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Tumor immune microenvironment of self-identified African
American and non-African American triple negative breast
cancer
Michal Marczyk1,2, Tao Qing3, Tess O’Meara3,9, Vesal Yagahoobi4, Vasiliki Pelekanou4,10, Yalai Bai4, Emily Reisenbichler 4,
Kimberly S. Cole4,11, Xiaotong Li5, Vignesh Gunasekharan2,3, Eiman Ibrahim6, Kristina Fanucci 2, Wei Wei2,7, David L. Rimm 2,3,4,
Lajos Pusztai 2,3✉ and Kim R. M. Blenman 2,3,8✉

Differences in the tumor immune microenvironment may result in differences in prognosis and response to treatment in cancer
patients. We hypothesized that differences in the tumor immune microenvironment may exist between African American (AA) and
NonAA patients, due to ancestry-related or socioeconomic factors, that may partially explain differences in clinical outcomes. We
analyzed clinically matched triple-negative breast cancer (TNBC) tissues from self-identified AA and NonAA patients and found that
stromal TILs, PD-L1 IHC-positivity, mRNA expression of immune-related pathways, and immunotherapy response predictive
signatures were significantly higher in AA samples (p < 0.05; Fisher’s Exact Test, Mann–Whitney Test, Permutation Test). Cancer
biology and metabolism pathways, TAM-M2, and Immune Exclusion were significantly higher in NonAA samples (p < 0.05;
Permutation Test, Mann–Whitney Test). There were no differences in somatic tumor mutation burden. Overall, there is greater
immune infiltration and inflammation in AA TNBC and these differences may impact response to immune checkpoint inhibitors and
other therapeutic agents that modulate the immune microenvironment.
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INTRODUCTION
An important histologic feature of triple-negative breast cancer
(TNBC) is greater immune cell infiltration compared to estrogen
receptor-positive cancers. The degree of immune infiltration is the
most consistently reported prognostic and chemotherapy treat-
ment response predictive marker in TNBC1. Both high stromal
tumor-infiltrating lymphocyte (sTILs) scores and high immune-
related gene expression, including PD-L1, predict better prognosis
and higher pathologic complete response (pCR) rates to
neoadjuvant chemotherapy with or without immune checkpoint
inhibitors2–5. In metastatic TNBC, PD-L1 protein expression is
required for benefit from immune checkpoint inhibitors (atezoli-
zumab; pembrolizumab) with chemotherapy5–8.
Response rates to neoadjuvant chemotherapy in stage I-III TNBC

and survival are unequal between patients of different ancestries.
In a large population-wide study, the pCR rate is statistically
significantly higher in Non-African American (NonAA) compared
to African American (AA) patients with TNBC. This difference
persisted even after adjusting for age, clinical and histopathologic
factors, comorbidity index, and socioeconomic factors including
facility type, geographic region, insurance status, census-derived
median income, and length of therapy, suggesting potential
biological differences that influence treatment response9–13. We
hypothesize that differences in the tumor immune microenviron-
ment may exist between AA and NonAA patients, due to ancestry-
related or socioeconomic factors, and these differences may
partially drive the differences in clinical outcomes. We previously

performed gene expression analysis of AA and NonAA patients in
The Cancer Genome Atlas (TCGA). We found no consistent
differences in AA relative to NonAA TNBC in immune gene
expression or CIBERSORT cell types14. The purpose of the current
study was to further characterize the pretreatment immune
microenvironment of patients self-identified as NonAA or AA
using multiple analytical methods including germline and somatic
whole-exome sequencing (WES), tumor RNA sequencing (RNA-
seq), and histology analysis (Supplementary Fig. 1).

RESULTS
Patient characteristics and analysis sets
The two ancestry cohorts were matched for age, stage, grade,
histology, and date of diagnosis, however, AA patients had higher
rates of obesity (p= 0.045; Fisher’s Exact Test), hypertension
(p= 0.0046; Fisher’s Exact Test), and type II diabetes mellitus
(p= 0.0003; Fisher’s Exact Test). Among AA patients 72.2%
received adjuvant chemotherapy, among those who received
chemotherapy 46.2% received a combination of a taxane and
anthracycline. Among the NonAA patients with known treatment
history, these proportions were 79.1% and 70.6%, respectively.
These differences did not reach statistical significance (p= 0.0569;
Fisher’s Exact Test) (Table 1). AA patients experienced higher local
or distant recurrences (33.3% versus 14.3%; p= 0.0238, Fisher’s
Exact Test), and a trend for worse recurrence-free survival
(p= 0.0612; Mantel–Cox Test) (Supplementary Fig. 2).
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Mutation frequencies in genes and pathways
There was no difference in tumor mutational burden between the
two cohorts (Fig. 1A). Seventy-three percent of patients (n= 66/
90) had ≥1 functional impact somatic mutation (Supplementary
Data File Tables 1 and 2 and Supplementary Fig. 3A). Seventeen
genes were significantly differentially affected by somatic muta-
tions between the cohorts (p < 0.05; Fisher’s Exact Test) without
correction for multiple testing). Twelve genes were more
frequently mutated in NonAA patients and 5 genes were more
frequently mutated in AA patients (Fig. 1B). Three of those genes
(HLA-A; CEACAM1; CD55) were involved in immune functions.
HLA-A was more frequently mutated in NonAA samples. CEACAM1
and CD55 were more frequently mutated in AA samples
(Supplementary Data File Tables 1 and 2; Supplementary Fig.
3A). TCGA data from TNBC patients partially validated these
observations (Supplementary Data File Table 3; Supplementary
Fig. 4A, C).
11,887 somatic mutations were detected and mapped to

pathways (Fig. 1C–E). Inflammation, immunity (adaptive; innate),
antigen presentation, and allograft rejection pathways were
significantly more affected by mutations in AA samples compared
to NonAA. Among metabolic pathways, amino acid transporters
and tryptophan kynurenine metabolism were more frequently
affected by mutations in AA samples. Supplementary Fig. 3B–I
show the leading-edge genes whose mutations drive the findings
in the mutated pathways. While individual mutations were not
recurrent, mutations affected chemokines (CCR7, CCR1, CXCL1),
metabolism genes (IDO1), antigen presentation genes (HLA-DRA,
HLA-DOA), immune checkpoint genes (PD1, CTLA4), and key
immune cell genes (B cells (CD79A), T cells (CD4, CD8),
macrophages (NLRP3) (Supplementary Fig. 3C–I). In NonAA
patients, only genes assigned to heme metabolism pathway were
more frequently mutated. A closer look at the leading-edge genes
in the heme metabolism pathway revealed many genes that are
relevant for cancer biology including antigen processing (CTSE),
cell adhesion (ICAM4), TLR signaling (MFHAS1), neutrophil
chemotaxis (MPP1), metabolism (ACSL6, PC, HAGH), cytokine
production/regulation (TMEM9B, USP15, RIOK3), and apoptosis
(BNIP3L, HTATIP2) (Supplementary Fig. 3B).

Differentially expressed genes and pathways
Thirty-three genes had significant differential expression. Eighteen
genes were more highly expressed in AA samples (Fig. 2A,
Supplementary Data File Table 4, Supplementary Fig. 5A)
including genes involved with B cell function (IGKV1D-17,
IGLV6–57, IGHV1-69-2), neutrophil and cell migration (PREX1), cell
adhesion (ITGB6), cell motility (MYO7A), metabolism (SULT1C2,
GLDC, PLA2G4C), and immune tolerance (HLA-G). Sixteen genes
were more highly expressed in NonAA samples (Fig. 2A,
Supplementary Data File Table 4, Supplementary Fig. 5A)

Table 1. Patient characteristics.

Total patients (n= 110) NonAA
(n= 56)

AA (n= 54) p-
valued

Ethnicity

Hispanic or Latino 0 (0.0%) 1 (1.9%) 0.3657

Not Hispanic or Latino 41 (73.2%) 43 (79.6%)

Unknown 15 (26.8%) 10 (18.5%)

Clinical variables

Age (years), median 56.0 59.5 0.795a

Interquartile range (years) 49.0–67.3 50.8–66.0

Follow-up time
(years), median

5.9 6.4 0.344a

Interquartile range (years) 2.0–10.9 3.0–10.9

Recurrence rate, n (%) 0.0238b

Yesb 8 (14.3%) 18 (33.3%)

Nob 46 (82.1%) 34 (63.0%)

Unknown 2 (3.6%) 2 (3.7%)

Adjuvant chemotherapy, n
(%)

0.0569c

Anthracycline+ Taxanec 24 (42.9%) 18 (33.3%)

Otherc 10 (17.9%) 21 (38.9%)

None 9 (16.1%) 15 (27.8%)

Unknown 12 (21.4%) 0 (0%)

Chronic conditions

Obesity (BMI > 30), n (%) 14 (25.0%) 24 (44.4%) 0.045

Hypertension, n (%) 22 (39.3%) 36 (66.7%) 0.0046

Type 2 diabetes mellitus,
n (%)

5 (8.9%) 21 (38.9%) 0.0003

Autoimmunity (SLE, Sjogren’s
Disease, RA, IBD, MS, Type I
Diabetes Mellitus, Graves’ or
Hashimoto’s Disease), n (%)

6 (10.7%) 7 (13.0%) 0.774

Chronic kidney disease, n (%) 3 (5.4%) 8 (14.8%) 0.121

Hyperlipidemia, n (%) 17 (30.4%) 17 (31.5%) 1.000

Pathological variables

Stage, n (%) 0.407

I 22 (39.3%) 20 (37.0%)

II 28 (50.0%) 32 (59.3%)

III 6 (10.7%) 2 (3.7%)

Tumor size 0.269

T1 29 26

T2 24 24

T3 1 4

T4 2 0

Nodal status 0.488

N0 33 32

N1 14 18

N2 4 2

NA 5 2

Histological grade, n (%) 1.000

Well-differentiated 1 (1.8%) 0 (0.0%)

Moderately differentiated 10 (17.9%) 9 (16.7%)

Poorly differentiated 45 (80.4%) 45 (83.3%)

Breast cancer biomarkers

ESR1 mRNA normalized
expression, median (CI)

7.531
(7.000–7.924)

7.548
(7.287–8.435)

0.6339

Table 1 continued

Total patients (n= 110) NonAA
(n= 56)

AA (n= 54) p-
valued

ERBB2 mRNA normalized
expression, median (CI)

11.13
(10.76–11.25)

11.05
(10.90–11.57)

0.8278

PGR mRNA normalized
expression, median (CI)

5.661
(5.355–6.133)

6.087
(5.597–6.678)

0.6499

MKI67 mRNA normalized
expression, median (CI)

13.57
(12.50–13.62)

13.57
(12.68–13.63)

0.9981

ap-values determined by Mann–Whitney Test.
bYes versus No only.
cAnthracycline+ taxanes vs. Other only.
dp-values determined by Fisher’s Exact Test unless otherwise specified.
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including genes linked to blood clotting (PLG), cellular iron uptake
(MELTF), regulation of mammary gland lipid secretion (CIDEA,
PLIN4), metabolism (GPD1, PCK1, RPEL1), and cell growth and
differentiation (FGFR2).
Gene set enrichment analysis showed multiple immune-related

pathways enriched in AA samples including adaptive, innate, and
humoral immunity; inflammation; JAK-STAT; NFkB; cytokine
signaling; T cell receptor (TCR) & costimulatory signaling; IFN
responses (gamma; alpha); allograft rejection; IL6/TNFα/

IL2 signaling and complement pathways (Fig. 2B–D). In NonAA
samples, epithelial–mesenchymal transition, angiogenesis, adipo-
genesis, myogenesis, fatty acid metabolism, TGFβ signaling
pathways, UV-response, and hypoxia pathways were overex-
pressed. Leading-edge gene plots showing the top-ranked genes
driving the enrichment analysis results are shown in Supplemen-
tary Fig. 5B, C. For each of the 17 genes that were significantly
differentially affected by somatic mutations between the cohorts,
we found that the relationship between gene expression (i.e.,

Fig. 1 Genes and pathways affected by somatic mutations in Non-African American (NonAA) and African American (AA) TNBC patients.
A Tumor mutation burden with median (center line) and standard deviation. B Volcano plot of differentially mutated genes. Genes with
significantly different mutation frequencies are labeled and marked red. C–E Differential enrichment of mutations in pathways. Color coding
shows the directionality of enrichment. Stars indicate significantly differentially affected pathways (*p < 0.05, **p < 0.01, ***p < 0.001;
Mann–Whitney Test, Wald Test, Permutation Test).
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lower or higher expression) and mutation status varied from gene
to gene and across cohorts (Supplementary Data File Table 5).
Unsupervised clustering of 14,609 genes revealed 11 co-

expression modules indicated by different colors in Fig. 3A and
Supplementary Fig. 6. Three modules (turquoise, cyan, and green)
were significantly more highly expressed in NonAA patients
(p < 0.001; Permutation Test) and two modules (brown and light

cyan) in AA patients (p < 0.001; Permutation Test) (Fig. 3B). The
association between module membership, a measure of high
gene connectivity within a module, and test statistic used for
finding differentially expressed genes was negative in the
turquoise (p= 8.2e–14; Permutation Test) and green (p= 0.056;
Permutation Test) modules and positive in the brown (p < 2.2e–16;
Permutation Test) and light cyan (p < 2.2e–16; Permutation Test)

Fig. 2 Differentially expressed genes and pathways in Non-African American (NonAA) and African American (AA) TNBC patients.
A Volcano plot of differentially expressed genes (FDR < 0.05 and |log2 fold change | > 1 | )) are labeled and marked red. The number of up-
regulated genes are shown in bottom corners. B–D Gene set enrichment analysis of Nanostring hallmarks of cancer gene set (B), Nanostring
metabolic pathways (C), and hallmark pathways from MSigDB database (D). Color coding shows the directionality of enrichment. Stars
indicate significant results (*adjusted p < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001; Wald Test, Permutation Test).
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modules (Fig. 3C–G). Associated with the AA cohort, genes from
the brown and light cyan modules were enriched in pathways that
impacted the function of the immune system (Fig. 4). Associated
with the NonAA cohort, genes in the turquoise and green modules
were both enriched in pathways that impacted the function of the

cancer cells (Fig. 4). Additionally, genes in the cyan module were
enriched in pathways that affected cell metabolism (Fig. 4). This
unbiased co-expression analysis was consistent with the gene set
enrichment results indicating higher immune and inflammatory
gene expression in AA compared to NonAA TNBC. TCGA data from

M. Marczyk et al.
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TNBC patients partially validated this data with significantly
differential expression of PLA2G4C, SULT1C2, PWP2, and FGFR2
genes and enrichment of genes in the adaptive immunity,
interferon response (gamma; alpha), and JAK-STAT signaling
pathways (Supplementary Fig. 4B, D).

sTILs scores, PD-L1 protein expression, TIDE, and CIBERSORT
The percent of sTILs was significantly higher in AA compared to
NonAA samples (p= 0.0302; Mann–Whitney Test) (Supplementary
Fig. 7A). PD-L1 percent positivity was assessed with two clinically
used antibodies, SP142 and SP263. The SP142 assay showed
significantly higher PD-L1 expression in the AA cohort (p= 0.02;
Mann–Whitney Test) (Supplementary Fig. 7B). The SP263 assay
showed a similar trend but the difference has not reached
statistical significance (Supplementary Fig. 8A). Patients with a
higher level of sTILs and/or PD-L1 positivity had more favorable
recurrence-free survival outcomes regardless of self-reported race
(Supplementary Fig. 2). When the AA and NonAA cohorts were
divided into PD-L1 positive and negative or sTILs high (≥30%) and
low (<30%) biomarker groups, respectively, the PD-L1 positive and
sTILs high groups showed a strong trend for better recurrence-free
survival in NonAA patients. However, in AA patients, recurrence-
free survival benefit was weakly associated only with PD-L1
positivity (Supplementary Fig. 2). This data suggests that high
sTILs or PD-L1 expression is less of a good prognostic marker in AA
compared to NonAA.
We used TIDE and CIBERSORTx analysis to quantify immune

functions and immune cell types in the tumors. We found no
difference in the immune dysfunction, microsatellite instability
(MSI), myeloid-derived suppressor cells (MDSC), and cancer-
associated fibroblasts (CAF) scores, or in mRNA levels of CD274
(PD-L1) and CD8 (Supplementary Fig. 8B–G). On the other hand,
the tumor-associated macrophage TAM M2 score (p= 0.0004;
Mann–Whitney Test) and the Immune Exclusion score (p= 0.004;
Mann–Whitney Test) were significantly higher in NonAA patients
(Supplementary Fig. 7C, F). The “immune inflamed” signature
(Merck18) (p= 0.0170; Mann–Whitney Test) and the IFNG
signature (p= 0.0563; Mann–Whitney Test) scores were higher in
AA samples (Supplementary Fig. 7D, E). Similar to our previous
TCGA analysis14, CIBERSORTx immune cell types were not different
between the two cohorts (Supplementary Figs. 9 and 10).
We identified correlations between sTILs and key immune

signatures from CIBERSORTx and TIDE (Fig. 5, Supplementary Figs.
11 and 12). In AA samples, sTILs positively correlated with CD4 and
CD8 T cells, M1 macrophages, CD274 (PD-L1) score, NK cells, MSI
score, and immunotherapy response predictive signatures
(Merck18; IFNG), and negatively correlated with plasma cells,
mast cells, TAM M2 score, CAF score, and T cell Exclusion score. In
NonAA samples, sTILs positively correlated with immunotherapy
response predictive signatures (Merck18; IFNG), and negatively
correlated with M2 macrophages and TAM M2 score (Fig. 5,
Supplementary Figs. 11 and 12). There were no correlations with
other cell type scores (Supplementary Fig. 12). CIBERSORTx and
TIDE shared two similar populations, CD8 and M2 Macrophages.
The CIBERSORTx and TIDE CD8 positive populations had a positive
correlation. However, the TIDE TAM M2 score and CIBERSORTx

Macrophage M2 showed no correlation which is possibly due to
differences in the composition of these signatures and methods
(Supplementary Fig. 13).

DISCUSSION
The self-identified AA and NonAA TNBC patients in this study were
evenly matched for clinical and pathological variables. However,
we did find that AA patients had more comorbidities (obesity;
hypertension; type 2 diabetes mellitus), received less aggressive
therapies (46% of AA had taxanes/anthracycline combination
compared to 71% of NonAA patients), experienced higher
recurrence rates (33.3% vs. 14.3%), and worse recurrence free
survival. Differences in recurrence rates and mortality between AA
and NonAA patients have been repeatedly observed in the
literature and multiple factors contribute to it. At population level,
delayed access to care and to screening increases recurrence
rates, in institutional cohorts, like ours, higher co-morbidity rates
and greater difficulty to complete prescribed therapies could
explain much of the difference in outcome in stage matched
cases. We also note that survival comparisons in this study are
limited because of the small sample size and highly selected cases.
WES and RNAseq results revealed no differences in somatic

tumor mutation burden and only small differences in mutation
frequencies and expressions of genes. Among the genes more
frequently mutated in AA samples, CEACAM1 (NEO-201;
NCT03476681) and CD55 represent potential therapeutic targets.
Interactions between CEACAM5/6 on tumor cells and CEACAM1
on immune cells inhibit immune-mediated cytotoxicity15. CD55 is
a complement binding protein that inhibits complement
mediated cell lysis16,17. We previously reported that CD55
expression is higher in metastatic versus primary breast cancers
and may contribute to the immune attenuated microenvironment
of metastatic lesions18. TCGA partially validated the observations
in the Yale Cohort, however several of the genes more frequently
mutated in our cohorts were not measured in TCGA. This could be
due to processing differences including lower sequencing cover-
age in the TCGA, differences in variant calling methods between
studies, differences in source material since we worked with FFPE
while TCGA used frozen tissue, and small sample sizes in both
datasets coupled with substantial and inherent inter-tumor
variability19. A limitation of our analysis is that we cannot
determine from the single-nucleotide sequence alterations if the
effect is enhancement or reduction of the normal function of
these molecules.
A more consistent and previously unrecognized phenomenon

emerged when we analyzed somatic mutations at the pathway
level. Pathways impacting the immune system and metabolism
were more frequently affected by mutations in AA patients. The
affected genes varied from cancer to cancer, were not recurrent,
and therefore missed at the gene level.
Among the genes more highly expressed in NonAA patients,

FGFR2 and CD228 represent therapeutic targets. FGFR inhibitors
have been tested in breast cancer with modest success so far20,21.
CD228 is an iron and zinc transporter that is expressed in many
cells types22–25, and an anti-CD228-MMAE antibody–drug

Fig. 3 Gene co-expression network analysis. A Cluster dendrogram highlighting searching for gene co-expression modules. Final 11
modules are colored turquoise, black, gray, purple, cyan, brown, green, salmon, pink, greenyellow, and lightcyan. Biotype denote protein-
coding genes, IG genes, TR genes, lncRNAs, or other RNAs. Test statistic is from differential analysis using DESeq package. B Modules
description. First four columns show the module size and the number of genes categorized by biotype. Next two columns show p-values from
statistical test comparing expression in NonAA vs AA patients. Last four columns show the number of enriched pathways in gene set analysis.
C Association between module membership (correlation with module eigenvalue) and test statistic from DESEq2. Hub genes are those with
highest value of module membership. D–G Topology layouts of highest module membership genes in each module. Nodes are colored by
biotype. Size of the nodes is proportional to DESEq2 test statistic. Node shapes represent directionality of expression change (circle means
higher expression in AA, while square means higher expression in NonAA cohort).
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conjugate is in clinical trials (NCT04042480). Among the genes
more highly expressed in AA patients, drugs against HLA-G (TTX-
80; NCT04485013) and ITGB6 (SGN-B6A-MMAE antibody–drug
conjugate; NCT04389632) are in clinical trials. HLA-G is an MHC-I
molecule expressed on placental cells and cancer cells and
potentially mediates immune tolerance26–30. Interestingly the
expression of this gene is enriched in metastatic lesions versus
primary breast cancers18. ITGB6 is a cell adhesion receptor that
binds to ligands like fibronectin and TGFB1. It is upregulated in
cancers including breast cancer and is associated with increased
proliferation, migration, and invasion of cancer cells as well as
poor prognosis31,32. Whether any of these drugs will show
differential activity by self-identified race is unclear.
When we examined pathway-level differential expression, we

observed higher levels of expression of immune pathways in AA
TNBC. Many of these pathways were also more frequently affected
by somatic mutations. In NonAA patients, higher levels of
expression were observed in pathways related to cancer biology
and metabolism. Co-expression modules in unsupervised hier-
archical clustering validated these findings. In AA samples,
assessment of immune cell types and function through TIDE
analysis indicated lower tumor-associated macrophage M2, tumor
immune dysfunction and exclusion prediction scores, and higher

“immune inflamed” and interferon-gamma signatures, which have
previously been shown to predict response to immunotherapy.
The higher immune and inflammatory gene expression in AA

compared to NonAA TNBC was corroborated by higher histologic
sTILs scores and more frequent PD-L1 protein expression. In AA
samples, sTILs positively correlated with a broader array of
immune cells that promote anti-tumor response and negatively
correlated with cancer-associated fibroblasts (CAF) suggesting a
role for pro-tumor response which was not identified in NonAA
samples. Interestingly, in NonAA samples, sTILs negatively
correlated with M2 macrophages and TAM M2 score suggesting
a possibly different role for macrophages in tumor promotion in
these patient populations.
In our cohort, AAs had significantly higher comorbidities which

may result in chronic systemic inflammation that might prime the
immune system to be more reactive and therefore produce higher
levels of sTILs and PD-L1 positivity in the tumor microenviron-
ment. These comorbidities may also change the composition of
sTILs which may explain why we found that CD4 T cells positively
correlated with sTILs in AA samples and not NonAA samples. It is
possible that although the immune response seems to be more
prominent in AA TNBC tumor microenvironment, the anti-cancer
activity could be attenuated in the context of systemic low-level

Fig. 4 Pathways significantly enriched in the co-expression modules that were associated with African American (AA) (modules 6 and 11)
or (Non-African American (NonAA) modules 1,5, 7) cancers. A Nanostring cancer hallmarks, B MSigDB Hallmarks, and C Nanostring
metabolism (*p < 0.05, **p < 0.01, ***p < 0.001; Permutation Test).
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inflammation. However, an important limitation of this study is
that we were not measuring systemic inflammatory markers.
Our findings raise the possibility that immune checkpoint

inhibitors and other immunotherapy drugs might have differential

efficacy in AA patients. The IMpassion130 (NCT02425891) clinical
trial of atezolizumab with nab paclitaxel as first line chemotherapy
for metastatic TNBC had an enrollment of 6.0% AA women and
68.0% NonAA women. The improvement in survival was most

Fig. 5 Correlations between histological stromal TILs (sTILs) and key immune signatures in TNBC in Non-African American (NonAA) and
African American (AA) patients. A–F Deconvoluted CIBERSORTx immune cell fractions or G–L TIDE signature scores. Blue=NonAA. Red= AA.
p-values from linear regression.
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dramatic in PD-L1 positive AA patients (n= 21) resulting in a
hazard ratio (HR) of 0.07 [95.0% CI 0.01–0.55] compared to the HR
0.71 [95.0% CI 0.52–0.98] in NonAA patients33. The neoadjuvant
IMpassion031 trial also showed nominally higher absolute
increase pCR rate (18.0% versus 13.0%) in AA patients (n= 24)
compared to Caucasian patients (n= 210)34. However, the very
small number of AA patients in these trials make these
comparisons very preliminary. In addition, caution should be
exercised as an enhanced immune infiltration and inflammatory
microenvironment in AA TNBC may increase immunotherapy-
induced toxicity in number and/or severity.
Limitations of our approach include inherent inability to

account for all variables that impact inflammation in breast tissue,
although in our analysis we adjusted comparisons for obesity,
other factors such as diet, level of stress, or concomitant
medications could not be considered. In addition, we used self-
identified race found in medical records to assign NonAA and AA
categories, but we recognize patients come from a wide range of
countries, ethnicities, cultures, and environments which can
impact immune characteristics. However, our overall observations
are consistent with a more “inflamed” breast tumor microenviron-
ment in AA patients that was also observed by others35. These
correlative studies cannot answer the question why AA patients
have a more immune-active breast tumor microenvironment.
Socioeconomic factors contribute to rates of obesity, as well as
frequency and severity of co-morbid illnesses that can affect stress
level which in turn could affect the immune system. Correlation
between socioeconomic status, comorbidities, and poorer cancer
survival is observed in all racial groups in the USA. The impact on
comorbidities on outcome have also been shown in other
countries. A recent study in 445 NonAA patients in France and
Belgium showed that high sTILs were associated with pCR,
increased event-free survival, and overall survival in lean patients
but not in patients with BMI > 2536. These findings are important
as they suggest that comorbidities should be considered for de-
escalation trials that use sTILs for patient stratification. In addition,
a recent study utilizing the TCGA database37 and a review on
genetic diversity in Africa38 have suggested that phenotypic and
genetic variation in the immune system is heritable and adaptive.
In our study, we found no differences in functional impact
germline mutation frequencies in cancer-relevant genes between
NonAA and AA cases. We only observed differences at somatic
mutation and gene expression levels. In addition, although
average inflammatory signatures were higher in AA patients,
many NonAA patients also had high inflammatory gene signa-
tures. Group-level analysis is helpful in uncovering potential
population differences, but individual patient immune profiles are
required to treat the patient regardless of their ancestry.
In conclusion, there is greater immune infiltration and

inflammation in TNBC of AA patients and greater alterations and
expression of genes that directly impact cancer cells and cellular
metabolism in NonAA patients. We also identified several
therapeutic targets that are currently in clinical development that
could potentially be tested in TNBC patients. Studies such as ours
highlight the need to ensure that all ancestries and ethnicities are
appropriately represented in clinical research to learn about
potential differences in treatment response.

METHODS
Patient population and samples
Formalin-fixed paraffin-embedded (FFPE) pretreatment surgically resected
cancer and paired normal tissues, and corresponding electronic medical
record clinical information were collected for 56 NonAA and 54 AA Stage
I-III TNBC at Yale Cancer Center between 2000 and 2017. The two cohorts
were selected to match for age at diagnosis, tumor size, nodal status,
histologic grade, and year of diagnosis (Table 1). The sample size reflects
the maximum number of available cases that met the selection criteria.

This sample size provides an 80.0% power to detect an effect size of 0.53
and a 90.0% power to detect an effect size of 0.6 when comparing
distributions of the molecular variables. The number of cases available for
the different types of molecular analyses and sample disposition are
shown on Supplementary Fig. 1. This study was approved by the Yale
Human Investigation Committee.

Isolation of DNA and RNA from TNBC and normal tissue
DNA and RNA isolation and sequencing were performed at the Yale Center
for Genome Analysis39. Briefly, for each case, ten 10 µm FFPE curls were
obtained, four curls were used for somatic and germline DNA extraction
and two curls for RNA extraction. DNA and RNA were isolated using the
QIAamp DNA FFPE Tissue Kit (QIAGEN, cat. no. 56404) and RNeasy FFPE Kit
(QIAGEN, cat. no. 75304), respectively, following the manufacturer’s
instructions. Quality and concentration of isolated DNA and RNA was
tested on the Agilent 2100 Bioanalyzer system. DNA and RNA sequencing
were performed at the Yale Center for Genome Analysis.

Whole exome sequencing (WES)
Genomic DNA (1 μg) of tumor and matching normal tissue was sheared to
a mean fragment length of 220 bp using the Covaris E210 instrument,
purified by Magnetic AMPure XP Beads (Beckman Coulter), and labeled
with 6-base barcode during PCR amplification39. Exomes were captured
using the IDT xGen Exome Research Panel v1.0. Libraries were sequenced
on Illumina HS4000 Illumina instrument using 100-base pair paired-end
reads by multiplexing four tumor samples per lane to sequence to a
median coverage of 142× for tumor samples and 66× for normal samples.

Somatic mutation and pathway analysis
Raw sequencing data was generated by the Hiseq400 in the Yale Center for
Genome Analysis. Sequencing data of tumor and matched normal samples
were mapped to the human reference genome vGRCh38 using
Burrows–Wheeler Aligner (v0.7.15)40. PCR duplicates were marked in the
aligned BAM file using picard (v 2.17.11, http://broadinstitute.github.io/
picard/). Indelrealigner and RealignerTargetCreator kits of GATK (v3.4)41

were used to adjust the alignment of indel regions.
Mutect was used (v.1.1.4)42 to identify somatic single nucleotide variants

(SNV). IndelGenotyper (36.3336) of GATK (v3.4) was used for somatic indel
calling. Variants that were considered likely to be germline in dbSNP were
excluded. The following quality metrics were then applied to the mutation
data to select usable cases for downstream analyses: number of reads,
mean coverage, and PCR duplication rate in normal and cancer samples.
Cases with lower quality criteria than others, based on Tukey criterion, for
at least one of the metrics described above were excluded from all
mutation analyses (45 AA and 45 NonAA samples remain). To control for
the false positive rate of germline variants calling, low-quality variants were
removed. Since distribution of coverage in normal and tumor samples was
different (higher in tumor), we removed variants that had a coverage rate
too low based on Tukey criterion, in either normal or cancer samples
leaving 29,322 unique variants.
Missense, nonsense, frameshifting, splice-site altering single-nucleotide

changes, and indels were selected as functional impact somatic mutations.
A gene was considered mutated if at least one functional impact mutation
was found within its region. Tumor mutational burden (TMB) was defined
as the number of somatic mutations per sequenced megabase of exome
region. The mutation frequency of a gene was defined as the ratio of the
number of cases with ≥1 functional impact somatic mutation per total
number of cases in AA or NonAA. For genomic data in TCGA, somatic
mutations of 50 AA and 90 NonAA TNBC cases were obtained from the
MC3 dataset43.
Fisher’s exact test was used to find differentially mutated genes between

the two cohorts. Log odds ratios with a Haldane–Anscombe correction
were calculated to quantify the magnitude of mutation rate difference.
Pathway enrichment analysis was performed using the fgsea package in
R44 on pathways included in the Nanostring hallmarks of cancer gene set
(n= 21), Nanostring metabolic pathways (n= 36), and hallmark pathways
from MSigDB database45 (n= 50). Log odds ratio was used as a gene rank
value in fgsea.

RNA sequencing (RNAseq)
RNA sequencing libraries were prepared from 1 µg of RNA using PolyA
selection with oligo-dT beads, followed by random priming using the
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Illumina TruSeq Stranded Total RNA kit. Samples were sequenced with a
target coverage of 50 million reads, paired-end, using the Illumina
NovaSeq 6000 S4 platform. Raw sequencing reads were assessed for
quality using FastqQC v0.11.546 and adapter sequences were removed
using Trimmomatic v0.3647. During pre-processing, paired-end RNA fastq
files were aligned to the reference genome Hg38 using the STAR method
with two-pass mode and default parameters48. Gene expression was
quantified using RSEM v1.3.049. The following quality metrics were then
applied to the pre-processed RNA-sequencing data to select usable cases
for downstream analyses: number of paired reads, percent uniquely
mapped reads, percent counts within exons, percent counts in protein
coding genes, and average distance of coverage distribution. Cases with
lower quality criteria than others and fewer than 5 million counts in exons
were excluded from all gene expression analyses. The ESTIMATE algorithm
was used on pre-processed RNA sequencing data to compare the purity of
tumor tissue in each sample50. Purity for NonAA was 1125.89 with a range
of −1696.49 to 4007.213 and for AA it was 1350.19 with a range of
−475.93 to 3789.79 based on gene expression.

Gene expression and pathway enrichment analysis
To find the genes that were differentially expressed (FDR < 0.05 and log2
fold change | >1 | ) between NonAA and AA, we used the DESEq2 package
in R51. Two covariates were added to the model: (i) stromal score obtained
by ESTIMATE R package to normalize for different tumor purity between
samples; and (ii) patient obesity as a significant clinical variable. For
expression data from TCGA, 19,885 expressed genes from RNAseq were
obtained from 50 AA and 92 NonAA TNBC cases. DESEq2 was used with
stromal score as covariate. Gene-set enrichment analysis (GSEA; Permuta-
tion Test) was performed using the fgsea package in R44 and DESeq2 test
statistics (Wald Test) as rank value.
Gene co-expression network analysis was performed using WGCNA

package in R52. The DynamicTree Cut algorithm53 was used to identify the
modules of clusters of highly interconnected genes. Each module is
represented using a different color. Module eigengenes (MEs) were
estimated as 1st principal component of expression of genes in a module
and then used to merge similar modules using hierarchical clustering. To
quantify module membership (MM), the biweight midcorrelation between
expression profile of each gene and ME was calculated. Association
between modules and NonAA or AA was evaluated using two methods: (i)
GSEA test—GSEA (Permutation Test) as described above with genes
annotated to each module treated as different gene sets; (ii) LR test—
logistic regression model comparing expression of MEs between NonAA
and AA. Pathway enrichment analysis was performed on genes in each
module separately as described above. Modules of co-expressed genes
were visualized using undirected graphs (igraph R package)54 with
topological overlap measure.

Analysis of cellular composition with TIDE and CIBERSORTx
gene signatures
The Tumor Immune Dysfunction and Exclusion (TIDE) web-based tool was
used to evaluate the potential of tumor immune escape using gene
expression profiles including “immune inflamed” Merck18 signature score
(Merck18), interferon-gamma response signature (IFNG) score, microsatel-
lite instability (MSI) score, CD274 (PD-L1 gene), CD8 (average of CD8A+
CD8B) genes, T cell dysfunction score, T cell exclusion score, myeloid-
derived suppressor cell (MDSC) score, cancer-associated fibroblast (CAF)
score, and tumor-associated macrophage M2 type (TAM M2) score55–57. To
create a matrix for analysis for the TIDE tool55,56, RNAseq values were log
transformed into log2(TPM+ 1). Each gene was normalized by subtracting
the average value of all patients in the cohort. Mann–Whitney test was
used to determine if there were significant differences (p < 0.05) in TIDE
gene signatures between NonAA and AA.
CIBERSORTx was performed as previously described14. The relative

fractions of 22 immune cell sub-populations were estimated using the
CIBERSORTx web-based tool, the LM22 reference gene expression
signatures, and a non-log linear gene expression matrix of the cohort for
analysis58,59. Kruskal–Wallis Test was used to determine if the medians of
the immune cell sub-populations were significantly different. The mean
rank of each subpopulation was compared between racial groups using
Dunn’s multiple comparison test with a multiplicity adjusted p-value for
each comparison. Significance was defined as p < 0.05.

Analysis of relationships between somatic mutations and their
corresponding gene expressions
To determine the relationship between gene mutations and expression,
the average VST normalized expression levels of genes between
individuals with mutations (affected) and those without mutations
(nonaffected) were calculated for genes that had greater than 10 cases
affected by functional impact mutations. The Mann–Whitney test was used
to determine if there were significant differences (p < 0.05) in gene
expression levels between affected and non-affected genes (Supplemen-
tary Data File Table 5).

Histology
To quantify sTILs, 4 µm histology sections were deparaffinized, hematox-
ylin & eosin stained, digitally scanned, and scored independently by two
pathologists. The percentage of sTILs were calculated as the area occupied
by mononuclear inflammatory cells over the total intratumoral stromal
area60. sTILs scores ≥30% were considered high and those <30%
considered low61. Two additional sections were used for PD-L1 (SP263
(RTU-IVD, Catalog #740–4907); SP142 (RTU-IVD, Catalog #740-4859))
(Roche, Indianapolis, IN) protein evaluation by immunohistochemistry
(IHC) using the Ventana Benchmark autostainer (Roche) following
manufacturer’s instructions. Tissues with ≥1.0% immune cell PD-L1 in the
tumor stroma were considered positive as scored by three independent
pathologists60,62. Mann–Whitney test was used for sTILs scores and the
Fisher’s exact test was use for PD-L1 IHC positivity to determine if there
were significant (p < 0.05) differences between NonAA and AA.

Statistical analysis
Statistical analyses are described in detail in the subsections. Demographic
and clinical data were analyzed using R package v4.0.3 or GraphPad Prism
v9.0. For Age and Follow-up time in years, interquartile range (IQR) are
presented as medians with 25.0–75.0% IQRs. Categorical variables were
assessed using either Chi-square or Fisher’s exact test. Continuous
variables were compared using either Mann–Whitney test or Kruskal–Wallis
test with Dunn’s or Benjamini–Hochberg post hoc tests for multiple
testing. Kaplan–Meier plots were used to visualized regression-free
survival. The somatic mutation, gene expression, gene co-expression,
and all pathway analysis were analyzed using R. The histology variables
(sTILs; PD-L1 IHC), TIDE, and CIBERSORT were analyzed using GraphPad
Prism. For all analysis, statistical significance was defined as two-sided
p < 0.05.
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