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A multi-omic dissection of super-enhancer driven
oncogenic gene expression programs in ovarian
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The human genome contains regulatory elements, such as enhancers, that are often rewired

by cancer cells for the activation of genes that promote tumorigenesis and resistance to

therapy. This is especially true for cancers that have little or no known driver mutations within

protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic

and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially

amplified in ovarian cancer patients. We systematically probe the top 86 super-enhancers,

using CRISPR-interference and CRISPR-deletion assays coupled to RNA-sequencing, to

nominate two salient super-enhancers that drive proliferation and migration of cancer cells.

Utilizing Hi-C, we construct chromatin interaction maps that enable the annotation of direct

target genes for these super-enhancers and confirm their activity specifically within the

cancer cell compartment of human tumors using single-cell genomics data. Together, our

multi-omic approach examines a number of fundamental questions about how regulatory

information encoded into super-enhancers drives gene expression networks that underlie the

biology of ovarian cancer.
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Ovarian cancer is one of the deadliest cancers among
women worldwide and is the leading cause of
gynecologic-related cancer deaths in the US1. High-grade

serous ovarian cancer (HGSOC) is the most common subtype
(~80% of all ovarian cancer) and is characterized by a high
number of copy number alterations and few driver mutations,
which is thought to account for the clinical aggressiveness of this
disease as well as the eventual development of chemoresistance2,3.
The most commonly seen mutation in HGSOC is p53 (>90% of
cases), followed by a low, but statistically significant, prevalence of
recurrent somatic mutations in NF-1, BRCA1/2, and CDK2,
which often lead to genomic instability4–6. Due to this genomic
instability, ovarian cancer has a high rate of copy number
abnormalities and recent studies have shown that these altera-
tions can be used to stratify HGSOC2. However, the paucity of
known driver mutations for ovarian cancer has made it difficult
to develop effective targeted therapies. Consequently, the stan-
dard of care remains cytoreductive surgery followed by carbo-
platin/taxane chemotherapy, with ~75% of patients experiencing
a recurrence2,3. Thus, additional analysis of the non-coding
regions of the genome, that extends beyond gene profiling, is
desperately needed.

Mounting evidence suggests that regulatory elements, such as
transcriptional enhancers, can be rewired or hijacked by cancer
cells for the activation of genes that promote tumor formation,
metastasis, and resistance to therapy7–9. This is especially true for
cancers that have little or no known driver mutations within
protein-coding genes, such as ovarian cancer10. Enhancers are
non-coding DNA elements that contain information for the
binding of transcription factors and interact spatially with their
target genes to orchestrate spatiotemporal patterns of gene
expression11,12. It is estimated that there are hundreds of thou-
sands of enhancers found throughout our genome and these can
act independent of orientation and linear distance from their
target genes, forming high-order chromatin loops with their
target genes. Of note, the activity of enhancers is often restricted
to a particular cell type or to specific physiological or pathological
conditions, enabling their genomic function to determine pre-
cisely when, where, and at what level each of our genes is
expressed13–15. Large clusters of neighboring enhancers that have
unusually high occupancy of interacting factors are typically
called super-enhancers (SEs)16. These super-enhancers are known
to regulate key cell identity genes, and in cancer are known to
drive oncogene expression17.

The high transcriptional output of cancer cells is thought to be
sustained by the activity of super-enhancers, suggesting cancer
cells can become addicted to super-enhancer-driven regulatory
networks18. Furthermore, recent studies in ovarian cancer have
demonstrated the capacity of super-enhancers and their asso-
ciated networks of transcription factors to directly influence
chemoresistance19,20. The molecular characteristics and high
activity of super-enhancers make them exquisitely sensitive to
epigenetic drugs, more so than typical enhancers21. Thus, there is
a growing belief that exploiting transcriptional dependence by
targeting oncogenic super-enhancers may be a valid therapeutic
avenue21. For example, the bromodomain-containing protein 4
(BRD4) is a druggable transcription factor that recognizes
acetylated histone proteins and is found in large quantities at
super-enhancers22,23. Small molecule inhibition of BRD4 (such as
JQ1 and BET inhibitors) has been shown to reduce cell pro-
liferation and survival in vivo as well as increase therapeutic
sensitivity of several cancer types, leading to the development of
several clinical trials20,23,24. However, despite their effectiveness
in inhibiting oncogenic processes in ovarian cancer cells, anti-
BRD4 agonists remain a poor therapeutic option due to their
overall toxicity and delivery constraints25. Nevertheless, the study

of BRD4-associated super-enhancers in ovarian cancer may lead
to the identification of biomarkers, downstream druggable tar-
gets, and a better understanding of the regulatory processes that
drive this disease.

To this end, the studies described herein examine several
fundamental questions about how regulatory information is
encoded into super-enhancers, how they are preferentially
amplified in ovarian cancer cells, and how they drive gene
expression networks that underlie the biology of ovarian cancer
cells. We use an integrated genomic and computational frame-
work to (1) identify BRD4-enriched and copy number amplified
super-enhancers in ovarian cancer patients, (2) systematically
probe the functions of the top 86 ovarian cancer-enriched super-
enhancers using CRISPR interference assays (CRISPRi) (dCas9-
KRAB) coupled to RNA-seq, (3) validate their roles in driving the
proliferation and migration of cancer cells via CRISPR-knock-
outs, (4) annotate direct target genes using chromatin looping
information via Hi-C, and (5) confirm their activity specifically
within the cancer cell compartment of human tumors using
single-cell genomics data.

Results
Identification of BRD4-enriched super-enhancers in ovarian
cancer. Super-enhancers are one of the most salient regulatory
elements in the genome and are known to be repurposed by
cancer cells to drive the expression of oncogenes16,26. Due to the
unusually high levels of interacting transcription factors and the
prominence of their target genes, super-enhancers contain
untapped potential that can lead to a new set of markers with
diagnostic and prognostic potential, or even serve as tractable
targets for therapeutic intervention21,27. To identify enhancers
likely to be associated with oncogenic gene expression programs,
we leveraged both ovarian cancer cell line epigenetic data and
patient tumor RNA-seq and copy number data from The Cancer
Genome Atlas (TCGA)10 (Fig. 1a).

First, we used existing ChIP-seq data in the well-vetted high-
grade serous ovarian cancer cell line OVCAR3 to identify active
enhancers by searching for co-localization of the histone
modification histone H3 lysine 27 acetylation (H3K27ac) and
BRD4 (Fig. 1f)28–30. BRD4 enrichment was considered a critical
component for the detection of potentially oncogenic enhancers
due to key observations previously shown in ovarian cancer
patients23. Namely, across the entirety of the TCGA Pan-Cancer
dataset, ovarian cancer patients have the highest rate of genetic
amplifications at the BRD4 locus, with ~11% of patients having
an amplification of this region (Fig. 1b)5–7,31. Moreover, ovarian
cancer has the highest overall expression of BRD4 across all
TCGA cancer types and patients with increased expression of
BRD4 experienced significantly reduced survival times as
determined through Kaplan–Meier analysis (Fig. 1c, d)6,31–35.
Therefore, we defined active enhancers as intergenic regions that
contained at least a 1-base pair overlap between statistically
significant BRD4 peaks and H3K27ac peaks called by the MACS2
peak calling algorithm (Fig. 1e)36. To focus on distal enhancer
elements, any peaks that overlapped with annotated genes or
promoter regions were removed. This pipeline identified 12,339
BRD4-enriched active enhancer elements in ovarian cancer cells.
To determine if these enhancers are lineage-specific or extensible
to other cancer types, we investigated the overlap with existing
enhancer annotations across all normal tissues (defined by the
ENCODE consortium), and across existing annotations in other
cancer types (Supplementary Fig. 1c, d)16,37. In addition to this
general analysis, we also specifically compared our 12,339
enhancer predictions to previously annotated enhancers in two
distinct fallopian tube secretory epithelial cell lines (FTSEC)38,
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currently thought to be the most common precursor cell of origin
for HGSOC (Supplementary Fig. 1b)39,40. We found that 44.1% of
the 12,339 BRD4-enriched enhancers had at least 1-base pair
overlap with active enhancers in normal tissues and this number
increases to 73.6% when compared to active enhancers across
several cancer types. Of particular interest, we also identified
~6000 enhancers in HGSOC cells that are not active in normal
FTSEC cells (Supplementary Fig. 1b). The aforementioned
importance of BRD4 and the high degree of overlap between
the enhancers identified in this study with previously annotated

enhancers in cancer cells gave us confidence for using these data
for calling super-enhancers.

From our pool of 12,339 constituent enhancers, we identified
126 super-enhancer regions using the rank ordering of super-
enhancers (ROSE) algorithm (Fig. 1g, h, and Supplementary
Data 1–4)41,42. To determine if these BRD4-enriched super-
enhancers are relevant to ovarian cancer patients, we leveraged
the assay for transposase-accessible chromatin at single-cell
resolution (scATAC-seq) data generated from HGSOC patients
to measure the activity of the super-enhancers within these
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tumors43. We detected the activity (defined by chromatin
accessibility) of 121 out of 126 (96%) super-enhancers in the
cancer cell fraction of HGSOC patients (Supplementary Fig. 1a).
Taken together, these data suggest that the super-enhancers
identified using our pipeline are not cell line specific and may be
relevant to both ovarian cancer and other cancer types. To further
investigate the clinical utility of these SEs, we next looked for
evidence in patient tumors using both TCGA RNA-seq and copy
number variation data.

Copy Number Variation and expression Quantitative Trait
Loci (CNVeQTL) analysis nominates potentially oncogenic
super-enhancers. Given that copy number variation (CNV) has
been previously identified as an important hallmark of ovarian
cancer, we sought to investigate whether these BRD4-enriched
super-enhancers were preferentially amplified in ovarian cancer
patients2. To this end, we performed a computational experiment
making use of publicly available copy number variation data
across ~600 ovarian cancer patients10 to compare the copy
number amplification values overlapping our SE regions to the
amplification across the ovarian cancer genome as a whole, by
both random-draw (pseudo-bootstrap) and direct comparison
analyses (Fig. 2a). Copy number variation values across ~600
ovarian cancer patients were quantified by dividing the genome
into uniform 15 kb sliding windows and assigning CNV segment
values within each window (Fig. 2d). We then compared the
amplification of the windows that overlap the SEs against an
equivalent number of randomly drawn windows across the
ovarian cancer genome (inclusive of our SE regions). The random
drawing of windows was iterated 10,000 times and, in each
comparison, there was significant enrichment in amplification of
the SE overlapping windows compared to the random groups
(Fig. 2c). This observation was reinforced by comparing SE CNV
to the CNV across the ovarian cancer genome as a whole
(Fig. 2e). Remarkably, amplification of the super-enhancers
themselves was prognostic of clinical outcome44. In many cases,
patients with increased copy numbers had significantly increased
hazard ratio and reduced survival times, suggesting that super-
enhancer copy numbers may be of prognostic value (Fig. 2b).
Taken together, these data suggest that the SEs we identified in
OVCAR3 cells are preferentially amplified in ovarian cancer
patients and that some SE amplifications are associated with
reduced survival.

To better understand how amplification of these SEs are
associated with oncogenic gene expression networks, we lever-
aged the RNA-seq data generated from a subset of the same
ovarian cancer patients (~300) to link the SEs to gene expression.
We took inspiration from a commonly used approach in complex
genetics which associates nucleotide variants to changes in gene
expression called eQTL analysis45,46. However, unlike eQTL

analysis which focuses on point mutations, the comparison, in
this case, focuses on changes in copy number across SE loci to
changes in gene expression within each patient (copy number
variation expression quantitative trait loci (CNVeQTL)) (Supple-
mentary Fig. 2a). The assumption is that amplification or deletion
of SE regions should affect their target genes, therefore, looking
across hundreds of patients for shared patterns of variation will
identify putative target genes of each SE. However, since we
altered the input data of the eQTL detection software to utilize
two quantitative variables (copy number and gene expression), we
needed to determine a robust indication of our null condition for
statistical analysis.

To generate the null dataset, we broke the linkage of RNA to
copy number by randomly permuting the columns of the RNA
data matrix and then running Matrix eQTL46 on this permutated
dataset, repeating this process 100k times, and using the median
distribution from all 100k trials to inform our experimental
analysis. Importantly, all 100k runs using the permutated null
data showed a relatively uniform distribution of p-values across
the null condition, suggesting no meaningful relationship
between copy number and gene expression, and returned a
similar count of total significant CNVeQTLs (the median number
of CNVeQTLs across all 100k was 11,632) (Supplementary
Fig. 2b). In contrast, the results from the true data show a much
sharper peak around p-value= 0 and returned a much larger
number of significant CNVeQTLs (n= 126,438) (Supplementary
Fig. 2c and Supplementary Data 5). We used the results of the
100k null experiments to determine an empirical false discovery
rate47 of about 0.092. This data also allowed us to investigate
some higher-order questions, such as whether the number of
CNVeQTL detected was strictly a function of size. While there
was a modest linear relationship between these features, this
analysis suggested something other than genomic size influenced
the number of CNVeQTL (Supplementary Fig. 2d). Collectively,
these data suggest that amplification of the super-enhancer
regions is associated with pervasive gene expression changes in
human tumors, reinforcing the idea they are not merely cell line
specific, and they may be preferentially amplified for a
biologically meaningful reason.

We recognize that the identification of 126,438 CNVeQTL
linkages across 126 super-enhancers seems high, despite the null
distributions tested, and that the vast majority of copy number
amplifications will have very strong effects in cis (and most
will have effects in trans) irrespective of their designation as a
super-enhancer. Therefore, to functionally validate and assess the
full scope of this data, we chose the top 86 super-enhancers
ranked by BRD4 enrichment and H3K27ac signal (which were
located both above and below the CNVeQTL prediction line) to
perturb using a high throughput CRISPRi screen (Supplementary
Fig. 2d).

Fig. 1 Identification of BRD4-enriched super-enhancers in ovarian cancer. a Flowchart of the analysis strategy used to identify clinically relevant BRD4-
enriched SEs in ovarian cancer. b Bar chart depicting the alteration frequency of the BRD4 locus across the top 16 highest altered cancer types in the TGCA
Pan-Cancer patient cohort (ovarian cancer=OV) retrieved from cBioPortal6,31. c Box plots showing normalized BRD4 expression across the top 16 highest
expressing cancer types in the TCGA Pan-Cancer patient cohort (ovarian cancer=OV) retrieved from cBioPortal6,31. Boxplot is centered on the median
(center line), with the upper and lower quartiles creating the bounds of the box (the IQR). The minimum and maximum values, after disregarding outliers,
are represented by the upper and lower whiskers. d Kaplan–Meier plots34,35 showing the relationship between BRD4 expression and progression-free
survival in ovarian cancer patients with high-grade serous (n= 1232) or endometrioid histology (n= 62). Patients are split by median expression of BRD4.
The red line represents patients in the high expression cohort and the black line low expression cohort. e Cartoon depicting the analysis strategy for
integrating H3K27ac and BRD4 ChIP-seq data and selecting overlapping peaks to call super-enhancers. BRD4 is shown in green and H3K27ac in blue.
f Top: Meta-ChIP plot of the signal across shared peaks showing overlap of H3K27ac and BRD4 signal. Bottom: Heatmap of ChIP signal across all 12,339
called shared peaks. The samples are scaled relative to the background for that signal group independent of the other signal (BRD4 to BRD4 background;
H3K27ac to H3K27ac background). g BRD4 signal versus enhancer rank plot showing the identification of 126 super-enhancers as defined by the ROSE
software. h Tabulation of the total number of enhancers/peaks identified. Source data are provided as a Source Data file.
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High throughput CRISPR-interference screen highlights
super-enhancer target gene relationships. To systematically
probe the functions of each SE and determine the consequences
on gene expression, we used high-throughput CRISPR-inter-
ference assays coupled to RNA-seq. For this experiment, we
engineered OVCAR3 cells to stably express nuclease deficient
Cas9 fused to the KRAB effector domain (dCas9-KRAB). The
KRAB effector domain induces local chromatin repression via
methylation of histone 3 lysine 9 (H3K9me3) and, when fused to
dCas9, allows us to use the programmable properties of CRISPR
to target and inhibit any genomic loci of interest (Fig. 3a)48–51.
For this experiment, each well received a different set of custom-
designed guide RNAs (sgRNAs) to specifically inhibit one SE per
well (i.e. arrayed CRISPRi screen) (Fig. 3b and Supplementary
Data 1). A total of 86 super-enhancers were tested plus 10 control
wells. Two different sgRNAs, targeting the two highest BRD4
peak summits within each super-enhancer, were designed for
each SE (see Methods)52. For negative controls, we used a non-
targeting scrambled sgRNA in addition to a sgRNA designed to
target a dormant region of the genome (Supplementary Data 1).
After 72 h of epigenetic silencing, RNA was purified from each

well and barcoded to specifically track which super-enhancer was
probed per well (96 total barcodes). The RNA was prepped
and sequenced on an Illumina platform to measure changes in
gene expression as a consequence of super-enhancer inhibition
(Fig. 3b).

Given our intent to survey as many super-enhancers as
possible and to increase the chances of finding those that
exhibited the most profound effects on gene expression, we
decided to probe each SE once within the 96-well setup,
prioritizing breadth over the inclusion of replicates (Fig. 3b).
Therefore, a traditional differential gene expression analysis
pipeline (requiring the use of replicates) had to be eschewed in
favor of something better able to handle our experimental setup.
We took inspiration from previous analyses performed on large-
scale perturbation databases, such as the Connectivity Map
project (CMap)53, and chose to focus on relative changes in rank
for each gene (uprank or downrank) rather than traditional
differential gene expression analysis or absolute expression
counts. The resulting changes in rank could then be investigated
across the entire dataset by iterating through a series of
rank change cutoffs, identifying super-enhancers that affected
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significantly more genes at a particular cutoff as compared to the
negative control wells (based on an empirical false discovery rate
of 0.1) (see the “Methods” section). Any genes detected at these
thresholds could then be tentatively assigned as target genes to
each SE (Fig. 3 and Supplementary Data 6). To investigate
whether a traditional relative expression approach would have
identified similar target genes, we determined the log2-fold

change of every gene for each SE relative to the controls. We then
assessed the relationship between gene expression determined by
the relative change in rank and relative expression for each SE. In
every case, the correlation between log2-fold change (LFC) and
rank change (RC) was highest when comparing each SE to itself,
as opposed to all other SEs on the screen, suggesting that
differential gene expression calculated in both ways gave similar
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results (Supplementary Fig. 3a). Notably, some of the correlations
were much stronger than others, leading us to focus on SEs with
an LFC versus RC correlation value above the mean. Of particular
interest was super-enhancer 14 (SE14) which exhibited an LFC vs.
RC correlation value of 0.95 (the highest in the entire dataset),
suggesting particularly robust results for this SE (Supplementary
Fig. 3b). Confident that our rank change approach was adequately
supported by this comparison, we proceeded to look for other SEs
that exhibited profound effects on gene expression.

First, we focused on a number of summary analyses from the
CRISPRi screen. The median number of genes downregulated by
each SE was four and there were a few salient SEs that affected a
much larger number of genes (Fig. 3c). Interestingly, there was
only a weak correlation between the number of differentially
regulated genes and SE size (Fig. 3e) or enrichment of H3K27ac
(Fig. 3f), suggesting that the effects on gene expression are not
merely a function of size. Of note, super-enhancer 60 (SE60) was
in the bottom half in terms of size, but it affected the greatest
number of genes. Therefore, we felt it prudent to understand the
specificity of our CRISPRi targeting process and empirically
determine the extent of spreading of the repressive H3K9me3
mark upon dCas9-KRAB binding. To this end, we performed
H3K9me3 ChIP-seq in ovarian cancer cells transfected with SE60
targeting sgRNAs versus non-targeting sgRNAs. Differential
binding analysis revealed that only our region of interest (SE60)
was significantly enriched for the H3K9me3 signal upon
transfection of the targeting sgRNAs but not the scramble non-
targeting sgRNA (Supplementary Fig. 4c, d). Additionally, there
was an increase in the H3K9me3 signal at each of our two
SE60 sgRNA locations, suggesting both guides successfully
delivered dCas9-KRAB to the SE target sites (Supplementary
Fig. 4a, b). We found that the region with increased H3K9me3
was about 20 kb, spreading ~10 kb from each sgRNA target site,
enough to cover the entire SE. There also did not appear to be an
increase in signal at the computationally predicted off-target sites,
suggesting that the guides for SE60 were highly specific
(Supplementary Fig. 4e, f). Taken together, these results validate
our method for designing sgRNAs and reinforce that the
observations from the screen (specifically for SE60) were not
due to off-target effects (Supplementary Fig. 4).

Having supported the validity of our CRISPRi assay, we next
wanted to examine the patterns of gene expression that resulted
from the screen. To accomplish this, we utilized two clustering
methods, K-means clustering for the target genes and
unsupervised-hierarchical clustering for the SEs. We found that
the differentially regulated genes could be divided into three
optimal clusters that represent distinct gene expression pathways
in cancer cells (Fig. 3d, g). Conversely, the SEs can be divided into

10 distinct clusters with shared patterns of gene expression
(Supplementary Data 1). More specifically, CRISPRi targeting of
the SEs in clusters 2–4 (containing SE14 and SE60) caused
decreases in the expression of genes enriched for pathways such
as KRAS signaling, estrogen response (both early and late), and
epithelial to mesenchymal transition (EMT). In contrast, SEs in
clusters 5–10 maintain some similarities (KRAS and early
estrogen response) but also have a unique role in the regulation
of the JAK–STAT pathway and immune-related pathways
(Fig. 3g). Taken together, the CRISPRi screen in conjunction
with our CNV analyses have allowed us to comprehensively
determine which SEs have the most profound effects on gene
expression and inform us of the enhancers that likely regulate key
gene pathways in ovarian cancer. Based on these results, two
salient SEs, SE60 and SE14, were selected for follow-up
experiments.

Deletion of SE60 and SE14 causes dysregulation of oncogenic
gene expression pathways leading to reduced proliferation and
migration of cancer cells. Perturbation of SE60 affected the
greatest number of genes in the CRISPRi screen. In addition,
amplification of this SE in ovarian cancer patients is prognostic of
worse patient outcomes, nominating it as a super-enhancer that is
associated with oncogenic processes (Fig. 4a, b). Therefore, we
wanted to experimentally determine whether SE60 drives critical
gene expression programs in ovarian cancer. To that end, we
designed sgRNAs flanking the BRD4 peak summit of the largest
constituent enhancer within SE60 and generated three indepen-
dent CRISPR-Knockout (KO) clones resulting from ~1700 to
1800 bp deletions (Fig. 4c and Supplementary Fig. 5).

Global changes in gene expression resulting from each SE60
KO clone were measured using RNA-seq. Differential expression
analysis using DESeq254 revealed pervasive changes in gene
expression with 660 genes being detected as significantly down-
regulated and 1090 genes being upregulated at a strict confidence
threshold (adjusted p-value of 0.0005) (Fig. 4d, e, and
Supplementary Data 7). Pathway analysis of the top 100 sig-
nificantly downregulated genes (determined by p-value) identified
significant enrichment in cell cycle progression, quiescence,
metastasis, differentiation, and KRAS-signaling (Fig. 4f)55–57,
further suggesting SE60 drives critical gene expression programs
in ovarian cancer. This observation was supported by clinical
analysis of these predicted target genes, where increased
expression of the top 100 SE60 target genes is associated with
worse clinical outcomes in HGSOC patients (utilizing data from
15 ovarian cancer datasets), even after considering additional
clinical variables such as stage and grade (Fig. 4i, Supplementary

Fig. 3 Systematic epigenetic silencing of ovarian cancer enriched super-enhancers using CRISPRi (dCas9-KRAB) coupled to multiplexed RNA-seq.
a Cartoon showing sgRNA-guided dCas9-KRAB epigenetic silencing of a SE via enrichment of the repressive histone modification H3K9me3.
b Experimental setup for the CRISPRi screen in a 96-well plate (left). Western blot showing OVCAR3 cells engineered to stably express dCas9-KRAB
(right). Results are representative of 3 independent experiments. dCas9-KRAB expressing OVCAR3 cells were plated in each well. One SE was targeted per
well (86 SEs plus 10 control wells). After 72 h of enhancer silencing, changes in gene expression were measured using barcoded RNA-seq. Two sgRNAs
were custom designed for each SE and transfected into each corresponding well. c Horizontal bar chart showing the number of downregulated genes for
each SE. SE60 and SE14 were selected for further analysis as described in the text and are indicated by arrows. d K means clustering elbow plot used to
determine the optimal number of gene clusters across significant DEGs for all SEs pulled from the screen analysis. The “elbow” determines the ideal cluster
number which was chosen as 3. e Scatterplot comparing SE size versus the number of downregulated genes. There is no correlation between SE size and
the number of target genes. SE60 and SE14 were selected for further analysis as described in the text and are indicated by arrows. f Scatterplot comparing
H3K27ac enrichment versus the number of downregulated genes. There is not a strong correlation between H3K27ac enrichment and the number of target
genes. g Heatmap representing the unsupervised hierarchical clustering of all SEs (clusters 1–10 under the dendrogram) and controls in the screen across
all screen DEGs (left). The boxes on the right denote the three K-means clusters. MSigDB pathway analysis describes the functions the genes in
these clusters are involved in (right). SE60, SE14, and the two negative controls are denoted at the bottom of the plot. Source data are provided as a
Source Data file.
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Fig. 6, and Supplementary Data 10). The notion that SE60 plays a
key role in ovarian cancer was further validated by the effects that
deletion of this SE had on cancer cell proliferation and migration
(Fig. 4g, h).

To substantiate our approach for identifying clinically relevant
super-enhancers, we selected an additional candidate from the

CRISPRi screen for validation. SE14 was chosen because (1) it has
the highest correlation between LFC and RC differential gene
expression analysis from the CRISPRi screen, (2) it is in the top
four SEs that affected the greatest number of genes, and (3) its
amplification portends a worse clinical outcome in ovarian cancer
patients (Fig. 5a, b). To investigate the functional role of SE14, we
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designed sgRNAs flanking the BRD4 peak summit of the largest
constituent enhancer within the super-enhancer and generated
three independent CRISPR-KO clones resulting from ~2500 to
2800 bp deletions (Fig. 5c and Supplementary Fig. 5). Global
changes in gene expression resulting from each knockout clone
were measured using RNA-seq. Differential expression analysis
identified 860 genes as significantly downregulated, and 629 genes
as upregulated at our confidence threshold (adjusted p-value of
0.0005) (Fig. 5d, e, and Supplementary Data 7). Pathway analysis
of the top 100 most significant downregulated genes identified
significant enrichment in cell cycle progression, quiescence,
metastasis, differentiation, and EMT (Fig. 5f)55–57, further
suggesting that SE14 plays an important role in ovarian cancer.
Kaplan–Meier analysis of the top 100 most significant down-
regulated genes after SE14 KO revealed a significant association
with worse clinical outcomes in HGSOC patients (Fig. 5i,
Supplementary Fig. 6, and Supplementary Data 10). Similar to
the results obtained with SE60, the biological assays on all three
SE14 KO cell lines exhibited a significant decrease in proliferation
and migration compared to wild-type cells (Fig. 5g, h).

We had an interest in determining how similar the results of
CRISPRi-based perturbation of SE60 and SE14 are to the gene
expression changes caused by CRISPR-KO. Therefore, we
performed additional dCas9-KRAB experiments coupled to
RNA-seq (in replicate) for both SE60 and SE14. Differential gene
expression analysis for both the CRISPRi and CRISPR-KO was
performed with DESeq2 to facilitate the comparisons of the
resulting changes in gene expression (Supplementary Figs. 7, 8,
and Supplementary Data 7). For SE60, 169 genes were detected as
differentially expressed by both CRISPRi and CRISPR-KO, and
11 of these genes were downregulated, suggesting that these are
true target genes of SE60 (Supplementary Fig. 7c, d). Further
analysis of the 11 downregulated genes detected by both CRISPRi
and CRISPR-KO found this gene set to be enriched for
Metastasis, Cell Cycle Progression, and Inflammation pathways,
as well as being associated with reduced survivorship in HGSOC
patients (Supplementary Fig. 7f, g, Supplementary Fig. 6, and
Supplementary Data 10). The analysis of SE14 revealed 731
differentially expressed genes by both CRISPRi and CRISPR-KO
and 169 of these genes were downregulated (Supplementary
Fig. 8c, d). Analysis of the 169 shared downregulated genes
detected by both CRISPRi and CRISPR-KO found this gene set to
be enriched for Quiescence, Cell Cycle Progression, Differentia-
tion, Inflammation, Stemness, and Estrogen Response pathways
as well as being associated with reduced survivorship in HGSOC
patients (Supplementary Figs. 8f, g, 6, and Supplementary
Data 10). Taken together, these results validate our approach to
identifying clinically relevant SEs and highlight the importance of

these two SEs in ovarian cancer. Next, we investigated whether
the mechanistic roles of SE60 and SE14 on cell proliferation and
migration were due to direct or indirect target gene regulation.

3D-chromatin interactions defined by Hi-C in ovarian cancer
cells establish direct target genes for SE60 and SE14. The sig-
nificant effects on proliferation and migration caused by CRISPR-
based deletion of SE60 and SE14 led us to investigate if these
biological phenotypes were caused by direct or indirect regulation
of target genes. We reasoned that direct target genes would
exhibit increased chromatin looping interactions with the SE,
whereas indirect target genes would be downstream of an effector
gene that was directly regulated by the SE. To enable unbiased
measurement of interaction frequencies between each super-
enhancer and its target genes, we performed Hi-C in OVCAR3
cells to comprehensively annotate chromatin interactions across
the ovarian cancer genome58. In order to maximize the breadth of
this analysis, we focused on the target gene set detected from the
CRISPR-KO experiments that represented the most statistically
robust gene set for each SE, resulting from 4 replicates of RNA-
seq across three independent knockout clones for each SE.
Moreover, the constitutive perturbation of each SE, caused by
CRISPR-based deletion, gave rise to consistent gene expression
patterns that resulted in marked biological phenotypes, thus
facilitating integration with the Hi-C data.

Since Hi-C is highly dependent on distance, we limited our
search space to genes located on the same chromosome as the
super-enhancers (cis genes) in order to get an accurate metric of
interaction frequency59,60. To perform this analysis, we quantified
the interaction frequency between each SE and its downregulated
genes upon SE deletion. This was compared to a control dataset
consisting of 100 permutations of distance-matched gene sets that
exhibited no significant changes in gene expression upon SE
deletion (see the “Methods section). This enabled us to compare
distributions of interaction frequency measurements between each
SE and a random set of genes based entirely on genomic distance.
Direct targets were defined as SE-gene pairs with an observed/
expected contact frequency greater than the 75th percentile of the
control/background distribution. Overall, we observed that the
target genes for each SE had a higher interaction frequency with
their cognate SE compared to distance-matched genes found on
the same chromosome (Fig. 6a, f).

We identified one cis direct target gene and four cis indirect
target genes for SE60 (Fig. 6b). Of note, the cis direct target
gene for SE60, RAE1, has previously been associated with
invasion in ovarian cancer and has been shown to promote
EMT in breast cancer61. In addition, increased expression of
this gene portends a worse outcome in HGSOC patients34,35

Fig. 4 CRISPR-knockout of super-enhancer 60 leads to profound changes in gene expression and reduced proliferation of cancer cells. a Genome
browser view of SE60 (dashed red box) and the surrounding region showing enrichment of BRD4, H3K27ac, and ENCODE H3K27ac signal. b Kaplan–Meier
plots of copy number amplification over each SE60 overlapping 15 kb windows versus disease-specific survival in TCGA HGSOC patients. Significance was
assessed using a log-rank test and Cox proportional hazards model. c Top: Cartoon showing CRISPR-knockout (KO) of SE60. Bottom: Genotyping PCR
showing successful heterozygous knockouts of SE60—representative of three independent experiments. d Unsupervised hierarchical clustering heatmap of
all 1750 significant DEGs (Pearson correlation, adjusted p-value > 0.0005 at any fold change) between wild-type and SE60 KO cells measured by RNA-seq.
e PCA plot showing the variance landscape of WT and KO samples. f Pathway analysis using CancerSEA and MSigDB of the 100 most significant DEGs
detected (as determined by Kolmogorov–Smirnov style GSVA followed by Spearman’s rank test with BH FDR correction). The red line denotes the metric
for a p-value of 0.05 converted into the −log10 scale. g Proliferation assays of three independent SE60 KO clones (represented in the RNA-seq data)
versus wild-type OVCAR3 cells. Results are shown as fold change compared to day 2 values. The statistically significant differences (determined by a two-
sided Student’s t-test) are provided in red text. n= 4 biological replicates. Data are shown as mean ± SEM. h Cell Migration assays of three independent
SE60 KO clones versus wild-type OVCAR3 cells. Microscope brightfield images of the growth after 24 h (left). Bar chart representation of cell count after
24 h, statistically significant differences (as determined by a two-sided Student’s t-test) are provided in red text (right). Data are shown as mean ± SEM.
n= 4 biological replicates. i Kaplan–Meier plot34,35 showing the clinical significance of the top 100 downregulated genes after SE60 KO. Significance was
assessed using a log-rank test, significant p-values are denoted in red text. Source data are provided as a Source Data file.
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(Fig. 6c, d, Supplementary Fig. 6, and Supplementary Data 10).
Notably, RAE1 was also predicted as a target of SE60 by the
CNVeQTL analysis (Supplementary Fig. 9a, b, and Supplemen-
tary Data 8). When looking at Hi-C contact frequency across
chromosome 20, we notice a marked increase in contact between
the RAE1 locus and the SE60 locus as compared to the
background (Fig. 6e). This suggests that the decrease in migration
detected upon SE60 deletion is due, in part, to its direct regulation
of RAE1. We suspect that there may exist more direct target genes

for SE60 located on other chromosomes based on the reference
genome, that may be translocated to chromosome 20 in the
ovarian cancer genome. However, these trans-chromosomal
interaction frequencies are technically more challenging to detect
via Hi-C.

Interestingly, we identified a much greater number of cis direct
target genes (28 genes) and cis indirect targets (62 genes) for SE14
(Fig. 6g and Supplementary Data 8). Pathway analysis of the cis
direct targets revealed key roles in cell cycle progression,
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quiescence, invasion, differentiation, metastasis, and stemness
(Fig. 6h). Kaplan–Meier analysis of this gene signature high-
lighted a statistically significant decrease in survival for patients
that had high expression of these genes (Fig. 6i, Supplementary
Fig. 6, and Supplementary Data 10). Likewise, 8 of these cis direct
targets had been predicted from our CNVeQTL analysis
reinforcing the utility of CNVeQTLs to predict cis-direct targets
(Supplementary Fig. 9c, d). Through our analysis of these of cis
direct targets, we identified examples of both close-range
(EPHA2) and distant (MAB21L3) connections to SE14 (Fig. 6j
and Supplementary Fig. 10). Interestingly, there were genes
within very close proximity to SE14 (such as ARHGEF19) that
showed no evidence of interaction or differential gene expression.
These data implicate SE14 as being directly involved in both
proliferation and migration, as well as other key processes in
ovarian cancer.

To validate our Hi-C analysis, we performed an orthogonal
method, called Activity-by-Contact model (ABC)62, to identify
interactions across the genome by integrating Hi-C data with
measures of chromatin activity. This analysis allowed us to
determine the top interacting cis-genes for both SEs regardless of
the distance between both features. The results of the ABC
analysis recapitulate those from our initial Hi-C analysis and
independently nominated RAE1, EPHA2, and MAB21L3 as the
genes most likely to interact with SE60 and SE14, respectively
(Supplementary Fig. 11 and Supplementary Data 9). This analysis
highlighted our ability to delineate true targets and suggests that
both SE60 and SE14 are directly involved in clinically relevant
processes in ovarian cancer.

SE60 and SE14 are specifically active within the epithelial
cancer cell fraction of human HGSOC tumors as revealed by
single cell genomics. Our previous experiments had demon-
strated that these SEs are preferentially amplified in ovarian
cancer patients and that they regulate gene expression pathways
that govern the proliferation and migration of cancer cells. As a
final validation experiment, we wanted to determine if SE60 and
SE14 were specifically active within the cancer cell compartment
of human HGSOC tumors and if their target genes are also active
within the same cell type. To test this, we analyzed matched
single-cell RNA-seq (scRNA-seq) and single-cell ATAC-seq
(scATAC-seq) data from two HGSOC patients previously gen-
erated in our lab (Supplementary Fig. 12)43. We annotated seven
distinct cell types present in these tumors by both scRNA-seq and
scATAC-seq and identified the cancer cell population using the
FDA-approved biomarker CA125 (also known as MUC16)
(Fig. 7a, b)63. We found significant enrichment of RAE1, a SE60
cis direct target, and EPHA2, a SE14 cis direct target, within the

cancer cell fraction as compared to the normal cell fraction
(Wilcoxon Rank Sum tests, Bonferroni-corrected p-values < 2.2e
−308 and average logFC ≥ 0.1) (Fig. 7b).

In order to assess whether SE60 and SE14 are uniquely active
in ovarian cancer, we next leveraged the scATAC-seq data. These
data showed significantly increased chromatin accessibility at
three constituent enhancers of both SE60 and SE14, specifically
within the cancer epithelial cell fraction as compared to the
stromal compartments of these tumors (Wilcoxon Rank Sum
tests, Benjamini–Hochberg FDR ≤ 0.10 and Log2FC ≥ 0.25)
(Fig. 7c). Additionally, both HGSOC patients showed this
pattern, suggesting that activation of these SEs is a common
feature of HGSOC biology. While there is previous evidence from
ENCODE that these regions contain regulatory elements in
normal epithelial tissue, it appears that there is significantly more
accessibility of these super-enhancers in ovarian cancer cells
(Fig. 7c).

In order to investigate what transcription factors might be
involved with these super-enhancers, we performed motif
enrichment analysis using FIMO sequence analysis64. To provide
confidence to the TF motif calls, we investigated the expression of
the predicted TFs within the cancer epithelial cells. Within the
cancer-enriched constituent enhancers of SE60, we found SOX4,
ATF4, and YY1 as the top three predicted transcription factors.
Of note, YY1 is known as an integral component of
enhancer–promoter loop interactions and is a hallmark of an
active enhancer65. Similarly, we detected binding motifs for ELF3,
KLF, and JUN in the cancer-enriched constituent enhancers of
SE14. Notably, ELF3 has been previously associated with vascular
inflammation, tumorigeneses, epithelial differentiation, and the
ERRB3 pathway providing additional evidence of the importance
of this SE (Fig. 7d, e)66,67. Taken together, these data suggest that
these SEs and their target genes show more activity in the cancer
cell fraction of HGSOC tumors and serve to validate our
computational pipeline for the identification of clinically relevant
super-enhancers.

Discussion
Every year, an estimated 22,000 new cases of ovarian cancer will
be diagnosed and around 14,000 women will die as a result of this
disease1. The paucity of known drivers for ovarian cancer makes
identifying at-risk individuals very difficult and has led to a lack
of effective targeted therapies. Thus, platinum-based che-
motherapy coupled with surgery remains the standard of care68.
Given their critical functions in controlling gene regulation,
enhancers are often required to achieve the levels of transcrip-
tional activity needed to sustain cancer cells and have been shown
to play an integral part in cancer development and patient

Fig. 5 CRISPR-knockout of super-enhancer 14 leads to profound changes in gene expression and reduced proliferation of cancer cells. a Genome
browser view of SE14 (dashed red box) and the surrounding region showing enrichment of BRD4, H3K27ac, and ENCODE H3K27ac signal. b Kaplan–Meier
plots of copy number amplification over each SE14 overlapping 15 kb windows versus disease-specific survival in TCGA HGSOC patients. Significance was
assessed using a log-rank test and Cox proportional hazards model. c Top: Cartoon showing CRISPR-based deletion of SE14. Bottom: Genotyping PCR
showing successful heterozygous knockouts of SE14—representative of three independent experiments. d Unsupervised hierarchical clustering heatmap of
all 1750 significant DEGs (Pearson Correlation, adjusted p-value > 0.0005 at any fold change) between wild-type and SE14 KO cells measured by RNA-seq.
e PCA plot showing the variance landscape of WT and KO samples. f Pathway analysis using CancerSEA and MSigDB of the 100 most significant DEGs
detected (as determined by Kolmogorov–Smirnov style GSVA followed by Spearman’s rank test with BH FDR correction). The red line denotes the metric
for a p-value of 0.05 converted into the −log10 scale. g Proliferation assays of three independent SE14 KO clones versus wild-type OVCAR3 cells. Results
are shown as fold change compared to day 2 values. The statistically significant differences (as determined by a two-sided Student’s t-test) are provided in
red text. n= 4 biological replicates. Data are shown as mean ± SEM. h Cell migration assays of three independent SE14 KO clones versus wild-type
OVCAR3 cells. Microscope brightfield images of the growth after 24 h (left). Bar chart representation of cell count after 24 h, statistically significant
differences (as determined by a two-sided Student’s t-test) are provided in red text (right). n= 4 biological replicates. Data are shown as mean ± SEM.
i Kaplan–Meier plot34,35 showing the clinical significance of the top 100 downregulated genes after SE60 KO. Significant p-values are denoted in red text.
Source data are provided as a Source Data file.
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survival. Additionally, super-enhancers have demonstrated the
capacity to regulate many critical pathways for the development
and maintenance of the cancer cell state as well as influence
therapeutic resistance17–20.

With the advent of therapeutics designed to inhibit various
epigenetic factors that convey functionality to enhancers, it is now

possible to exploit the dependency of cancer cells on transcription
as an effective strategy for treating therapeutically recalcitrant
cancers such as ovarian cancer27,69. For example, the Bromodo-
main and Extra-Terminal motif inhibitors (BET inhibitors; such
as JQ1) designed to interfere with the functions of bromodomain-
containing proteins like BRD4 have shown promise in several
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pre-clinical models of cancer, although their efficacy in a clinical
setting is still unknown25,70. Nonetheless, investigating enhancers
with high BRD4 enrichment can lead to the identification of
biomarkers, druggable targets, and an improved understanding of
ovarian cancer. Notably, the expression of BRD4 is highest in
ovarian cancer as compared to every other cancer type repre-
sented in The Cancer Genome Atlas and high expression por-
tends a worse outcome in ovarian cancer patients (Fig. 1). Thus,
we reasoned that co-enrichment of BRD4 and H3K27ac can be
used as a surrogate to find SEs driving oncogenic processes in
ovarian cancer. This was substantiated by the observation that the
SEs identified in our study were preferentially copy number
amplified in ovarian cancer patients and that some amplification
events were themselves predictive of worse clinical outcomes
(Fig. 2). Additionally, our CNVeQTL analyses across HGSOC
patients demonstrate that the activity of these super-enhancers is
pervasive. This is perhaps not surprising since genomic instability
is a hallmark of ovarian cancer and several studies have
demonstrated that somatic mutations at specific regulatory ele-
ments in the ovarian cancer genome play a pivotal role in subtype
determination and overall progression2,71. Furthermore, the
dysregulation of genomic architecture in ovarian cancer may
allow for cancer cells to hijack existing enhancers for oncogenic
purposes. In fact, several examples of enhancer hijacking exist in
other types of cancer such as Burkett’s Lymphoma, B-Cell
Lymphoma, and Glioblastoma9,72,73. Overall, these findings sug-
gested that a number of our identified SEs were amplified for
biologically meaningful reasons.

Rather than limiting our study to the standard taxonomic
listing of super-enhancers, we used three orthogonal approaches
to define the regulatory logic of SEs in ovarian cancer—CRISPRi,
CRISPR-KO, and Hi-C. The CRISPRi screen allowed us to sys-
tematically determine the target genes for each of the top 86 most
active SEs (Fig. 3). While most CRISPR screens involve a pool of
sgRNAs and rely on a cellular endpoint (such as proliferation) to
be able to capture the relative abundances of remaining sgRNAs,
our screen was customized to provide a readout of gene expres-
sion for each super-enhancer. We knew, a priori, which sgRNAs
were used and which SEs were affected in each well. On average,
we found that each SE perturbation resulted in the down-
regulation of about four genes and the total number of genes
regulated by each SE was not a function of size or enrichment of
H3K27ac or BRD4. In fact, SE60 was in the bottom quartile of
super-enhancers in terms of size and H3K27ac enrichment, but it
had the most profound effects on gene expression. Therefore, we
reasoned that SE60 harbored the most potential for further study
due to its likely role in regulating genes that contribute to the
pathology of ovarian cancer. While the goal of the CRISPRi

screen was to broadly investigate the effects on gene expression
across a large cohort of super-enhancers, we recognize that the
CRISPRi screen was underpowered to definitively establish target
genes for each SE. Thus, we elected to perform CRISPR-KOs of
SE60 and SE14 to enable robust target gene detection.

CRISPR-KO of SE60 and SE14 had dramatic effects on gene
expression programs involved in Quiescence, Metastasis, and
Invasion, among other important pathways. Moreover, the gene
sets for both SEs were associated with poor outcomes in HGSOC
patients. This was supported by both proliferation and migration
defects in the SE60 and SE14 knockout cells (Figs. 4 and 5). We
note that there were hundreds of genes differentially regulated
upon deletion of these two SEs, and that there was a modest
overlap with the differentially expressed genes detected via
CRISPRi. This is perhaps due to the technical nuances of
CRISPR-KO (a constitutive genomic deletion arising from an
individual clone) versus CRISPRi (a transient epigenetic inhibi-
tion of the enhancer locus) that may affect the target genes
identified for a particular SE. In fact, the field as a whole has
wrestled with the best way to assign target genes to enhancers,
especially considering the genomic rearrangements observed
in cancer cells. Thus, we reasoned that direct chromatin inter-
actions between the SEs and their target genes (as measured by
Hi-C) would give confidence to the annotation of target genes
(Fig. 6).

Overall, the downregulated genes upon SE deletion showed
higher interaction, both nearby and across long distances, with
the SE as compared to the distance-matched control gene set.
Importantly, several cis direct target genes are involved in
oncogenic pathways and perhaps could serve as prognostic
indicators or biomarkers in the future (Fig. 6, Supplementary
Fig. 6, and Supplementary Data 10). We note that there may exist
more target genes for each SE located on other chromosomes,
however, we found no distinguishable interactions (via Hi-C)
between our SEs and their target genes located on different
chromosomes. This suggests that genes found on different
chromosomes are likely indirect target genes where the SE
directly regulates a gene in cis that is co-linear with the trans
target gene. In the absence of Hi-C data for determining direct
target genes, we posit that evidence from two orthogonal
experiments (such as CRISPRi and CRISPR-KO or inclusion of
reporter-based enhancer assays) would yield high confidence
results since genes detected by multiple assays are agnostic to the
technical nuances of each. In fact, a logical framework to describe
the level of support needed to definitively annotate an enhancer
and its bona fide target genes have been recently proposed74, and
its implementation would yield a catalog of enhancers with
confidently linked target genes.

Fig. 6 Hi-C analysis detects direct targets of SE60 and SE14 supporting direct roles in invasion, differentiation, and metastasis. a Distribution of Hi-C
counts (contact frequency) between SE60 downregulated cis-genes and the SE60 locus (left) (n= 4), blue points/genes are direct targets. Distribution of
Hi-C counts of a background set of 100 distance-matched gene sets (right) (n= 400). The dashed line denotes the cutoff for direct target genes in the
experimental sample. b Table displaying the number of direct and indirect cis-target genes of SE60 determined by Hi-C. c CancerSEA analysis of the direct
target (p-values determined by GSVA followed by Spearman’s FDR corrected rank test). The red line denotes a p-value of 0.05. d Kaplan–Meier plot of
RAE134,35. The red line denotes patients with high expression of RAE1, significant p-values are denoted in red. e Hi-C contact heatmap showing the
interaction between RAE1 and the SE60 locus (red square). The colored gene names correspond to the fold change of significantly affected genes after
CRISPR-KO. f Distribution of all Hi-C counts between SE14 downregulated cis-genes and the SE14 locus (left) (n= 90), blue points/genes are direct
targets. Distribution of Hi-C counts of a background set of 100 distance-matched control gene sets (right) (n= 9000). The dashed line denotes the cutoff
for direct target genes. g Table displaying the number of direct and indirect cis-target genes of SE14 determined by Hi-C. h CancerSEA pathway analysis of
the SE14 direct targets (p-values determined by GSVA followed by Spearman’s FDR corrected rank test). The red line denotes the metric for a p-value of
0.05. i Kaplan–Meier plot of the SE14 direct target genes34,35. Significant p-values are denoted in red. j Hi-C contact heatmap showing the interaction
between EPHA2 and the SE14 locus (red arrow). The colored gene names correspond to the fold change of significantly affected genes after CRISPR-KO.
Box plots in a and f are centered on the median, with the bounds of the box being the IQR. The minimum and maximum values, after disregarding outliers,
are represented by the upper and lower whiskers. Source data are provided as a Source Data file.
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Finally, both SE60 and SE14 were found to have a statistically
significant increase in chromatin accessibility within the cancer
cell fraction of human HGSOC tumors at single-cell resolution
(Fig. 7), further suggesting that the SEs that we identified are not
merely cell line specific. This validates our enhancer identification
pipeline and reveals that certain super-enhancers involved in

growth and migration are preferentially enriched and amplified in
cancer cells. In addition, we found that cis direct target genes
annotated for each SE (such as RAE1 and EPHA2) were more
highly expressed in the cancer cells compared to the stromal/non-
malignant cells within HGSOC tumors. Collectively, these results
expound the idea that super-enhancers themselves and the genes
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they regulate represent viable therapeutic avenues and may aid in
biomarker identification. More broadly, our study described a
genomic and computational approach for identifying clinically
relevant enhancers and their bona fide target genes which should
be applicable to a wide variety of biological systems.

Methods
Cell culture. NIH:OVCAR-3 (OVCAR3) (ATCC, HTB-161) and HEK-293T
(ATCC, CRL-3216) cell lines were used in this study. OVCAR3 cells were cultured
in RPMI media (Gibco, 11875-093) supplemented with 10% FBS and 1% penicillin/
streptomycin (Corning, MT30002CI). HEK-293T cells were cultured in Dulbecco’s
modified Eagle’s medium (DMEM) (Gibco, 11995065) supplemented with 10% FBS
and 1% penicillin/streptomycin. OVCAR3-dCas9-KRAB-blast (OVCAR-KRAB)
cells were maintained in RPMI media with 10% FBS, 1% penicillin/streptomycin,
and 1 µg/mL blasticidin (Corning, 30100RB) after the selection process. All cells
were grown at 37 °C in 5% CO2. OVCAR3 cells were authenticated with Short
Tandem Repeat profiling through ATCC before being used. Cell lines were tested
for mycoplasma and were mycoplasma negative.

Engineering dCas9-KRAB expressing OVCAR3 cells. Lentivirus was packaged
in HEK-293T cells and contained the Lenti-dCas9-KRAB-blast vector75 (Addgene
plasmid #89567). Cells seeded in a T75 flask were transfected with the following:
6.67 µg Lenti-dCas9-KRAB-blast, 5 µg psPAX2 (Addgene, 12260), and 3.33 µg
PMD2G (Addgene, 12259) using Fugene 6 (Promega, E2691) following the man-
ufacturer’s protocol. 48–72 h post-transfection, the lentivirus containing super-
natant was harvested and concentrated using the Lenti-X Concentrator (Takara,
631231) following the manufacturer’s protocol. To transduce OVCAR3 cells, cells
were seeded at 50,000 cells/well in a six-well plate and treated with the harvested
lentivirus in RPMI media with 10% FBS and 10 µg/mL polybrene (Millipore,
TR1003G). After 72 h, transduced cells were placed in RPMI selection media with
3 µg/mL blasticidin for 7 days. After batch selection, OVCAR3-KRAB cells were
collected for Western Blot to validate the presence of dCas9-KRAB. Cells were
lysed with following lysis buffer: 50 mM Tris–HCl (pH 8), 0.5 M NaCl, 1% NP-40,
0.5% sodium deoxycholate, 0.1% SDS and 1× protease inhibitor. The β-tubulin
antibody (Abcam, ab6046) was diluted at 1:5000 in 5% BSA in TBST and incubated
overnight at 4 °C. The Cas9 antibody (7A9-3A3) (Santa Cruz, sc-517386) was
diluted at 1:1500 in 5% BSA in TBST and incubated overnight at 4 °C. The sec-
ondary antibodies (Donkey anti-rabbit IgG HRP-linked (GE, NA934) and Donkey
anti-mouse IgG HRP-linked (Invitrogen, PA1-28748)) were diluted at 1:5000 in 5%
BSA in TBST.

CRISPRi screen sgRNA design. For sgRNAs targeting super-enhancers, target
regions were chosen by selecting two regions within the super-enhancer with the
highest BRD4 enrichment and clear H3K27ac signal. For each super-enhancer
region, sgRNAs were designed using the CRISPOR web tool52 taking into account
the specificity and off-target scores. If all suggested sgRNA sequences to a region
had low specificity scores, a second sgRNA was instead designed to target the third
highest BRD4 peak. Two sgRNAs were designed per super-enhancer to be trans-
fected together. Genomic coordinates for all super-enhancers and their sgRNA
sequences are found in Supplementary Data 1. sgRNA oligos were ordered from
Integrated DNA Technologies. The negative control sgRNAs (Scramble1 and
Scramble2) were previously published76.

sgRNA vector cloning. The sgRNA cloning vector pX-sgRNA-eGFP-MI was
created by modifying pSpCas9(BB)−2A-Puro (pX459) v2.077 (Addgene plasmid
#62988) by removing Cas9 and replacing it with eGFP to allow for visualization.

Additionally, the sgRNA stem-loop was extended and an A–U base pair flip was
utilized to improve sgRNA stability and assembly with dCas978. The vector cloning
protocol was adapted from Feng Zheng’s group79. In short, sgRNA oligonucleo-
tides ordered from Integrated DNA Technologies (IDT) were duplexed using:
10 µM sgRNA forward oligo, 10 µM sgRNA reverse oligo, 10U T4 polynucleotide
kinase (NEB, M0201L), and 1x T4 ligation buffer under the following conditions:
37 °C for 30 min, 95 °C for 5 min, then ramp down to 25 °C at 5 °C/min. Next,
duplexed sgRNAs were diluted to 1:100. 2 µL of diluted sgRNA was ligated with
100 ng pX-sgRNA-eGFP-MI that had been linearized with BbsI-HF (NEB,
R3539S). Cloned sgRNA vectors were verified through Sanger sequencing with the
human U6 promoter primer (GGC-CTA-TTT-CCC-ATG-ATT-CC).

CRISPRi screen. OVCAR3-KRAB cells were plated at 50,000 cells per well in 24-
well plates using antibiotic-free RPMI media supplemented with 10% FBS. 24 h
after plating, OVCAR3-KRAB cells were transfected with a total of 300 ng sgRNA
vectors using Fugene 6 following the manufacturer’s protocol. Two sgRNAs were
designed to target the BRD4 peak summit for each super-enhancer. For negative
control wells (empty vector, scramble1, scramble2, Dorm1) and the well targeting
the TP53 gene, a single sgRNA vector was transfected. For positive control wells
(PLAG1 gene promoter, RNF4 gene promoter, FOXL2 gene promoter, RNF4
enhancer, FOXL2 enhancer) and wells targeting each super-enhancer, two sgRNA
vectors were co-transfected in each well. Genomic coordinates for all super-
enhancers and their sgRNA sequences are found in Supplementary Data 1. After a
72 h incubation, cells were visualized for GFP expression in order to verify good
transfection efficiency. After visualization, wells were washed with 1× PBS and
RNA was extracted using the Zymo Quick-RNA Miniprep Kit (Zymo, R1055) with
the on-column DNAseI treatment step. RNA-seq libraries were prepared using the
Lexogen Quantseq 3’ mRNA-seq FWD Library Prep Kit (Lexogen QuantSeq,
015.2 × 96) and the PCR Add-On Kit for Illumina (Lexogen QuantSeq, 020.96).

CRISPRi for SE14 and SE60. OVCAR3-KRAB cells were plated at 200,000 cells/
well in six-well plates using antibiotic-free RPMI media supplemented with 10%
FBS. 24 h after plating, each well of OVCAR3-KRAB cells were transfected with
1.5 µg sgRNA vector using Fugene 6 (Promega, E2691) following the manu-
facturer’s protocol. A single sgRNA vector was transfected for the negative control
wells (Scramble1). Two sgRNA vectors were co-transfected for wells targeting SE14
and SE60. After a 72 h incubation, cells were visualized for GFP expression in order
to verify good transfection efficiency. After visualization, wells were washed with
1× PBS and RNA was extracted using the Zymo Quick-RNA Miniprep Kit (Zymo,
R1055) with the on-column DNAseI treatment step. Experiments were conducted
three to four times to ensure reproducibility.

Super-enhancer knockout with CRISPR-Cas9. Deletion of super-enhancers was
performed using CRISPR-cas9 following existing protocols79–81. In short, the
BRD4 peak summit was targeted for each super-enhancer and sgRNA target sites
were selected using the CRISPOR web tool52. The guide RNA sequences and their
genomic coordinates can be found in Supplementary Table 1. Guide oligos used for
knockouts were ordered from Integrated DNA Technologies. Oligos were duplexed
and cloned into pSpCas9(BB)−2A-Puro (PX459) V2.0 (Addgene Plasmid #62988).
Per super-enhancer targeted, four complete guide RNA plasmids (two 5’ and two 3’
of the target site) were transfected into OVCAR3 cells using Fugene 6 (Promega,
E2691) following the manufacturer’s protocol. Three days post-transfection,
positive clones underwent puromycin selection for 7 days. Deletion of super-
enhancer targets was confirmed by genotyping PCR with two sets of primers: (1)
external primers flanking the SE deletion sites, and (2) internal primers for iden-
tification of wild-type alleles (Supplementary Table 2). Deletion of SE14 resulted in
a ~2500–2800 bp deletion. Deletion of SE60 resulted in a ~1700–1800 bp deletion.

Fig. 7 Super-enhancer 60, 14, and their direct target genes are enriched in malignant cells of HGSOC patient tumors as determined by scRNA-seq and
matched scATAC-seq. a UMAP plot of 13,646 scRNA-seq cells colored by cell type from two HGSOC patients (left). UMAP plot of 17,694 scATAC-seq
cells from the same patients colored by cell type (right). Cluster numbers in each UMAP plot denote cell-type clusters. b Violin plots showing the
distribution of gene expression values from scRNA-seq in each cell type cluster for CA125, RAE1, and EPHA2. Columns represent a cell-type cluster. Genes
have a statistically significant difference in expression between the cancer and non-cancer cell type clusters (Wilcoxon Rank Sum tests, Bonferroni-
corrected p-values < 2.2e−308 & average logFC≥ 0.1). c scATAC-seq browser track showing chromatin accessibility profiles at the SE60 locus (left) and
SE14 locus (right) for each cell type cluster. Blue shadows denote cancer-enriched constituent enhancers. Each blue region has a statistically significant
difference in accessibility between cancer and non-cancer cell type clusters (Wilcoxon Rank Sum tests, Benjamini–Hochberg FDR≤ 0.10 and
Log2FC≥ 0.25). Cancer status is denoted in orange for each row label. Patient composition is denoted by a solid square if from one patient, or a split
colored square if otherwise (far right). Bottom—annotated dbSNPs, Epithelium DNase hypersensitivity sites in normal epithelium, and ENCODE regulatory
elements (ccREs). d Summary of FIMO TF motif occurrences within SE60 cancer enriched enhancers 1–3. Matching scRNA-seq TF expression in the cancer
epithelial fraction is shown in the violin plot for each motif. Statistically significant motif matches identified by FIMO were defined as a Benjamini–Hochberg
corrected p-value (i.e., q value) < 0.10. e Summary of FIMO TF motif occurrences within SE14 cancer enriched enhancers 1–3. Matching scRNA-seq TF
expression in the cancer epithelial fraction is shown in the violin plot for each motif. Statistically significant motif matches identified by FIMO were defined
as a Benjamini–Hochberg corrected p-value (i.e., q value) < 0.10. Source data are provided as a Source Data file.
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Additionally, correct super-enhancer knockout cells were submitted for Sanger
DNA sequencing to verify the boundaries of deletions.

RNA-seq. For the CRISPRi screen, RNA-seq libraries were prepared using the
Lexogen Quantseq 3’ mRNA-seq FWD Library Prep Kit (Lexogen QuantSeq,
015.2 × 96) and the PCR Add-On Kit for Illumina (Lexogen QuantSeq, 020.96).
Libraries underwent 75 bp single-end sequencing on an Illumina NextSeq 500
instrument by UNC’s Translational Genomics Lab.

For RNA-seq of OVCAR3 WT, SE60KO1, SE60KO2, SE14KO1rep1, and
SE14KO1rep2, libraries were prepared with the Illumina TruSeq Stranded mRNA
Kit following the manufacturer’s protocol. Libraries underwent 75 bp paired-end
sequencing on an Illumina NextSeq 500 instrument by UNC’s Translational
Genomics Lab.

For SE60KO3, SE14KO2, SE14KO3, scramble1-KRAB, and SE60-KRAB,
libraries were created and sequenced by Novogene. These libraries underwent
150 bp paired-end sequencing on an Illumina NovaSeq 6000 instrument.

ChIP-seq. OVCAR3-KRAB cells were transfected with sgRNAs targeting either
scramble1 (non-targeting) or SE60 (2 pooled sgRNAs) following the same protocol
mentioned above for “CRISPRi for SE14 and SE60.” For each of the two replicates
conducted per condition, 1–2 million cells were used for fixation with 11% for-
maldehyde following Active Motif’s Epigenetic Services ChIP Fixation Protocol.
ChIP-seq for H3K9me3 was performed by Active Motif using H3K9me3 antibody
(Active Motif, 39161) with spike-in Drosophila normalization. ChIP-seq libraries
underwent 75 bp single-end sequencing on an Illumina NextSeq 5000 instrument
by Active Motif.

Cell proliferation assay. Cell collections were performed at Days 2, 4, and 6. On
the day of collection, cells were fixed with 10% formaldehyde and stained using a
0.1% crystal violet solution. Incorporated crystal violet was extracted using 10%
glacial acetic acid and the absorbance was read at 595 nm. This procedure was
conducted four times to ensure reproducibility. Results are shown as the mean fold
change of Day 4 and Day 6 OD 595 nm readings compared to Day 2 OD 595 nm
readings ± SEM. Statistical analysis was conducted in R using a two-sided Student’s
t-test.

Cell migration assay. OVCAR3 WT and SEKO cells in serum-free RPMI media
were seeded to the upper chamber of a transwell insert at 60,000 cells per insert.
The lower chamber contained RPMI with 10% FBS. Cells were incubated for 24 h,
then all non-migrated cells were removed from the upper membrane. Cells were
fixed and stained using the Hema 3 Staining Kit (Fisher Scientific, 122-911). Ten
brightfield images were taken per insert and images were analyzed using the
CellProfiler 4.2.1 software to count the number of cells per transwell insert.
This procedure was conducted four times to ensure reproducibility. Results are
shown as the mean cell count per insert ±SEM. Statistical analysis was conducted in
R using a t-test.

General program versions. Unless specified, these are the versions used for
scripting/analysis in R (R: 4.0.0) and Python (Python: 3.6.5) throughout the project
for the bulk data analysis of CRISPRi, CRISPR-KO, CNV, and H3K27ac/BRD4
ChIP-Seq data. Unless otherwise stated, all “overlap” analysis visualization was
performed using Intervene Intervene: (0.6.5)82.

RNA Seq: CRISPRi screen
General metrics. RNA-seq was performed following the pipeline put forth by
LEXOGEN in the 3’ mRNA-Seq package; namely using STAR, HTSEQ, and
DESEQ2. These processes will be explained in more detail below.

QC. Quality control was performed using the FastQC (version v0.11.7) tool and the
results were analyzed (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
All of the metrics returned as acceptable with no clear failures. We thus proceeded
with processing and analysis.

Trimming. Trimming was performed using the bbmap (https://sourceforge.net/
projects/bbmap/) function bbduk.sh (version 38.46) with the following parameters
ktrim=r, k= 13, useshortkmers= t, mink= 5, qtrim= r, trimq= 10, min-
length= 20, ftm= 5.

Alignment. The trimmed and cleaned reads were then aligned to the HG38v12
human genome using STAR version 2.6.0a with the following parameter
set–runMode alignReads,–outFilterType BySJout,–outFilterMultimapNmax
20,–alignSJoverhangMin 8,–alignSJDBoverhangMin 1,–outFilterMismatchNmax
999,–outFilterMismatchNoverLmax 0.6,–alignIntronMin 20,–alignIntronMax
1000000,–alignMatesGapMax 1000000,–readFilesCommand gunzip
-c,–outSAMtype BAM SortedByCoordinate, and–outSAMattributes NH HI NM
MD and otherwise default conditions83.

File formatting. The bam files from STAR were then indexed and sorted using
functions in the SAMTOOLS package (version 1.9), namely samtools sort and
samtools index84.

Quantification. The sorted and indexed bam files were quantified using htseq
(version 0.11.2) and the gencode v29 primary assembly as a reference and with the
following parameters -m intersection-nonempty, -s yes, -f bam, -r pos85.

Read distributions. The package RSeQC (version 3.0.0) was used to assess the
distribution of reads across the genome. Specifically, the python program read_-
distribution.py was used with default parameterizations to create a summary of this
information86.

Review QC. All of the alignment, counting, and cleaning program outputs were
assessed with MultiQC (version 1.9) for potential issues, of which none were
determined87. Default parameters were used.

Normalization. The count data were first normalized by removing all of the low
count genes (genes with <1 count in every sample); this data was then read into
DESEQ2 (DESeq2_1.30.1)54. Within DESEQ2 normalized by scaling and size
factors followed by a VST transformation. Batch effects were addressed by utilizing
the SVT program (part of the DESEQ2 package using sva_3.38.0) and variation
from two surrogate variables was removed for the final analysis. The process used
for this step of the analysis can be followed within the script
Screen_Preprocessing.R.

Determination of DEGs. Differential gene expression was determined by utilizing a
rank-based approach similar to the ranking method used by CMAP for their single
replicate screens53. Genes were ranked in order of expression (rank 1 being the highest
expressed, n being the lowest) within every sample, then all samples were aggregated
and a global rank was assigned for every gene. Next, the change in rank was deter-
mined between the within-sample rank and the global rank for every gene in every
sample. These changes in rank were used to build a distribution of all rank changes for
eFDR analysis. The process used for this step of the analysis can be followed within the
script OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb.

Empirical false discovery rate analysis. Empirical false discovery rate, an empirically
derived variation of the false discovery rate, was determined by choosing a rank change
threshold and assessing the median number of genes across controls beyond that
threshold as compared to a given sample47. For example, if there is a median of 4
genes in the controls and 40 genes in Sample A; the eFDR for this comparison would
be 4/40 or 10%. The process used for this step of the analysis can be followed within
the script OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb.

Relative expression correlation analysis. A log2-fold change was calculated between
all genes in a sample and the median of the controls. All genes determined as
significant by the rank-based analysis (across all super-enhancers) were aggregated
into one pool of genes. This pool of genes was then used to compare RC to LFC
values within each super-enhancer to determine the correlation of these sets of
values. The process used for this step of the analysis can be followed within the
script OVCAR3_Screen_Analysis_with_Plotting_LFC_Comparison.ipynb.

Clustering. KMeans clustering analysis was used to cluster the differentially ranked
gene list. Three clusters were determined as optimal by analysis of the elbow plot
and these clusters were then applied to the data. Unsupervised hierarchical clus-
tering was then used to determine the super-enhancer relationships. The process
used for this step of the analysis can be followed within the script OVCAR3_
Screen_Analysis_with_Plotting_LFC_Comparison.ipynb.

Pathway analysis. Genes detected from the differential expression analysis
were analyzed using CancerSEA and the molecular signatures database55–57.
This program performs pathway analysis using cell-type specific information
relevant to cancer based on available single-cell datasets. All of the genes in a
given KMeans cluster were fed into this set of programs as a gene list and results
were retrieved.

RNA Seq: CRISPR KO
General metrics. RNA-Seq was performed following a similar pipeline to that used
in the screen analysis with parameters adjusted to account for differences in the
data (paired-end with greater depth); namely using STAR, HTSEQ, and DESEQ2.
This will be expounded in more detail below.

QC. Quality control was performed using the FastQC (version v0.11.7) tool (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). All of the metrics returned
as clear or warnings with no failures.

Trimming. No trimming was needed or performed.
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Alignment. The reads were then aligned to the HG38v12 human genome using STAR
version 2.6.0a with the following parameter set–runMode alignReads,–outFilterType
BySJout,–outFilterMultimapNmax 20,–alignSJoverhangMin 8,–alignSJDBoverhangMin
1,–outFilterMismatchNmax 999,–outFilterMismatchNoverLmax 0.6,–alignIntronMin
20,–alignIntronMax 1000000,–alignMatesGapMax 1000000,–readFilesCommand gun-
zip -c,–outSAMtype BAM SortedByCoordinate,–outSAMattributes NH HI NM MD83.

File formatting. The bam files from STAR were then indexed and sorted using
functions in the SAMTOOLS package (version 1.9), namely samtools sort and
samtools index84.

Quantification. The sorted and indexed bam files were quantified using htseq
(version 0.11.2) using the gencode v29 primary assembly (gencode.v29.annota-
tion.gff3) as a reference and with the following parameters -m union, -nonunique
all, -s reverse,–type=gene,–additional, attr=gene_name, -f bam, -r pos85.

Read distributions. The package RSeQC (version 3.0.0) was used to assess the
distribution of reads across the genome. Specifically, the python program read_-
distribution.py was used with default parameterizations to create a summary of this
information86.

Review QC. All of the alignment, counting, and cleaning program outputs were
assessed with MultiQC (version 1.9) for potential issues87. Default parameters were
used and all of the reports were good.

Normalization (batch effect detection). The count data were first normalized by
removing all of the low count genes (genes with <1 count in every sample); this
data was then read into DESEQ2 (DESeq2_1.30.1)54. Within the DESEQ frame-
work, the counts data were adjusted for scaling and size factors followed by a
VST transformation. Batch effects were addressed by utilizing the SVT program
(sva_3.38.0) and variation from one surrogate variable was accounted for in
the DESEQ2 model. This process was completed and can be followed using
DESEQ2_2021Reps_RNA_SVA_Plotting_V2.Rmd.

Normalization. The pre-VST data was used for standard in-program normalization
by DESEQ2 during the differential expression analysis procedure. This process was
completed and can be followed using DESEQ2_2021Reps_RNA_SVA_Plotting_
V2.Rmd.

Determination of DEGs. Differential gene expression was determined by utilizing
DESEQ2 and default parameters. Genes called as differentially expressed at an
FDR-adjusted p-value less than 0.0005 were identified and collected for analysis
and figure making. This process was completed and can be followed using
DESEQ2_2021Reps_RNA_SVA_Plotting_V2.Rmd.

Pathway analysis. Genes detected from the differential expression analysis were
analyzed using CancerSEA and the molecular signatures database55–57. This program
performs pathway analysis using cell-type-specific information relevant to cancer
based on available single-cell datasets. The top 100 most significant downregulated
genes from differential expression analysis were fed into this program as a gene list and
results relevant to ovarian cancer were retrieved. This process was completed and can
be followed using DESEQ2_2021Reps_RNA_SVA_Plotting_V2.Rmd.

Survival analysis. To perform survival analyses we made use of the KM plotter
tool34,35. This tool allows a user to look at the effect that the expression of induvial
genes or a gene set has on overall survival across a number of cancer patients from
15 ovarian cancer datasets. We looked at the top 100 genes ordered by adjusted P-
value (the top 100 most significant genes) as a set (using the median expression of
the whole group); and/or looked at genes individually.

CRISPRi RNA-Seq analysis
General metrics. RNA-Seq was performed following a similar pipeline to that used
in the screen analysis with parameters adjusted to account for differences in the
data (paired-end with greater depth); namely using STAR, HTSEQ, and DESEQ2.
This will be expounded in more detail below.

QC. Quality control was performed using the FastQC (version v0.11.7) tool (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/). All of the metrics returned
as clear or warnings with no failures.

Trimming. No trimming was needed or performed.

Alignment. The reads were then aligned to the HG38v12 human genome using STAR
version 2.6.0a with the following parameter set–runMode alignReads,–outFilterType
BySJout,–outFilterMultimapNmax 20,–alignSJoverhangMin 8,–alignSJDBoverhangMin
1,–outFilterMismatchNmax 999,–outFilterMismatchNoverLmax 0.6,–alignIntronMin
20,–alignIntronMax 1000000,–alignMatesGapMax 1000000,–readFilesCommand gun-
zip -c,–outSAMtype BAM SortedByCoordinate,–outSAMattributes NH HI NM MD83.

File formatting. The bam files from STAR were then indexed and sorted using
functions in the SAMTOOLS (version 1.9) package, namely samtools sort and
samtools index84.

Quantification. The sorted and indexed bam files were quantified using htseq
(version 0.11.2) using the gencode v29 primary assembly (gencode.v29.annota-
tion.ggf3) as a reference and with the following parameters parameters -m union,
-nonunique all, -s reverse,–type=gene,–additional, attr=gene_name, -f bam, -r pos85.

Read distributions. The package RSeQC (version 3.0.0) was used to assess the
distribution of reads across the genome. Specifically, the python program read_-
distribution.py was used with default parameterizations to create a summary of this
information86.

Review QC. All of the alignment, counting, and cleaning program outputs were
assessed with MultiQC (version 1.9) for potential issues87. Default parameters were
used and all of the reports were good.

Normalization. The pre-VST data was used for standard in-program normalization
by DESEQ2 during the differential expression analysis procedure. This process can
be followed using DESEQ2_RNA_Plotting_CRISPRi_Analysis_Revised.Rmd.

Determination of DEGs. Differential gene expression was determined by utilizing
DESEQ2 and default parameters. Genes called as differentially expressed at an FDR
adjusted p-value less than 0.0005 were identified and collected for analysis and figure
making. This process can be followed using DESEQ2_RNA_Plotting_CRISPRi_
Analysis_Revised.Rmd.

Pathway analysis. Genes detected from the differential expression analysis were
analyzed using CancerSEA and the molecular signatures database55–57.

Survival analysis. To perform survival analyses we made use of the KM plotter
tool34,35. This tool allows a user to look at the effect that the expression of induvial
genes or a gene set has on overall survival across a number of cancer patients from
15 ovarian cancer datasets. We looked at the top 100 genes ordered by adjusted P-
value (the top 100 most significant genes) as a set (using the median expression of
the whole group); and/or looked at genes individually.

Copy number analysis
Gathering. The copy number and RNA-seq data for this analysis were downloaded
from the TCGA repository Firebrowse (http://firebrowse.org/) which contains the
data used in the TCGA analysis of ovarian cancer10. We used the TCGA patient
barcodes to determine if a tumor was from normal tissue or cancer patients.
Samples were subset based on these barcodes to select for tumors. Additionally, for
the CNVeQTL analysis, samples unique to each dataset (RNA or Copy Number)
were removed. To perform this, we looked for matching patient identifiers between
RNA-seq and copy number data and kept any data with ID overlaps.

Windowing. The autosomal (Chr 1–22) genome (hg19) was divided into 15 kb bins
using python. We decided to use a sliding window size of 15 kb based on the overall
size distribution of our super-enhancers. Since the median size of our super-
enhancers is 21 kb, we wanted a window size similar to the median size but smaller,
as smaller windows allow for better resolution. We settled on 15 kb as being close
to the median size and small enough to give us good resolution, yet large enough to
be computationally feasible (smaller window sizes create larger datasets and
increase the computational burden of assigning signals and analyzing the data).
This process was completed using Split_Genome_into_windows.ipynb.

Super enhancer overlap. Bedtools (version v2.25.0) intersect (one bp overlap) was
used to create a subset of the whole genome 15 kb sliding windows that overlapped
the super-enhancer regions. This gave us two data sets, one being the whole
genome sliding windows and the other being SE overlapping sliding windows
(a subset of the whole genome group).

Copy number assignment—whole genome. Patient copy number was assigned to
each 15 kb window for every chromosome individually using the script
OVLP_CNV_Whole_Genome.py. If the patient data overlapped a sliding window
by at least one base pair, signal from the patient was assigned to this window. Once
this was performed for every chromosome individually, the chromosome data were
aggregated using Combine_CNV_Chr_Files.ipynb.

Copy number assignment—super-enhancer overlap. Patient copy number was
assigned to each 15 kb bin for every chromosome individually using the script
SEOVLP_CNV.py. If the patient data overlapped a sliding window by at least one
base pair, signals from the patient was assigned to this window. Chromosome data
was aggregated using Combine_CNV_Chr_Files.ipynb.
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CNVeQTL analysis. Copy Number Expression QTL was identified using
MatrixQTL where the SE overlapping CNV windows were defined as the “SNPs”
and the matching RNA-Seq data served as the Expression dataset46. Of note, genes
with over 100 NA, missing, or 0 values were removed from this dataset prior to
analysis. The CNV and RNA data were also converted into float values for ease of
use in MatrixEQTL. CNVeQTL was identified using the linear MatrixEQTL
algorithm on the original data with a P-value threshold of 1e−3. In order to
determine significance, the null hypothesis was induced and used to determine an
empirical FDR. The null hypothesis, in which there is no association between
specific copy number regions and gene expression, was induced by randomly
permuting the column assignments of the RNA-seq data, the CNV data was left
alone. This maintains the variance structure of the CNV data and merely changes
which CNV data column gets matched with a given RNA-Data column. For
example, CNV columns 1–4 (corresponding to patients 1–4) might now be mat-
ched with RNA columns 30, 75, 6, and 210; this allows us to use the same overall
data and investigate what happens where there is no link between CNV and RNA
values (as patient 1’s CNV values should be random in relation to the gene
expression of patient 30). MatrixEQTL was then run using the original copy
number data and the new column shuffled RNA-seq data; this shuffling and
running of MatrixEQTL were performed 100,000 times. The median number of
significant eQTLs detected across all 100k null conditions was used as the
numerator for the empirical false discovery rate analysis, with the experimental
results being the denominator. There is some variability in eFDR, as no seed was
set and the permutations are random, but all repeats of 100k (3 repeats or 300k
trials) returned an eFDR <0.1 or 10%. This process was completed using
CNV_eQTL.R.

Determining super enhancer amplification. In order to assess whether the super-
enhancer regions were amplified, we compared the distribution of CNV values in
the super-enhancer overlapping sliding windows with the whole genome by sub-
setting and direct comparison. We performed 10k random subset comparisons,
and one direct comparison. In any given comparison, we took the 336 super-
enhancer overlapping windows and then randomly drew 336 windows from the
whole genome background; these two sets were then compared for significant
differences using a Welch’s one-sided t-test. This analysis allowed us to determine
if the super-enhancer overlapping group was significantly amplified relative to the
randomly drawn subset. For the direct comparison, we took all 336 SE overlapping
windows and directly compared the CNV values across these windows to the
~192,000 total regions using the same t-test metric. This process was completed
using the script OVCAR_CNV_Comparison_Final.R.

Survival analysis. The effect of amplification of these regions on overall survival in
patients was calculated using the Kaplan–Meier log rank change test and the Cox
proportional hazards model32. The survival data were downloaded from the TCGA
and the patient ID was mapped back to the CNV values for each patient44. These
datasets were then combined into a single set formatted as described in
CNV_KM_Plots.R. This combined survival and copy number dataset was then
analyzed using the functions built in CNV_KM_Plots.R to provide a metric of
significance for each 15 kb copy number region.

ChIP Seq (OVCAR3 BRD4 and H3K27ac)
Data acquisition. Publicly available ChIP-Seq data were downloaded from the SRA
database associated with GSE101408 (experimental OVCAR3 H3K27ac condition)
using fastq dump (version 2.9.0)30. This process was repeated to get BRD4 binding
data for DMSO-treated OVCAR3 cells as well as the input control from
GSE7756828.

Processing. The following steps were used to process each file separately (H3K27ac,
BRD4 ChIP, and BRD4 sample input). At the peak calling step, the BRD4 ChIP
data was informed by the processed input control. As there was no input provided
for the H3K27ac data, no input was processed or utilized for this sample.

Data quality check. The quality of the data was assessed using fastqc and reads were
trimmed using Trimmomatic (version 0.38) with the following parameters Leading:
30, Trailing: 30, Sliding Window: 4:30, MINLEN: 36, Phred3388.

Alignment. The fastq files were aligned to hg19 using Bowtie2 (version 2.3.5.1) with
default parameters89. The output sam files were then converted to bam files using
samtools and sorted/indexed.

Processing Bam files (marking duplicates). The aligned and sorted bam files were
then marked for duplicate reads using Picard MarkDuplicates (2.11.0) with the
following parameters java -Xmx4G -jar $PICARD/picard.jar MarkDuplicates,
VALIDATION_STRINGENCY= LENIENT, ASSUME_SORTED= true,
REMOVE_DUPLICATES= false90.

Processing Bam files (removing duplicates). The duplicate reads marked by Picard
MarkDuplicates 2.11.0 were then removed by samtools using the command sam-
tools view -F 1804 -b in.bam > clean.bam.

Create tagAlign files. A tagAlign file was generated using the following command.
bamToBed -i clean.bam | awk ‘BEGIN{OFS= “\t”}{$4= “N”;$5= “1000”;print

$0}’ | tee clean.tagAlign | gzip -c > clean.tagAlign.gz.

Peak calling. Peaks were identified using MACS2 (version 2.2.6) with the following
parameterization36. The input sample was used as the control for the BRD4 ChIP
data; the H3K27ac data was processed without an input with MACS2 determining
the control by default processes. The BRD4 data was processed with the following
parameters -g hs, -p 1e-2,–nomodel,–extsize 121, -B. The H3K27ac data was
processed with the parameter set -g hs, -p 1e-2,–nomodel,–extsize 218, -B.

Determination of the final peak set. The called peaks were then intersected with all
genes in the hg19 human genome, using bedtools intersect (1 bp overlap) and
overlapping regions were removed (https://bedtools.readthedocs.io/en/latest/). The
remaining peaks from H3K27ac and BRD4 that did not overlap genes were then
intersected using bedtools (1 bp overlap) and regions with both an H3K27ac and
BRD4 peak were kept (using the BRD4 coordinates).

Creating BigWigs. The fold enrichment of the bam files was calculated across these
peaks for both H3K27ac and BRD4 using macs2 bdgcmp and the -m ppois
parameter. As the H3K27ac had no input we felt that in order to allow for fair
comparison both H3K27ac and BRD4 bedgraph files should use the -m ppois
parameter (we did also generate a fold enrichment aka FE bedgraph for BRD4 to
ensure it was comparable to the ppois version). These bedgraph files were then
converted to bigwigs using bedGraphToBigWig (version v4) from UCSC.

Calling super enhancers. Super enhancers were then identified using the ROSE41

pipeline (version 0.1, python 2.7) with default parameters.

Meta-analysis. Meta plots and heatmaps for these data were created using Deep-
tools (version 3.1.0). We generated matrices using signals from the bigwig files and
the overlapping 12,339 peaks as the regions. These matrices were then used for
plotting.

ChIP-Seq (H3K9me3). ChIP-Seq analysis for H3K9me3 was performed by Active
Motif following their spike in protocol. The following is a modified excerpt from
the workflow provided to us.

Sequence analysis. The 75-nt single-end (SE75) sequence reads generated by Illumina
sequencing (using NextSeq 500) were mapped to the genome using the BWA
algorithm (“bwa aln/samse” with default settings). Alignment information for each
read is stored in the BAM format. Only reads that pass Illumina’s purity filter, align
with no more than 2 mismatches, and map uniquely to the genome were used in the
subsequent analysis. In addition, duplicate reads (“PCR duplicates”) were removed.

Determination of fragment density. Since the 5´-ends of the aligned reads (=“tags”)
represent the end of ChIP/IP-fragments, the tags were extended in silico (using
Active Motif software) at their 3´- ends to a length of 200 bp, which corresponds to
the average fragment length in the size-selected library. To identify the density of
fragments (extended tags) along the genome, the genome was divided into 32-nt bins
and the number of fragments in each bin is determined. This information (“signal
map”; histogram of fragment densities) is stored in a bigWig file. bigWig files also
provide the peak metrics in the Active Motif analysis program described below.

Peak finding. The generic term “Interval” is used to describe genomic regions with
local enrichments in tag numbers. Intervals are defined by the chromosome
number and a start and end coordinate. The peak caller used at Active Motif for
this project was SICER91. This method was used to detect significant enrichments
in the ChIP/IP data file when compared to the Input data file or relative to
neighboring background regions.

Additional Analysis Steps:. (a) Standard Normalization: In the default analysis, the
tag number of all samples (within a comparison group) is reduced by random
sampling to the number of tags present in the smallest sample.

(b) Spike-in Adjustment: Spike-in of Drosophila chromatin was performed; the
number of test tags was adjusted (again by down-sampling) by a factor that would
result in the same number of spike-in Drosophila tags for each sample.

Merged region analysis. To compare peak metrics between 2 or more samples,
overlapping Intervals (orange bars in diagram below) were grouped into “Merged
Regions” (green bars), which are defined by the start coordinate of the most
upstream Interval and the end coordinate of the most downstream Interval
(=union of overlapping Intervals; “merged peaks”). In locations where only one
sample has an Interval, this Interval defines the Merged Region. The use of Merged
Regions was necessary because the locations and lengths of Intervals are rarely
exactly the same when comparing different samples. Furthermore, with this
approach fragment density values could be obtained even for samples for which no
peak was called.
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Annotations. After defining the Intervals and Merged Regions, their genomic
locations along with their proximities to gene annotations and other genomic
features are determined. In addition, average and peak (i.e. at “summit”) fragment
densities within Intervals and Merged Regions were compiled.

Differential binding analysis. DESeq2 was used to determine regions of differential
binding.

Active motif provided us with a list of program versions listed here bcl2fastq2
(v2.20), bwa (v0.7.12), Samtools (v0.1.19), BEDtools (v2.25.0), MACS2 (v2.1.0),
SICER (v1.1), wigToBigWig (v4).

Hi-C
In situ Hi-C. OVCAR3 cells were grown under recommended culture conditions in
RPMI media supplemented with 10% FBS and 1% penicillin/streptomycin. Four to
five million cells were fixed with 1% formaldehyde for 10 min, then cell pellets were
flash frozen and stored at −80 °C.

In situ Hi-C was performed as previously described92. In short, pellets were lysed
in ice-cold Hi-C lysis buffer (10mM Tris–HCl pH 8.0, 10 mM NaCl, 0.2% IGEPAL
CA630) with 50 μL of protease inhibitors for 15min on ice. Cells were pelleted and
washed once more using the same buffer. Pellets were resuspended in 50 μL of 0.5%
SDS and incubated at 62 °C for 7 min. Reactions were quenched with 145 μL water
and 25 μL 10% Triton X-100 at 37 °C for 15min. Chromatin was digested overnight
with 25 μL of 10X NEBuffer2 and 100U of MboI at 37 °C with rotation.

Reactions were incubated at 62 °C for 20 min to inactivate MboI, then cooled to
RT. Fragment overhangs were repaired by adding 37.5 μL 0.4 mM biotin-14-dATP;
1.5 μL each 10 mM dCTP, dGTP, dTTP; 8 μL 5U/μL DNA Polymerase I, Large
(Klenow) Fragment and incubating at 37 °C for 1.5 h with rotation. Ligation was
performed by adding 673 μL water, 120 μL 10X NEB T4 DNA ligase buffer, 100 μL
10% Triton X-100, 6 μL 20mg/mL BSA, and 1 μL 2000 U/μL T4 DNA ligase and
incubating at RT for 4 h with slow rotation. Samples were pelleted at 2500×g,
resuspended in 432 μL water, 18 μL 20mg/mL proteinase K, 50 μL 10% SDS, and
46 μL 5M NaCl, incubated at 55 °C for 30 min, and then transferred to 68 °C
overnight.

Samples were cooled to RT and 1.6× volumes of pure ethanol and 0.1× volumes
of 3 M sodium acetate pH 5.2 were added to each sample, which were subsequently
incubated at −80 °C for over 4-6 h. Samples were spun at max speed at 2 °C for
15 min and washed twice with 70% ethanol. The resulting pellet was dissolved in
130 μL of 10 mM Tris–HCl pH 8.0 and incubated at 37 °C for 1–2 h. Samples were
stored at 4 °C overnight.

DNA was sheared using the Covaris LE220 (Covaris, Woburn, MA) to a
fragment size of 300–500 bp in a Covaris microTUBE. DNA was transferred to a
fresh tube and the Covaris microTUBE was rinsed with 70 μL of water and added
to the sample. A 1:5 dilution of DNA was run on a 2% agarose gel to verify
successful shearing.

Sheared DNA was size selected using AMPure XP beads. 0.55× volumes of 2×
concentrated AMPure XP beads were added to each reaction and incubated at RT
for 5 min. Beads were reclaimed on a magnet and the supernatant was transferred
to a fresh tube. 30 μL of 2× concentrated AMPure XP beads were added and
incubated for 5 min at RT. Beads were reclaimed on a magnet and washed with
fresh 70% ethanol. Beads were dried for 5 min at RT prior to DNA elution in
300 μL of 10 mM Tris–HCl pH 8. Undiluted DNA was run on a 2% agarose gel to
verify successful size selection between 300 and 500 bp.

150 μL of 10 mg/mL Dynabeads MyOne Streptavidin T1 beads were washed
with 400 μL of 1× Tween washing buffer (TWB; 250 μL Tris–HCl pH 7.5, 50 μL
0.5 M EDTA, 10 mL 5M NaCl, 25 μL Tween 20, 39.675 μL water). Beads were then
resuspended in 300 μL of 2X binding buffer (500 μL Tris–HCl (pH 7.5), 100 μL
0.5 M EDTA, 20 mL 5M NaCl, 29.4 mL water), added to the DNA sample, and
incubated at RT for 15 min with rotation. DNA-bound beads were then washed
twice with 600 μL of 1X TWB at 55 °C for 2 min with shaking. Beads were
resuspended in 100 μL 1× NEBuffer T4 DNA ligase buffer, transferred to a new
tube, and reclaimed.

Sheared ends were repaired by resuspending the beads in 88 μL of 1× NEB T4
DNA Ligase Buffer with 1mM ATP, 2 μL of 25mM dNTP mix, 5 μL of 10 U/μL
NEB T4 PNK, 4 μL of 3 U/μL NEB T4 DNA polymerase I, and 1 μL of 5 U/μL NEB
DNA polymerase 1, large (Klenow) fragment and incubating at RT for 30 min.
Beads were washed two more times with 1× TWB for 2 min at 55 °C with shaking.
Beads were washed once with 100 μL of 1× NEBuffer 2, transferred to a new tube,
and resuspended in 90 μL of 1X NEBuffer 2, 5 μL of 10mM dATP, and 5 μL of NEB
Klenow exo minus, and incubated at 37 °C for 30 min. Beads were washed two more
times with 1× TWB for 2 min at 55 °C with shaking. Beads were washed in 100 μL
1× Quick Ligation Reaction Buffer, transferred to a new tube, reclaimed, and
resuspended in 50 μL of 1× NEB Quick Ligation Reaction Buffer. 2 μL of NEB DNA
Quick Ligase and 3 μL of an appropriate Illumina indexed adapter (TruSeq nano)
were added to each sample before incubating at RT for 15min. Beads were
reclaimed and washed twice with 1× TWB for 2 min at 55 °C. Beads were washed in
100 μL 10mM Tris–HCl pH 8, transferred to a new tube, reclaimed and
resuspended in 50 μL of 10mM Tris–HCl pH 8.

Hi-C libraries were amplified directly off T1 beads with 10 cycles in 5 μL of PCR
primer cocktail, 20 μL of Enhanced PCR mix, and 25 μL of DNA on beads. The
PCR settings were as follows: 3 min at 95 °C followed by 4-12 cycles of 20 s 98 °C,

15 s at 60 °C, and 30 s at 72 °C. Samples were held at 72 °C for 5 min before
lowering for holding at 4 °C. Amplified samples were transferred to a new tube and
brought to 250 μL in 10 mM Tris–HCl pH 8.

Beads were reclaimed and the supernatant containing the amplified library was
transferred to a new tube. Beads were resuspended in 25 μL of 10 mM Tris–HCl pH
8 and stored at −20 °C. 0.7× volumes of warmed AMPure XP beads were added to
the supernatant sample and incubated at RT for 5 min. Beads were reclaimed and
washed once with 70% ethanol without mixing. Ethanol was aspirated. Beads were
resuspended in 100 μL of 10 mM Tris–HCl pH 8, 70 μL of fresh AMPure XP beads
were added, and the solution was incubated for 5 min at RT. Beads were reclaimed
and washed twice with 70% ethanol without mixing. Beads were left to dry and
DNA was eluted in 25 μL of 10 mM Tris–HCl pH 8. The resulting libraries were
next quantified by Qubit and Tapestation. A low-depth sequence was performed
first using the Miniseq sequencer system (Illumina) and analyzed using the Juicer
pipeline to assess quality. The resulting libraries underwent paired-end 2 × 150 bp
sequencing on an Illumina NovaSeq sequencer. Each replicate was sequenced to an
approximate depth of 730 million reads. The full sequencing depth was
approximately 2.92 billion reads.

Hi-C data processing and analysis. In situ Hi-C datasets were processed using
dietJuicer, a modified version of the Juicer Hi-C pipeline (https://github.com/
EricSDavis/dietJuicer), using default parameterization93. Reads were aligned to the
hg19 human genome (using Mbol restriction enzyme) with bwa (version 0.7.17).
Four biological replicates were aligned and then these replicates were merged for a
total of 2,922,558,308 Hi-C read pairs in OVCAR3 cells yielding 2,598,024,810
valid Hi-C contacts (88.90%). The resulting Hi-C contact matrix was next nor-
malized with the “KR” matrix balancing algorithm. This was done in order to
adjust for regional background differences in chromatin accessibility and allow for
proper visualization of this data94.

CRISPR-KO gene targets were identified as direct or indirect targets using Hi-C
contact frequency. Specifically, we compared the fold-change in observed over
expected contact frequency between SE14 or SE60 and their respective gene targets
with 100 permutations of distance-matched region-gene pairs as controls. Since
distance-matching is only relevant for regions within a chromosome, we restricted
our analysis to intra-chromosomal pairs. Direct targets were defined as SE-gene
pairs with an observed/expected contact frequency greater than the 75th percentile
of the control distribution. We performed this analysis on (1) CRISPR-KO-
validated target genes and (2) significantly down-regulated (LFC <−0.5) CRISPR-
KO-validated target genes. The analysis was conducted in R (4.1.0) using the
following R/Bioconductor packages: GenomicRanges (1.45.0), data.table (1.14.2),
Homo.sapiens (1.3.1), InteractionSet (1.21.1), plyranges (1.13.1), ggplot2 (3.3.5),
ggrepel (0.9.1)95. Example regions were visualized with the plotgardener (1.0.3)
Bioconductor package. Scripts can be made available upon request96.

Hi-C ABC analysis. We used the ABC method62 with slight modifications to
determine direct super-enhancer (SE) KO target genes. BRD4 signal for each SE
was used to measure enhancer activity and 50 kb resolution, KR-normalized Hi-C
counts were used to measure contact between each SE and their putative target
genes. Putative targets were defined as expressed genes (baseMean > 100 counts).
Activity and contact vectors were log2-transformed and scaled before being mul-
tiplied together to create an ABC score for each SE-target pair.

Single-cell analysis
Data acquisition. We obtained the single-cell RNA-seq and single-cell ATAC-seq
data from the GEO accession number GSE173682.

scRNA-seq data processing and barcode quality-control (QC). The filtered feature-
barcode matrix was converted into a Seurat object for each patient tumor sample using
the Seurat R package (Seurat version 3.2)97. QC and doublet removal were performed
for each patient dataset individually to emrich for high-quality cells. Outlier cells were
defined in each of the following metrics: log(UMI counts) (>2 MADs, low end),
log(percent mitochondrial read count +1) (>2 MADs, high end), and log(number of
genes expressed) (>2 MADs, low end). Non-outlier cells, according to all three criteria,
were kept for doublet detection. Cells marked as doublets by both
DoubletDecon98(version 1.1.5) and DoubletFinder99 (version 2.0.3) were removed
from downstream analysis.

scRNA-seq clustering and cell type annotation. Seurat objects were normalized using
Seurat’s NormalizeData() with the normalization method set to “LogNormalize.”
Seurat’s FindVariableFeatures() was used for feature selection with the selection
method set to “vst” and the number of top variable features set to 2000. Prior to
principal component analysis (PCA), gene expression values were scaled using Seurat’s
ScaleData(). The top 2000 most variably expressed genes were summarized by PCA
and the cells were visualized in a two-dimensional UMAP plot using Seurat’s
RunUMAP() with 50 principal components (PCs), as suggested by the results of
Seurat’s JackStraw(). To cluster cells, graph-based Louvain clustering was performed
using Seurat’s FindNeighbors() with all 50 PCs and Seurat’s FindClusters() with a
resolution of 0.7. scRNA-seq UMAP plots were generated in R using ggplot2.
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Cell type annotation was performed using the R package SingleR100 and was
verified with gene signature enrichment scores using Seurat’s AddModuleScore(). Both
scRNA-seq datasets used in this study were annotated based on a reference scRNA-seq
dataset from a human ovarian tumor (sample ID: HTAPP-624-SMP-3212)101. The
individual patient datasets were then combined using Seurat’s merge() and
subsequently reprocessed according to the normalization, feature selection, and
clustering methods described above. The resulting clusters in the merged dataset were
annotated based on the majority of cell type label within each cluster. SingleR cell type
annotations were verified by calculating cell type gene signature enrichment scores
from PanglaoDB102 using Seurat’s AddModuleScore().

scRNA-seq differential gene expression analysis. Differential gene expression was
computed using Seurat’s FindMarkers() with the “test.use” parameter set to “wil-
cox” for the Wilcoxon Rank Sum test. Genes with a Bonferroni-corrected P-
value ≤ 0.01 and average logFC ≥ 0.1 were deemed upregulated in the cancer epi-
thelial fraction relative to the remaining cell type clusters.

scATAC-seq data processing and barcode quality-control (QC). The scATAC-seq
fragments file for each patient tumor sample was read into the R package ArchR
(version 0.9.3) to perform barcode quality control and doublet removal103. To
enrich for cellular barcodes, log10(TSS enrichement+1) and log10(number of
unique fragments) were used as QC metrics, both of which showed a bimodal
distribution. Gaussian mixture models (GMM), implemented in the R package
mclust104, were used to estimate barcode cutoff thresholds for log10(TSS enrich-
ment+1) and log10(number of unique fragments). Barcodes above these GMM-
estimated thresholds in both metrics were retained. ArchR’s addDoubletScores()
function was used to calculate doublet enrichment scores with the knnMethod set
to “UMAP” and putative doublets were then filtered out using ArchR’s filter-
Doublets() with default parameters.

scRNA-seq cell type label transfer to scATAC-seq. Prior to transferring labels from
scRNA-seq to scATAC-seq, ArchR’s addGeneScoreMatrix() was used to infer gene
activity scores in scATAC-seq using default parameters. ArchR’s addGeneInte-
grationMatrix() was used to assign each of the scATAC-seq cells a cell type sub-
cluster identity from the matching scRNA-seq data and an associated label
prediction score97. Of note, this label transfer procedure was constrained to only
align cells of the same patient dataset. Only scATAC-seq cells with a label pre-
diction score >0.5 were included in downstream analyses. Moreover, only inferred
cell type subclusters with >30 cells were included in the downstream analysis.

scATAC-seq peak calling and data visualization. Pseudo-bulk replicates were gen-
erated for each inferred cell type subcluster using the R package ArchR and
pseudo-bulk peak calling was performed within each inferred cell type subcluster
using MACS236,103. The peak calls from each inferred cell type subcluster were
then merged into a single profile using ArchR’s default iterative overlap procedure
to create a merged peak by barcode matrix across all cellular barcodes from both
patient tumor samples. ArchR’s plotBrowserTrack() was used to visualize the
scATAC-seq coverage per inferred cell type.

scATAC-seq differential peak accessibility for determining cancer-enriched enhan-
cers. ArchR’s getMarkerFeatures() was used for differential peak accessibility
analysis with the bias argument set to include both “TSSEnrichment” and
“log10(number of fragments).” Differentially accessible peaks (DEPs) were iden-
tified for each cell cluster by comparing the accessibility values of peaks across all
cells in a cluster (group 1) relative to the accessibility values for a group of back-
ground cells matched for TSS enrichment and read depth (group 2). This com-
parison was made between cancer clusters (group 1) and all remaining cell-type
clusters (group 2). Peaks with Benjamini–Hochberg FDR ≤ 0.10 and Log2FC ≥ 0.25
were deemed cancer-enriched with statistically significant increased accessibility
relative to the non-cancer fraction.

Enhancer motif analysis in scATAC-seq. Bedtools getfasta() was used to extract the
sequences of select cancer-enriched enhancers according to the hg38 reference
genome105. FIMO motif scanning with default parameters was applied to the
enhancer sequences using a motif database supplied by JASPAR202064,106. FIMO
motif results were ranked by Benjamini–Hochberg corrected q-values and TF
expression in the cancer fraction by summing the normalized TF counts across all
cells within the cancer epithelial clusters. Seurat’s VlnPlot() was used to generate
TF expression violin plots.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated in this study (CRISPRi/CRISPR KO RNA-seq, Hi-C, and H3K9me3 ChIP-
Seq) have been uploaded and are publicly available in the Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/geo/) database under the accession number GSE174259.

The single cell genomics data were downloaded from GEO accession number
GSE17368243. The H3K27ac ChIP-seq and BRD4 ChIP-seq were downloaded from GEO
accessions GSE10140828 and GSE7756828, respectively. All FTSEC data was downloaded
from GEO accession GSE6810438. TCGA expression and copy-number data10 (RNA-seq
and CNV data) was downloaded using the TCGA repository Firebrowse (http://
firebrowse.org/) and survival data was attained from the supplement of the TCGA
clinical paper44. All ENCODE data was downloaded from the Screen database37 (https://
screen.encodeproject.org/#).

Kaplan–Meier plots for gene set survival analysis were created with the publicly
available KM Plot tool34,35 (https://kmplot.com/analysis/). Patient data from Fig. 1b, c
are publicly available through CBioPortal6,31 (https://bit.ly/3QY91sa). The bar chart from
Fig. 1b can be found under Cancer Types Summary. The boxplot from Fig. 1c can be
generated under Plots by plotting TCGA PanCanAtlas Cancer Type Acronym vs. mRNA
Expression, RSEM (Batch normalized from Illumina HiSeq_RNASeqV2)
(log2(value+ 1)) and sorting the categories by a median. For both Fig. 1b, c, the 16
highest altered/expressed TCGA cancer types are presented.

The remaining data are available within the article, Supplementary Information, or
Source Data file. Source data are provided with this paper.

Code availability
Programs and Scripts for the bulk data analysis, mentioned in the methods, are located at
the Github repository https://github.com/mkelly9513/OV-Project-One/releases/tag/v1.1.3
(Release version 1.1.3).

Programs and scripts for the single cell data analysis are located at the Github
repository https://github.com/RegnerM2015/scOVAR_SE_Screen/releases/tag/v1.0.0
(Release version 1.0.0).

Programs and scripts for the Hi-C data analysis are available on request to https://
github.com/EricSDavis (no “original” scripts were used). There are no conditions
required to access these scripts aside from contacting the above individual.
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