application as either cultured meat, biorobotic system, or a
muscle implant. Due to its high availability and well-studied
nature, the immortalized mouse myoblast cell line C2C12 has
already been used in all three applications! 1624, To improve the
mechanical properties, texture or functionality myoblasts were
observed to be frequently combined with fibroblasts in muscle
implants and cultured meat!1:17:25.26,

The combination of different cell lines not only increases the
difficulty of cell culture due to the cells’ individual demands for
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Fig. 2 Categorization and examples of strategies for biofabrication of muscle tissue. Application-specific modi operandi for muscle tissue fabrication (a).
According to the application, different degrees of physico-chemical bulk material modification and spatio-temporal structure modulation are applied for
different examples found in the literature. The latter can be subdivided into biohybrid reinforcement (e-g), and supply structure integration (b-d). Live-
Dead staining of actively perfused (b, left) vs. non-perfused (b, right) tissues as well as the measured cell viability as a function of the distance to the
nutritional channel (¢), exemplarily outline the importance of supply channel integration in thick tissues. The self-assembling capacity of vascular

structures in bulk materials demonstrates the different potencies of compact (d, left) and highly porous scaffolds (d, right).(From ref. 21 Reprinted with

permission from AAAS.) Biohybrid reinforcement was shown to strengthe

n cell alignment (e-g) and promote the mechanical properties of hydrogels

(f, g)23 (difference in the morphological characteristics of a scaffold with different fiber diameters. by Xie et al (CC BY 4.0)). For instance, spacer fabric

integration increased Young's modulus of low concentrated collagen (Col)

and alginate (Alg) hydrogels by several orders of magnitude (g)22 (Warp-

knitted spacer fabric design and Morphological and mechanical analysis of warp-knitted spacer fabrics by Schafer et al. (CC BY 4.0)).

cell culture media?’-?8, it also can improve the outcome by
recreating the native composition of the muscle®. For instance,
co-culture with fibroblasts has been shown to improve cell
maturation?’. While co-culture with motor neurons was shown to
improve the innervation rate and functionality?®. In addition,
combining muscle cells with endothelial cells and fibroblasts can
improve angiogenesis, leading to improved graft efficiency when
used as muscle implants?”>3! and thereby also increasing the
muscle tissue functionality®!. The co-culture with fat cells was
shown to support the taste of the muscle32.

Though cell lines would be conducive to achieving the goals of
an affordable, animal-free product33, for cultured meat the cell
line of choice still needs to be developed. Apart from the quail
originated QM734, currently applied cell lines do not represent
typically eaten animals, such as pig, cattle or chicken. For this
reason, primary cells from bovine biopsies are routinely
applied!3%, contradicting the original goal of an animal-free
product. Understandably, human cells are used for muscle
implants only!721,36 Induced pluripotent stem cells differen-
tiated into cardiomyocytes (CMs) or endothelial cells could be
used to achieve the goal of patient-specific implants!”.

Interestingly, genetically engineered cells are a popular choice
in biorobotic systems. Integration of environmental triggers
broadens their field of application compared to conventional
technical actuators. Mostly cells with light-sensitive cation
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channels were used which contract when triggered by a light
impulse. Those cells have no need for invasive stimulation by
electrodes, enabling further miniaturization and non-restricted
movement?’. Additional modification methods could enable
biorobots with enhanced contractile force38, chemotactically
driven robots for in vivo drug delivery®®, or biodegradable
robotic systems with integrated microplastic-degrading bacteria
that might clear water from microplastics in the future®0.

Cell media provide the cells with nutrients, the required
osmolarity and pH. The animal serum is considered the gold
standard for the supply of growth factors in cell culture media. In
this regard, its application is crucial for cell expansion, cell
adhesion, or differentiation. For example, usually approx. 10 %
fetal bovine calf serum or 2 % horse serum are routinely
supplemented for cell expansion or differentiation, respectively4!.
Though essential for cell culture, the usage of animal-derived
serum is critically discussed both in society and industry*2. In
particular, its mammal-derived origin and extraction, which are
associated with animal harm, are the center of controversial
debates*3. In addition, the high cost is a major hurdle for the price
targets of cultured meat companies?2. Moreover, its batch-to-
batch variations represent an issue in quality management#44>,
Finally, when applied in the field of regenerative medicine it bares
the risk of inducing animal-borne diseases or causing immuno-
genic reactions in humans*!46. For the above reasons, scientists
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Table 2 Application specific properties and requirements of biofabricated muscle tissue.
Application specific requirements Cultured meat Biorobotic Biohybrid implants  Implementation methods
systems

General requirements
Cost/ Resource efficiency +++ + o Structuring methods

Bulk material modifications
3D resolution and shape fidelity 0 + +++ Structuring methods

Mechanical reinforcement

Crosslinking strategies
Size ++ o ++ Mechanical reinforcement

Porosity and vascular channel integration
Individualization + o +++ Autologous cell sourcing

Native tissue imitation
Biological requirements
Vascularization and innervation potential o + +++ Cell sourcing

Porosity and vascular channel integration
Prolonged cell viability o + +++ Cell adhesion and migration

Porosity and vascular channel integration
Controlled force output o +++ + Tissue innervation

Cell adhesion and migration

Mechanical stimulation for conditioning

Directed force generation

Porosity and vascular channel integration
Metabolic activity + + +++ Bulk material modifications

Mechanical stimulation for conditioning
Short term biodegradation +++ o o Bulk material modifications

Porosity
The properties are evaluated from very significant (+-++) to indifferent (o) for each application. The dominating properties for each type of application are highlighted in bold.

have long been looking for alternative medium supplements, such
as synthetic serum. Due to its wide range of applications the
replacement of animal serum is of high interest in the field of
bioartificial muscle engineering®?. For example, different serum-
free media have been successfully applied for maturation of
C2C12 muscle cells*1#7. With the goal of providing biological
meat without animal suffering, the pressure to avoid animal
serum is particularly strong for cultured meat applications. For
co-culture of cell types, e.g. myoblasts and endothelial cells,
Dulbecco’s Modified Eagle’s Medium (DMEM) or a combination
with a different medium can be used?”31.

For the biofabrication of muscle tissue, different matrix
materials, such as hydrogels (for bioprinting and molding
methods)!®17:1948 or porous scaffolds and thin films (for cell
seeding)!14%, are applied. In order to generate a functional tissue,
they have to fulfill specific biological and mechanical require-
ments. Some of these properties are generic for tissue
engineering®?, e.g. the presence of tripeptide RGD-binding motifs
to support cell adhesion and migration. Other properties are
muscle tissue specific, such as the matrix elasticity, which is
known to influence cell fate>!->2. Considering this, the mechanical
properties of hydrogels and scaffolds applied in muscle tissue
fabrication should be similar to their natural counterpart,
approximately 12 kPa>3, to support cell differentiation and aid
the formation of myotubes®.

In order to match the described requirements and enhance the
biological acceptance of the hydrogels’ bulk material, different
physico-chemical modulation strategies are applied (Table 1). In
muscle fabrication, this is mostly achieved by modifying the
polymer type and concentration, applying multi-material hydro-
gel formulations (hydrogel blending)!310>4, or adding support
structures (e.g. polydimethylsiloxane (PDMS) pillars)!®.

Collagen (type I), fibrin, and Matrigel are the most promi-
nently applied matrix materials and can be found in all three
fields of application due to their excellent biological
properties!321:95:56_ Interestingly, in muscle implants as well as

meat blending of the protein-based matrix materials with
polysaccharides, such as agarose!?3> and alginate®”->8, can be
observed. The reasoning for this could be found in previous
studies, where polysaccharide blending was shown to be a simple,
yet promising, tool to modulate the mechanical properties as well
as the microstructure of the bulk matrix®*-¢l. The group of
Levenberg recently published a very innovative edible scaffold
matrix formulation including textured soy protein specifically
designed for meat fabrication!!. Besides the type, we found that
the applied concentration of the matrix polymer also strongly
varied between the different applications. While matrices
designed for muscle implants exhibited rather low concentrations
(1.2-10%)21:36:57:58  for meat fabrication matrices with high
polymer content (20.6-91.0 %) and only minor moisture (9 %)
were used!1-13,

Furthermore, slight differences in the applied crosslinking
mechanisms can be found. All three fields of applications involve
physical (thermall7-3>>° or jonic!2°7°8) as well as enzymatic
crosslinking (thrombin!316:36:>4) " Interestingly, only for muscle
implant fabrication we found the application of ultraviolet (UV)-
crosslinking methods®3, although the potentially toxic and
carcinogenic side effects of UV-light and photoinitiator exposure
can be considered most critical in this field of application®2:63,

In all three fields of application, support materials are of the
highest importance. They either aid the manufacturing process,
serve as a guidance to promote cell alignment, or facilitate the
fastening and subsequent conditioning of the muscle!316:30,
Mostly, the applied support materials (e.g., polyethylene glycol
diacrylate (PEGDA), PDMS, polycaprolactone (PCL)) exhibit a
higher stiffness, yet a comparably high biocompatibility, in
contrast to the employed cell-laden hydrogels37->46%, Obviously,
in cultured meat applications edible support materials, such as
soy proteins, are used as mechanically supporting and rheology-
modifying filler!1-1249:65 Tn muscle implants and a few biorobotic
applications, where complex geometries and vascular channel
integration are aimed for refs. 1317, the additional employment of
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temporary sacrificial materials>®%® and support baths with
integrated microparticles, such as xanthan gum!” or gelatin?!,
can be observed. Interestingly, one approach even integrated
oxygen-releasing particles to improve cell viability>’.

The natural ECM exhibits biochemical and topographical
signals, which influence cell behavior like cell viability, morphol-
ogy, proliferation, and differentiation®¢”. The physico-chemical
properties of various scaffold materials can also be used to aid
muscle tissue formation. For example, cues for differentiation
could be recreated, by including specific catalysts in the matrix
material, such as graphene. In recently published studies
graphene was shown to induce spontaneous myogenic differ-
entiation without additional chemical cues by enhancing the
adsorption of fibronectin and albumin and upregulating inter-
cellular signaling®7-69,

For highly biofunctional tissues it is important that a number
of cells remain in an undifferentiated quiescent stem cell state, as
those cells have the ability to repair and repopulate a tissue to
enhance the therapeutic efficacy of muscle implants”?. In order to
modulate cell cycle progression, regulate the cell-matrix
interaction, and mediate the cytoskeleton remodeling processes,
creating stem cell niches plays a vital role’!. The stiffness of the
niches’ growth environment, as well as the presence of specific
neighboring cells, molecules and growth factors are essential in
this context”071,

Spatio-temporal modification. While the previous sub-chapter
outlined the effect of matrix material composition, this chapter
gives an overview on different spatio-temporal modification
methods that are applied to these. Spatio-temporal modifications
result in hierarchically structured material properties that are
modulated over time. In general, two categories are distinguished:
strategies for nutrient supply channel integration and strategies
for biohybrid reinforcement. The former benefits cell viability by
improving nutrient supply. The latter enables modulation of the
structure’s elastic modulus, supporting shape fidelity, cell
maturation, and cell alignment necessary for myotube formation.
In sum, both strategies have a huge impact on long-term func-
tionality of the tissue and differ for the three applications of
interest: cultured meat, biorobotic systems, and biohybrid
implants.

In biofabricated thick muscle flaps, limited nutrient supply and
metabolic waste product removal can be observed in tissues
exceeding 100 um for static and 600 um for perfused culture,
resulting in deteriorated viability and necrotic core formation?!
(Fig. 2b, ¢). In native tissue, this issue is addressed by the presence
of a dense vasculature network. In bioartificial muscles this
approach can be mimicked by integration of nutrient supply
channels. Depending on the biofabrication approach and
required lifespan, different strategies for nutrient supply channel
integration can be applied’?.

Our investigations reveal that the way nutrients are provided
strongly differs for the three fields of application. While thin
tissues, most frequently found in biorobotic systems!®->673 and
thin cell-seeded scaffolds for cultured meat!11235 can be
supplied via diffusion, tissues exceeding a thickness of 500 um
require active nutrient supply?!. Depending on the application,
the latter might be required for short term (up to 4 weeks) or long
term (> 4 weeks) (Table 2). For instance, while short-term
nutrient supply is sufficient for cultured meat!!74, long term
functionality needs to be provided for skeletal muscle implants.
The applied strategies for nutrient supply channel integration
reflect this observation.

Thick muscle tissue intended for cultured meat applications can
be fabricated applying molding techniques in combination with

channel forming materials or porogens in order to yield highly
porous open lumen scaffolds. While the channel forming materials
vary, the molding process is quite similar in most studies found in
the literature. First the channel forming component, e.g.
dissolvable phosphate glass fibers2®, carbohydrates”>, or sacrificial
hydrogels, such as Pluronic F-1273%76, are brought in the desired
3D-shape. Most frequently, 3D-printing or molding methods are
the method of choice for this purpose. Subsequently, the channel
structures are placed in the mold before the cell-laden hydrogel is
casted into it?17°, Finally, the void-forming components are
removed either mechanically (e.g. pulling it) or physico-chemically
(e.g. by dissolving it), resulting in a bulk material with integrated
open lumen structures’27>77,

For muscle implants that require long-term nutrient supply,
more sophisticated methods need to be applied. In order to
generate vessel-like structures that (i) ensure long-term stability,
(ii) prevent occlusion of the nutrient channel, and (iii) enable
biological compliance with the host tissue, organized channels
rather than open lumen pores are required and their interfacing
walls should be lined with endothelial cells. In this context, 3D-
bioprinting technology is mostly applied. Here, nutrient supply
structures comprising sacrificial hydrogels are printed in parallel
with muscle cell containing matrix materials. Following the
printing process, the sacrificial materials can be dissolved to
generate oriented and perfusable open lumen vessel-like
structures’8. Other approaches employ co-axial bioprinting
methods to generate multi-layered material strands comprising
one or more cell-laden matrix materials and a core made of a
sacrificial material, air or cell culture media2%7°, In both attempts,
endothelialization of the open lumen structure can be achieved, by
including endothelial cells and human umbilical vein smooth
muscle cells within the sacrificial material or by subsequently
flushing the hollow structures with those!”7. In sum, long-term
stable vascular structures with high biofunctionality can be readily
fabricated””.

Besides 3D-bioprinting, self-assembly methods are an innova-
tive approach to create vessel-like conduits for long-term nutrient
supply. In this context, two mechanisms are distinguished:
intrinsic and extrinsic vascularization. Both can be controlled
by spatio-temporal release of angiogenic factors like vascular
endothelial growth factor (VEGF)7”:80. In the former, pre-
vascularization of tissues occurs, e.g. by co-culturing endothelial
cells and stem cells in the bulk material of the biofabricated
structure8:82, Extrinsic vascularization relies on implantation of a
fabricated porous structure?!. Open lumen structures and
micropores strongly support extrinsic vascularization. Both act
as guidance and provide space for developing vascular channels
that sprout from the natural tissue into the fabricated bulk®>.
High levels of microporosity are required for this step, which can
be implemented by embedding porogens or sacrificial micro-
particles in the hydrogel precursor solution. After structuring
the bulk material, those porogens can be dissolved, leaving
micropores for vascularization?!83, Pore sizes ranging from
160-270 ym were shown to assist vascularization, e.g. in
Polyethylene glycol (PEG)-scaffolds>®4. Aligned microfibrils
fabricated for example by shear-extrusion or electro writing
could also be included during biofabrication of muscle tissue in
the future, as it was shown that they can aid the formation and
patterning of vasculature from iPSCs®-80. However, both the
extrinsic and intrinsic approach require at least 1-2 weeks of pre-
cultivation before the vascular network is formed and functional,
resulting in lacking nutrient supply during this period®”-88. To
prevent necrotic core formation, the described self-assembly
methods are mostly applied for thin tissues only?! (Fig. 2d) or in
combination with additional spatio-temporal bulk material
modification methods to bridge the gap in nutrient supply.
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Biohybrid reinforcement describes the support of mechanically
weak hydrogels or cell suspensions by combining these with more
rigid materials, which may degrade over time. The support
structures, which mostly reflect anisotropic orientation, offer both
mechanical and surface cues for cells in distinct regions of the
biofabricated tissue. In this context, reinforcement was shown to
impact not only the mechanical properties, but also 3D shape
fidelity, tissue conditioning as well as maturation, and ultimately
the power transmission potential of biofabricated muscle!416:60,
In particular the latter is key in implants and biorobotic
applications.

A high variety of rigid biocompatible materials from the
natural origin such as collagen, gelatin, soy protein, silk fibers
and synthetic polymers like polylactic acid (PLA), polyglycolic
acid (PGA) and PCL are applied to reinforce hydrogels and cell
suspensions!1,21,5489-94  For muscle tissue fabrication elastic
materials, such as PDMS and Polyurethane (PU), are of special
interest. They possess high elasticity and enable repeated stretch
cycles without aging or showing signs of deteriorated mechanics.
For this reason, they have been employed successfully as muscle
tissue reinforcement in the past?>®. For biohybrid implants
usually materials that are biodegradable, such as PLA, PGA, or
PCL® are favored to enable restructuring processes of the tissue
implant from the hosts’ cells system to achieve a fully integrated
functional implant®’. Finally, muscle tissue intended for meat
applications demands edible reinforcing materials. Commonly
applied candidates comprise materials that are generally
regarded as safe (gras) like starch, alginate, soy-proteins, or
gelatin12:49.98:99,

Besides biological and chemical properties, myoblast alignment
and an elastic modulus that is similar to the natural tissue are
crucial for muscle tissue maturation and in particular for
myotube formation®°>190, The usually low elastic modulus of
hydrogels, compared to natural muscle with about 12 kPal00:101,
results in a reduced functionality!4%®. By including scaffolds as
biohybrid reinforcement, elastic modulus and cell alignment can
be altered (Fig. 2e-g)?223. Elasticity and cell alignment of the
biofabricated composite are influenced by the material properties,
the quantity, the orientation and the design of the rigid
reinforcement structures?> (Fig. 2e).

Pre-fabrication of elastic scaffolds that are subsequently seeded
with cells is a commonly applied reinforcement method for
muscle tissue generation!1:8%102, To fabricate comparably thin
cell sheets, which are often found in biorobotic systems®* and
cultured meat®, flat substrates such as films with unidirectional
groves, electrospun fiber substrates, or knitted textiles can be
applied (Fig. 2f, g)?>193. Besides mechanical reinforcement, thin
sheets foster cell alignment via contact guidance!?4105, Thicker
muscle tissues can be generated by applying anisotropic scaffolds,
produced by directed freeze drying!! or fused filament
fabrication!%. These methods enable controlled modulation of
the elastic modulus as well as the implementation of cell
alignment features. For instance, freeze-drying techniques were
successfully employed to manufacture anisotropic sponges, which
provided aligned and interconnected pores to stimulate myofiber
development! 112, In contrast, scaffolds with isotropic pore
orientation result in randomly directed cell strands!%7. In general,
the strategy of pre-fabricating scaffolds offers a comparably high
level of freedom with respect to the applicable materials and
processing methods. Since the scaffolds can be manufactured in
advance, non-cytocompatible production methods, such as toxic
crosslinkers, non-physiological temperatures, or prolonged pro-
duction times can be accepted. Prominent examples are the
temperature and pressure critical freeze drying process to create
porous scaffolds' 12, or the high mechanical stress exerting and
potentially  lubricant-containing  textile =~ manufacturing?2.

However, the comparably low spatial resolution that can be
achieved in the subsequent cell seeding step is a critical drawback
of this approach. To overcome this shortcoming, recently hybrid
3D-bioprinting methods have gained attention. In contrast to the
previously described cell seeding approach, the reinforcing
components and the cell-laden matrix material are deposited
not subsequently, but in parallel. For instance, thermoplastic
polymers like PCL and PU have been printed together with
mouse myoblast-laden fibrin-composite bioinks. Thus, bioink
and supporting material can be joined to from muscle tissue with
high spatial orientation. The printed polymer strands provided
both reinforcement as well as surface-guiding cues resulting in a
defined orientation of the deposited cells promoting myotube
formation>466.

Ultimately, the formation of aligned myotubes can be fostered
by mechanical stimulation. Interestingly, so far mostly isometric
instead of cyclic strain is applied in this context, while the benefits
of the latter are controversially discussed 08109, Isometric strain is
achieved either by printing or molding the cell-laden matrix
around rigid anchor points. Subsequently, crosslinking as well as
cell-driven remodeling of the matrix result in a time-dependent
shrinkage of the tissue. The shrinkage-induced isometric strain is
a simple, yet powerful method to assist cell alignment and
myotube formation in the resulting tissues!3°.

Application-specific muscle tissue fabrication

Biofabricated muscle tissue can be applied for versatile purposes,
e.g. as cultured meat, in biorobotic systems, or as biohybrid
muscle implant. For each of the three applications, individual
tissue specifications dominate. To accommodate these, the bio-
fabrication process has to be tailored accordingly. The following
sections provide an overview on the applications’ specific
requirements and their implementation methods (Table 2).
Recent examples and success stories for each respective area of
application are highlighted.

Cultured meat. Cultured meat is emerging to fulfill the growing
world population’s desire for animal- and environment-friendly
meat®. Several companies are actively researching the production
of cultured meat, but at this point no product is commercially
available at a large scale! 10, Tt consists of expanded differentiated
cells in combination with other scaffold materials for nutrition.
Apart from consumer acceptance, the product predominantly has
to be cost and resource efficient to succeed in the food industry>.
For this reason, muscle cell lines, which exhibit a vast prolifera-
tion potential, are routinely applied and expanded for mass
production in bioreactor systems. The perfusion bioreactor is
the most commonly used reactor type, yet the most resource
efficient in terms of space and culture media is the hollow fiber
reactor’4111,

To further expand the mass of cultured meat, additional
natural edible materials are added!2:6>112, There are two possible
product types of cultured meat: a highly structured cut meat or
a low textured minced meat. For the fabrication of low structured
products, cell seeding of preformed scaffolds!l!2 or molding
methods!3 are mostly applied. To achieve a higher order of
cellular structure, more advanced but so far less scalable
biofabrication methods, such as 3D-bioprinting, are in favor.
For example, to create cut-meat-like products, different cell types,
such as muscle and fat cells, have to be placed with a high spatial
resolution to achieve the best look and taste32. Furthermore, a
dedicated maturation step needs to be added, in order to achieve
myofiber formation and orientation and ultimately create a
textured meat product®23-74,
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The key requirement for the application of muscle tissue in the
context of cultured meat is the scalability of the production
process and customer acceptance to be financially profitable!!3.
This demand has a huge impact on the biofabrication process.
Most studies focus on yielding high quantities rather than the
functionality of the muscle, which is not necessarily required in
this field of application. This chapter highlights current
manufacturing trends in this rapidly evolving field of research.

Initial proof of concept studies on cultured meat employed
animal-derived scaffolds, simple and thin geometries as well as
low levels of cellular organization and texture. In this context,
perfusion or hollow fiber bioreactors, as well as cell expansion in
cell aggregates or on microcarriers were most often applied to
produce large amounts of muscle cells’4!14, which could be
further supplemented with proteins and processed into the
desired shape!®. Adding to or replacing muscle cells by less
expensive, alternative protein sources, was shown to be an
effective way in reducing costs in order to offer cultured meat at a
competitive price. For this purpose animal-derived polymers like
collagen or gelatin (Fig. 3a), which offer excellent cell growth
conditions, high biodegradability, and weak antigenicity, were
frequently reported!1:3>94115 Recently, inexpensive and animal-
free polymers are gaining attention as a promising alternative to
the aforementioned additives' 112116, However, non-ECM-
sourced hydrogels most often lack biofunctionality, e.g. cell-
adhesion ligands. In this context, transgenic plants, which can be
tweaked to produce collagen-like materials'!”, could be a key for
future developments?.

Following the early proof of concept studies, more advanced
methods were employed to increase complexity and resemble the
anisotropic features of native meat. For example, the fabrication
of the first lab-grown meat burger by Post and his team in 2013,
which marked a milestone in cultured meat development,
isometric strain conditioning was employed to support cell
alignment and tissue maturation® (Fig. 3b). More recently,
ambitions to recreate sliced meat resembling products increase
and growing efforts for fostering tissue maturation and cell
alignment by post-fabrication conditioning can be observed. For
instance, Ben-Arye and co-workers applied a freeze-drying
process to create a scaffold with oriented and interconnected
pores. In combination with a soy protein, thin textured meat
slices with good biological properties could be generated!!l. Other
groups focused on micropatterned or grooved surfaces, e.g.
gelatin—alginate—agarose-gylcerol-composite films or gelatin
fibers sheets, to promote cell alignment#>94. Several other edible
materials, such as cellulose, fungal chitosan and pectin would be
favorable alternatives but have not yet been applied for the
production of structured meat!12-116.118,

To be accepted as food from the consumers, cultured meat
needs to achieve the look and taste of its native counterpart. Cell
seeded scaffolds dominate current meat fabrication strategies, but
are yet to be analyzed regarding their taste. Most scaffolds are
neutral in taste, for example gelatin or starch, and could be used
for all kinds of cultured meat products, while seaweed-derived
alginate is a commonly applied alternative in seafood!!8. The
taste of the few cultured meat products already degusted were
described as meat-like!>198, though considered not to be the
same as real cut meat. Important differences are the missing fat
content!® and various proteins!20, Recent research underscores
the increasing importance of this aspect and points to exciting
approaches to solving it. For instance, Simsa et al. elucidate the
role of heme proteins, e.g. myoglobin and hemoglobin, in
tailoring the bloody-metallic taste typically experienced when
eating cut meat!2!l. In addition, the heme proteins were shown to
improve the visual appearance of the cultured meat products in
contrast to the light pink color of untreated cell cultures!?!

(Fig. 3k-m). Other approaches apply food coloring agents, such
as beet juice, to improve the visual acceptance and achieve a raw
meat mimicking look!!>13 (Fig. 3e, h).

With increasing demand for mimicking its native counterpart,
the texture or mouthfeel of cultured meat was also brought into
focus recently. Both aspects are directly influenced by the
manufacturing process and the subsequent conditioning proce-
dure. For instance, using edible porous soy scaffolds in
combination with muscle and connective tissue-derived cells
(bovine satellite cells (BSC), bovine aortic smooth muscle cells
(BSMC) and bovine skeletal muscle microvascular endothelial
cells (BEC)), a meat product that matched Young’s modulus and
the ultimate tensile strength of native bovine muscle (Fig. 3f) was
generated!!. Besides the mechanical properties, the rheological
features can also be used to analyze the texture and quality of
cultured meat products’. For instance, MacQueen and co-
workers created a muscle cell-seeded gelatin scaffold, which
recapitulated some of the structural and mechanical features
measured in meat products. Here, an immersion rotary jet
spinning approach together with a chemical and enzymatic
crosslinking strategy were applied for meat matrix fiber
fabrication”* (Fig. 3a). Lately, multi-modal approaches involving
isometric strain (anchoring systems), spatio-temporal matrix
modification (inclusion of channels for structuring and nutrition
supply) as well as electrical stimulation are gaining particular
attention to match the increasing demands in cultured meat
fabrication!3. Following this strategy, Furuhashi and co-workers
generated meat structures that exhibited similar mechanical
properties compared to native muscle tissue!3 (Fig. 3g-j).

Interestingly, animal serum is still frequently used, despite the
growing desire to produce cultured meat without animal-derived
products. Moreover, efforts to find cost-efficient solutions are at
their greatest in this areall1398 The use of synthetic serum
would therefore make an important contribution in many
respects and therefore offers a promising future.

As discussed earlier (Chapter Spatio-temporal modification),
due to its limited lifespan short-term nutrition supply is sufficient
for cultured meat. Recent studies either realize this by applying
thin, diffusion enabling sheets up to 1500 um!1:13:3549.94 "¢ by
taking advantage of low oxygen and low nutrient consuming cell
types, e.g. fish cells!?2. Interestingly, only recently first strategies
towards the fabrication of perfusable, thick meat structures, were
employed33100 (Fig. 3c).

Biorobotic systems. Biorobotic systems are biologically driven
actuators using hybrid constructs comprising force-generating
muscle cells that interact with an underlying substrate or a sur-
rounding matrix material to generate motion.

In contrast to cultured meat, yielding a high level of biomechanical
functionality and a high force generation capacity are of utmost
importance for these systems. Depending on the field of use, different
muscle cell types can be employed. For instance, muscle cells derived
from insects are well suited for ex-vivo applications. They are
characterized by a high force generation capacity, prolonged actuator
lifetime (up to 90 days), and can be operated at atmospheric
conditions with only minimal nutritional supply’>!23124, In turn,
primary human muscle cells are advantageous in that they can be
employed within the body without risking immunological side
effects. However, compared to insect muscle these exhibits a shorter
actuator lifetime (< 20 days)!24. Despite species-related differences,
the selected cell types were shown to impact the performance of
biorobotic systems too. For example, the generated force of
cardiomyocytes (approximately 10 puN/cell) is about ten folds higher
than the power of skeletal muscle-driven actuators (approximately
1 uN/cell)!24,
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Fig. 3 Recent trends in cultured meat fabrication. Fibrous anisotropic gelatin scaffolds could be produced by immersion rotary jet spinning (a)%4 (fibrous
gelatin production by immersion rotary jet spinning (iRJS) by MacQueen et al. (CC BY 4.0)). Picture of a muscle strip with anchoring system which was
further developed for the first burger from cultured meat (b)'98 (Reprinted from Principles of Tissue Engineering, Fourth Edition, M. Post, C. van der Weele,
Principles of Tissue Engineering for Food, Pages 1647-1662, Copyright (2014), with permission from Elsevier). Schematic depiction of a possible cultured
meat scaffold design (€)1°0 (Reprinted with permission from Springer Science Business Media, LLC, part of Springer Nature: Food Engineering Reviews,
Cultured Meat: Meat Industry Hand in Hand with Biomedical Production Methods, Zidari¢ et al., Copyright (2020)). Textured soy protein scaffold (d)
seeded with bovine satellite cells (BSC) and bovine aortic smooth muscle cells (BSMC) co-culture (e). Comparison of Young's modulus and ultimate
tensile strength (UTS) of the various seeded textured soy scaffold types of native bovine muscle from the literature (F)!".(Reprinted with permission from
Springer Nature Limited: Nature Food, Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-
based meat, Ben-Arye et al, Copyright (2020)) Construction process of a thick bovine muscle tissue (g) and image of the resulting product colored using
red food dye (h). The rate of fiber-shaped bovine muscle tissues capable of contracting in response to applied electrical stimulation (ES), formed within the
collagen (Col) or Fibrin-Matrigel (Fib-Mat) based tissue cultures (i) and mechanical characterization of the produced tissue (§)'3(Construction process of
millimetre-thick bovine muscle tissue, Morphological and functional analysis of bovine muscle tissue, Morphological analysis of the millimetre-thick bovine
muscle tissue and Food feature analysis of the large bovine muscle tissue by Furuhashi et al (CC BY 4.0)). Representative images of cultured meat strips of
bovine muscle satellite cells (BSCs) grown in the presence of hemoglobin (Hb) or myoglobin (Mb) in the cell culture media for up to nine days in a fibrin
hydrogel (k). Spectroscopic quantification of total pigment content (I) and average tissue coloration (m) of homogenized cultured meat strips after
incubation in heme-protein-containing media in comparison to beef'?!. (properties of skeletal muscle tissue formation and Pigment content and tissue
coloration by Simsa et al. (CC BY 4.0)).

The high miniaturization potential is one of the strongest edges
of biorobotic systems compared to technical actuators, which
cannot be scaled down in size as much!?>. Due to their
comparable small size and weight, biorobotic systems exhibit an
excellent power-to-weight ratio, which is approximately 1-3
orders of magnitude higher than for instance pneumatic systems,
or electroactive polymers!24126, Furthermore, the applied muscle

cells can be genetically modified to react on versatile environ-
mental triggers, such as light or chemical cues, in real time37-124,
Last but not least, biorobotic systems are superior to technical
actuators in that they exhibit self-healing properties which make
them resilient to mechanically-induced damage!?’. The high
minjaturization potential, their wireless power supply (powered
by dissolvable nutrients), and their versatile triggers renders
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biorobotic systems ideal for in vivo applications, for instance for
future drug delivery, or plaque removal tasks!24128,

So far, biorobots comprise rather thin muscle tissue patches
(approx. 500 pm) with simple shapes®473:123,127,129,130 For this
reason, biomaterials and biofabrication processes that do not
need to yield high shape fidelity or hierarchical designs are
predominantly applied.

In addition, its limited dimension simplifies nutrient and
oxygen supply of the involved cells, since these can be supplied by
diffusion. For fabrication of biorobotic systems mostly molding,
bioprinting or cell seeding are applied. For molding or
bioprinting of muscle tissue, ECM derived hydrogels, such as
collagen and Matrigel, are routinely applied at low polymer
concentrations as these formulations offer excellent cell growth
conditions and thus high cell densities>!6:37>>131, Tn some cases,
these are additionally blended with e.g. fibrin or Methacrylated
Gelatin (GelMa) to improve the mechanical properties of the bulk
material!?712%131 The matrix material is usually casted or
printed onto strips or annular molds creating multi-material
constructs3’°%, For example, Morimoto et al. used a striped
structure in the mold as reinforcement to aid both cell alignment

10

5 Biofabrication timeline and free swimming driven by neuromuscular units by

and nutrition2. Recently, more complex structures were fabricated
using 3D-bioprinting technology (Fig. 4a-h)16:37.

Following the fabrication process, the generated structures
need to be transformed into functional, contractile biorobots. In
literature, this is most often achieved by promoting cell alignment
or exerting isometric strain?!6-37:129, The maximal force that can
be exercised by the biorobotic system depends on multiple
factors, such as the mechanical properties of the substrates or the
muscle fixation posts!® (Fig. 4d), the muscle stimulation and
conditioning method3” (Fig. 4g, h), and the level of tissue
maturation? (Fig. 4k). Additionally, co-culture with neurons
enables new possibilities for the design of biorobotic systems>”
(Fig. 41-0).

For cell seeding, usually primary rat cardiomyocytes are seeded
on top of a substrate material, e.g. PDMS64125128,130 The
substrate serves two functions: (i) it provides the cell adhesion
and growth area and (ii) is an integral component of the robotic
design that translates the cellular contraction into motion (Fig. 5).
However, achieving a high level of biomechanical functionality is
crucial. In current studies, the application of high cell densities,
stimulation of cell alignment and myotube formation, or the
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Fig. 5 Recent trends in the development of cell seeded biorobotic systems. Concept design of a self-propelled biohybrid flagellum (right) with a similar
motion to a spermatozoa (left) (a). Map of the predicted velocity as a function of head and tail dimensions of the biohybrid flagellum (b). Schematic of a two-
tailed swimming biorobot (€). A sequence of images of the actuation of the two tailed swimmer (d) and the traveled distance and calculated velocity (e)12>
(reprinted with permission from Nature Publishing Group, a division of Macmillan Publishers Limited: Nature Communications, A self-propelled biohybrid
swimmer at low Reynolds number, Williams et al, Copyright 2014) Schematic diagram of the movement of a different biorobot, where the contraction of the
cardiomyocyte bends the thin PDMS cantilever (f) of the floating or stationary biorobots (g). Immunostaining of cardiomyocyte marker, troponin-I (left) and
actin cytoskeleton (right) show the growth of the cells without alignment (h)%4. A tissue-engineered medusoid (i) with biomimetic jellyfish propulsion (). Time
lapse of a stroke cycle of a jellyfish and the medusoid (k)39 (reprinted with permission from Nature Publishing Group, a division of Macmillan Publishers
Limited.: Springer Nature, Nature Biotechnology, A tissue-engineered jellyfish with biomimetic propulsion, Nawroth et al., Copyright 2012)) Atrtificial
intelligence assisted design process of biorobots with predictable motion paths employing contractile (red) and passive (cyan) cell-based building blocks (I,
left) as well as their in vivo realization using cardiomyocyte and epidermal cell progenitors (1, right). Predicted and in vivo movement of the designed models
(m)'28 (designing and manufacturing reconfigurable organisms and Transferal from silico to vivo by Kriegman et al. (CC BY 4.0)).

mechanical design of the robotic elements were found to be
adequate approaches to meet this demand. For forming aligned
myotubes, versatile methods have been reported, e.g. b
integrating materials with physical cues for cell guidance4%94132,
conditioning in bioreactors under static or cycling strain!416:55-6,
or electrical stimulation during conditioning!0-37.

While early studies explored the general potential of
biorobotic systems to enable movement in one direction (e.g.
by contraction), recent work demonstrates that biorobots with

multiple degrees of freedom can be fabricated. For instance,
several groups created multi-directional biorobots by seeding
cardiomyocytes on flexible PDMS substrates with isotropic
geometries. The resulting biorobots were able to exercise
bacteria and jellyfish-like movements®%12>130 (Fig. 5a-k). In
this context, a very innovative approach is described by
Kriegman and co-workers. Here, artificial intelligence algo-
rithms are applied to design biorobotic systems with predictable
motion paths!?® (Fig. 51, m).
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Biohybrid implants. Over 30 % of the human body weight is
muscle tissue consisting of skeletal, heart and different other
smooth muscles like abdominal muscles®3. The muscle in the
body has good self-healing properties from muscle stem cells and
satellite cells, however, they can only repair small
defects!03133.134 For the regeneration of defects with critical size
caused e.g. by trauma or muscle dystrophy, traditionally muscle
flaps from different regions of the body or by allogenic trans-
plantation can be used with common disadvantages of donor site
morbidity or immunogenic reactions!34135, To overcome these
problems the biofabrication of muscle tissue implants gained
attention.

Compared to the before-mentioned applications, muscle
implants have the highest need for individualization and
biological functionality. In order to match the complex
anatomical architecture of native tissue, muscle implants require
the orchestrated placement of different cell types and biomaterials
with high spatial resolution!3¢. Thus, mostly 3D-bioprinting
strategies are applied as they offer the potential to generate multi-
cellular structures with high spatial resolution!3’. The formation
of functional myotubes as well as an intact innervation are of
high relevance to ensure implant functionality and tissue
integration®-103,

In order to maximize biological acceptance, as a cell source
only human, ideally autologous patient-specific cells, can be used.
Induced pluripotent stem cells theoretically offer an unlimited cell
source for this application. They can be differentiated in all cell
types required for muscle tissue fabrication: myoblasts, adipo-
cytes, fibroblasts, and endothelial cells!38, However, stem cell
cultivation and expansion to yield sufficiently high cell numbers
remain a challenge!13,

Besides cell choices, the applied matrix used for embedding the
cells must also meet specific requirements®?. It should be
biologically active to allow adhesion, migration, proliferation,
and maturation like the natural ECM!92. For this reason,
decellularized ECM hydrogels are often used as they offer an
excellent environment for cell growth!7:2450.139 Furthermore, the
employment of hydrogel blends can be observed30->457:58,
Especially for 3D-bioprinting, these formulations improve shape
fidelity and structural reinforcement, while maintaining high
levels of biofunctionality. For example, combinations of GelMa>7
or PEG-Fibrinogen®® with alginate have been described. While
the gelatin and fibrinogen component foster biofunctionality,
ionic crosslinking of the polysaccharide enables rapid gelation,
higher printability and shape fidelity, as well as a more favorable
mechanical microenvironment to promote proliferation and
myotube formation®” (Fig. 6a—c).

Analogue to biorobotic systems, for the generation of
functional muscle implants high cell densities and a high degree
of cell alignment need to be achieved to ensure excellent
biofunctionality of the tissue. In order to achieve this, in current
research extrusion-based 3D-bioprinting methods are employed.
The extruded bioink strands result in aligned polymer fibers that
guide cell elongation parallel to the printing path!40. Alterna-
tively, contact guidance and mechanical reinforcement strategies
have been applied to modulate cell alignment and the elastic
modulus of the tissue36->460 (Fig. 6h, i).

In addition, muscle implants are thicker than muscle units in
biorobotic systems, which can be supplied with nutrients by
diffusion, and—in contrast to cultured meat—need to stay
functional for prolonged times (months to years). For this
reason, muscle implants require a high level of vascularization to
actively support nutrient supply and maintain tissue functionality
for prolonged periods!03.

Tissues incorporating perfusable channels exhibited signifi-
cantly higher cell viability in deeper regions than statically

cultured counterparts?l. In recent studies, this was achieved for
example by co-axial extrusion of alginate and calcium chloride to
create cell-lined nutritional channels’®. Other groups employ
sacrificial materials to create open lumen structures!”-30:%6, For
instance, Noor and co-workers printed endothelial cell containing
gelatin as sacrificial material in parallel with decellularized ECM
bioinks supplemented with cardiomyocytes to create thick
perfusable cardiac patches with cell-lined nutritional channels!”
(Fig. 61-n). Besides the top-down integration of channels by e.g.
3D-bioprinting, nutrient supply can be further improved by self-
assembly of vascular structures. For instance, Lee and his
colleagues employed a VEGF releasing, microporous scaffold to
promote extrinsic vascularization?!.

To further increase long-term clinical success, it is essential to
recreate stem cell niches and provide neuronal integration. Stem
cell niches offer a supply of undifferentiated stem cells which can
replace muscle tissue cells on demand. Recreation of such niches
were successfully reported, e.g. by employing collagen type I
scaffolds coated with integrins and laminins with a stiffness of
1-2 kPa’%71  Other approaches focus on innervation to yield
long-term functionality of the implant. Innervation was realized
by inserting the host’s nerve into the biofabricated tissue
(Fig. 6j, k). The formation of neuromuscular junctions indicate
the high innervation potential of this approach31:66. Co-culturing
human primary skeletal myoblasts and human-induced neural
stem cells was demonstrated to be an exciting alternative route
towards this goall41,142,

While the fabrication of longitudinal, skeletal muscle
implants3©:%¢ or heart muscle patches!43144 was mostly focused
on in the past, recently, we observe a trend towards the
fabrication of more complex geometries, such as heart
ventricles!7-21,145:146 (Fig 6o, p). In order to provide structural
integrity during printing, the concept of submerged or freeform
reversible embedding of suspended hydrogels (FRESH) bioprint-
ing is frequently applied in this context. Here, cell-laden
hydrogels are printed or extruded into high-density support
baths!47:148 or a swollen hydrogel slurry?!.

Summary and outlook

Biofabrication of artificial muscles is an emerging field of
research. With the advancement of biofabrication technologies,
on the one hand, and its increasing range of applications covering
cultured meat, biorobots, and biohybrid implants for regenerative
medicine on the other hand, the investigation of muscle tissue
fabrication methods gained particular attention in the recent
decade. The biofabrication process generally comprises the tissue
design (determination of requirements, desired function, and
geometry, the bulk-material selection (cell types, matrix, and
support materials, Chapter Physico-chemical composition of the
bulk material), as well as strategies for spatio-temporal mod-
ification and subsequent conditioning of the generated structure
into a biological tissue (Chapter Spatio-temporal modification).
This review highlights the individual steps of the biofabrication
process and provides a comprehensive overview on recent success
stories for the above-mentioned fields of application.

As pointed out, cultured meat primarily has to be cost and
resource efficient (Chapter Cultured meat). Our observations
indicate that current fabrication processes are designed accord-
ingly. Mostly simple bulk geometries are designed!>112113, manual
biofabrication methods with low spatio-temporal specification and
texture, such as cell seeding!24%14% or molding!3198, are applied,
and the tissue is rarely conditioned. Furthermore, in most cases
thin tissue slices were generated that rarely required supply
channels, but could be readily provided with nutrients and
oxygen by diffusion!1-12150.151 However, recent work stresses the
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Fig. 6 Examples of biofabricated muscle tissue for regenerative medicine. Coaxial extruder nozzle (a) used for the printing of high shape fidelity
structures utilizing ionic and UV-based bioink crosslinking (b). Fluorescence image of the printed multicellular result comprising C2C12 muscle cells
(green) and BALB/3T3 fibroblasts (red) (€)>8 (3D bioprinting set-up and Multi-cellular 3D bioprinting through a microfluidic printing head by Costantini
et al. (CC BY NC ND 4.0)) Bioprinted multimaterial muscle-tendon unit (d) showing different elastic moduli of the integrated scaffold materials of
polyurethane (PU) and polycaprolactone (PCL) (e). The C2C12 muscle cells of the muscle-tendon unit show morphological changes in the fluorescence
microscopic image into an elongated shape while NIH/3T3 fibroblasts keep their morphology (f). Fluorescently-labeled dual-cell printed constructs (green:
DiO-labeled C2C12 cells; red: Dil-labeled NIH/ 3T3 cells; imaged at 7 d in culture) shows cell-cell interactions and cell migration (g)°4 (© |OP Publishing.
Reproduced with permission. All rights reserved.) Printing path of a fiber bundle design for muscle organization with PCL pillars and sacrificial Pluronic
F-127 channels for nutrition and cell alignment (h). The cell alignment can be seen in the immunofluorescent staining for myosin heavy chain of the 3D
printed muscle after 7 days differentiation (i). Subcutaneous implantation of the bioprinted muscle fiber bundle with host nerve integration (j). Assessment
of the function of the bioprinted muscle construct after 4 weeks of implantation (positive control: the normal gastrocnemius muscle; negative control: the
gluteus muscle after dissected common peroneal nerve) (k)¢ (reprinted with permission from Nature Publishing Group, a division of Macmillan Publishers
Limited: Nature Biotechnology, A 3D bioprinting system to produce human-scale tissue constructs with structural integrity, Kang et al, Copyright 2016)
Printing of cardiac patches (I-n). Model of the cardiac patch (I) and a side view of the printing concept showing the sacrificial bioink with endothelial cells
(EC) and the bioink made from decellularized omentum tissue (OM) with cardiomyocytes (CM) (m). Printed cardiac patch with cardiac tissue (actinin
stained in pink) and blood vessels (CD31 stained in green) (n). Small scale human heart (o, p) printed in suspension to create hollow ventricles. The
ventricles were filled with red and blue dye for visualization (o). The fluorescence image shows printed vasculature in the small-scale heart (CMs in pink,
ECs in orange) (p)17 (© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

importance of additional quality parameters, such as texture or
mouthfeel, to increase consumer acceptance. For instance, this is
accounted for by using anisotropic scaffolds with interconnected
pores, produced e.g. by directed freeze drying, resulting in a pre-
ferential direction of cellular growth and thus texture!l-12. Other
studies texturize the muscle tissue by promoting cellular alignment
via isometric strain!33° and contact guidance®®4, or by co-
cultivation with cells that exhibit equielastic ECM expressionl!.

Considering biorobotic systems, a high ultimate force to tissue
volume ratio is the key performance indicator that determines the
conditions of the fabrication process (Chapter Biorobotic sys-
tems). As for cultured meat, simple geometries and rather thin
muscle sheets, which can be fed by diffusion, are
employed!037:64130" However, in contrast to the former, high
biofunctionality is required for prolonged time in this field of
application. Thus bulk materials with high biological affinity,
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such as ECM-derived matrices, are mostly reported!%10:>556,
High force output is accomplished by promoting cell alignment
either via isometric strain exerted by anchors!41037 or by smart
scaffold designs with isotropic properties®*12%130,

In addition to the previously discussed fields of applications,
bioartificially buil muscle tissue is also attracting increasing interest
in the field of disease modeling and as a drug screening platform. In
general, the same fabrication concepts and strategies as discussed in
this article can be applied here. However, the latter demands in-
depth understanding and comprehensive discussion of metabolic
cell biological processes, pharmacokinetics, as well as disease
mechanisms and therefore merits a dedicated representation in a
separate review article!>2,

Finally, to bridge critical size defects following trauma or dis-
easebiohybrid muscle implants are becoming of age in regen-
erative medicine. In order to replace, support, or maintain its
native counterpart, biofabricated muscle implants are subject to
the most demanding requirements compared to the before-
mentioned applications (Table 1). In particular, native archi-
tecture, prolonged functionality, and vascular integration of
comparably large tissues need to be achieved. In this context, the
application of more complex biofabrication methods, such as 3D-
bioprinting, are frequently reported!”-21:36:06, In order to match
both high biofunctionality as well as shape fidelity, ECM-derived
matrices blended with additional polymers, e.g. alginate, are used
as matrix materials®/->8, Interestingly, cell alignment is reported
to be possible either by the inherent polymer chain orientation
resulting from extrusion bioprintingm’“o, by parallel or hybrid
bioprinting of polymer strands for cell guiding®® or exertion of
isometric strain2430%0, Due to their size as well as the require-
ment to be connected to the native vascular system after
implantation, the integration of vascular channels is inevitable for
the production of muscle implants. In addition, to ensure that the
vessels remain stable over time and do not occlude due to neo-
plasm formation or blood contact, lining with endothelial cells is
required!7-21.79, So far, this is mostly accomplished by post-
fabrication cell seeding’® or the promotion of self-assembly
processes21,

In summary, by comparing cultured meat, biorobotic systems,
and muscle implants, we observe strong differences in the applied
designs, cell types, matrices, and biofabrication processes. Both
form and fabrication follow the function of the desired field of
application as well as its most vital demands. For instance, even
though biorobots and muscle implants share the same require-
ment in terms of pro-longed functionality and nutrient supply,
due to their difference in size the importance of supply channel
integration is only reasonable for muscle implants, so far. Instead,
biorobots are most valuable when used in small scale. Compared
to other actuators, such as electroactive polymers or pneumatic
systems, biorobots impress with their high force to volume
ratio!?4126 and small size with only a fraction of a millimeter!28,
Technical systems usually require constant energy or pneumatic
pressure supply to function. The advantage of biorobots is that
their functional units, living cells, can be nourished by medium or
soluble factors found in the blood. This aspect awards them an
advantage over technical systems, especially for future in-vivo
applications within the body.

For the future development of this exciting field of research, we
observe already today highly interesting trends. The observed
increase in more sophisticated design approaches, such as artifi-
cial intelligence!?® or integrated neurons for targeted control of
biorobots®>, give us a taste of what previously unattainable
functionalities will be enabled through the intelligent arrange-
ment of cells, matrices, and supporting materials in the future.
Similarly, mechanical properties and biohybrid reinforcement to
foster cell maturation will become an even more prominent task,

in order to improve the interaction of biological as well as
mechanical parts and force transmission.

Thicker structures with fine texturing, marbled fat, and con-
nective tissue that closely mimic nature will be the next mile-
stone in the field of cultured meat. To accomplish this goal, we
predict a change in the applied fabrication methods toward
technologies that provide efficient and high-scale manufacturing
at strongly increased spatial resolution. Novel 3D-bioprinting
technologies and original methods will need to be developed for
this task. In this context, today’s intricate muscle fabrication
methods, such as those we observe in muscle implant manu-
facturing, offer important learning cases. The strategies cur-
rently used to manufacture muscle implants, such as bulk
material modification for improved biological properties,
printability and shape fidelity, will be transferred to increase the
complexity of other applications, such as cultured meat or
biorobotic systems. At the same time, muscle implant manu-
facturing will also benefit from the booming development of the
other two fields of application. This holds true especially since
implants combine a couple of key features that will become
more prominent in both areas in the future, e.g. the high bio-
functionality of biorobots and the aspired high volumes and
texture of cultured meat. By solving the individual challenges
and merging the knowhow of experts, synergetic leaps of
innovation that inspire each other can be expected in all three
fields of application, which so far are mostly viewed separately.
The most recently presented study by Srinivasan and co-
workers!>3 (Fig. 1b), which combines the concepts of biorobotic
systems and biohybrid implants!®3, is a ground-breaking indi-
cator for the unprecedented innovations and future trends that
will be unleashed by the proposed technological fusion.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.
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