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Structure‑based prediction 
of BRAF mutation classes using 
machine‑learning approaches
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Petros Tsantoulis6, Simon Haefliger7, Andreas Wicki4, Olivier Michielin2,3 & Vincent Zoete1,2*

The BRAF kinase is attracting a lot of attention in oncology as alterations of its amino acid sequence 
can constitutively activate the MAP kinase signaling pathway, potentially contributing to the 
malignant transformation of the cell but at the same time rendering it sensitive to targeted therapy. 
Several pathologic BRAF variants were grouped in three different classes (I, II and III) based on their 
effects on the protein activity and pathway. Discerning the class of a BRAF mutation permits to adapt 
the treatment proposed to the patient. However, this information is lacking new and experimentally 
uncharacterized BRAF mutations detected in a patient biopsy. To overcome this issue, we developed 
a new in silico tool based on machine learning approaches to predict the potential class of a BRAF 
missense variant. As class I only involves missense mutations of Val600, we focused on the mutations 
of classes II and III, which are more diverse and challenging to predict. Using a logistic regression 
model and features including structural information, we were able to predict the classes of known 
mutations with an accuracy of 90%. This new and fast predictive tool will help oncologists to tackle 
potential pathogenic BRAF mutations and to propose the most appropriate treatment for their 
patients.

The mitogen-activated protein (MAP) kinase signaling pathway, also called RAS/RAF/MEK/ERK pathway, regu-
lates the cell growth and division via a cascade of kinase phosphorylations1. The process is initiated by the binding 
of an extracellular signaling molecule to the transmembrane kinase receptor EGFR, leading to its dimerization 
and auto-phosphorylation, and thus, allowing GRB2 interaction, triggering the possibility to form the complex 
EGFR/GRB2/SOS. Inactive RAS-guanosine-5’-diphosphate (GDP) complex can be activated by SOS from the 
newly formed complex EGFR/GRB2/SOS, which induces the exchange of GDP to guanosine-5ʹ-triphosphate 
(GTP). Then, active RAS-GTP will activate BRAF which will be able to form dimers and trigger the kinase cas-
cade involving MEK1/2 and ERK1/2, leading to the activation of cell growth and division.

BRAF is therefore a central serine/threonine-protein kinase of the MAP kinase pathway and mutations of this 
protein can lead to important pathogenic effects. Indeed, several BRAF mutations have been detected in human 
cancers and characterized as pathogenic, making it an important onco-driver gene2. Depending on the posi-
tion and the amino acid variation, a mutation can have different effects on the functionality of BRAF that could 
impact treatment possibilities for the patient. Mutations effects analysis has identified three mutation classes3 
(Fig. 1). Class I mutations lead to a high activation of RAS-independent monomeric BRAF. These variants are 
all missense mutations of Val600, which resides in the activation loop of the protein. Class II mutations lead to 
a high and moderate RAS-independent BRAF dimeric activation. The activation induced by these mutations is 
lower than in class I. Class III mutations are RAS-dependent homo or heterodimers and lead to a decrease or 
loss of function. Most mutations of these three classes affect the kinase domain of the protein, which is the site of 
the catalytic activity where the hydrolyzation of the adenosine triphosphate (ATP) into adenosine diphosphate 
(ADP) occurs to phosphorylate and activate MEK1 or MEK2, and thus, affect the pathway itself.
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Results and discussion
The BRAF kinase domain, which extends from amino acid (aa) 457 to 717, contains the catalytic site that allows 
the phosphorylation of proteins via the hydrolysis of ATP into ADP in presence of the metallic ion Mg2+. The 
domain is composed of three main regions that regulate the kinase activity: (i) the P-loop (aa: 458–475), (ii) the 
C-helix (aa: 491–506) and (iii) the activation loop (aa: 593–633), which includes the conserved DFG motif (aa: 
594–596) (Fig. 2).

Figure 1.   BRAF mutations classes. Schematic description of the wild-type, the three BRAF mutations classes 
and their functional impacts. The arrow width indicates the potential activation of MEK 1 and 2.

Figure 2.   BRAF kinase domain. The key regions of the kinase domain are colored as follows: the P-loop in 
green, the C-helix in magenta, the activation loop in blue and the kinase DFG motif in crimson. This BRAF 
structure is extracted from the complex BRAF:MEK (pdb code: 6pp9) 12. The BRAF kinase is co-crystallized in 
the presence of Mg2+ and ANP, which is an ATP analog.
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Mutations in the kinase domain can impact the protein structure and functionality, leading to pathogenic 
effects like a gain or decrease of function, which is crucial to know to propose an appropriate treatment to the 
individual patient in the context of personalized oncology. Three classes of BRAF mutations have been described 
based on their effects. Most of them are located in the kinase domain (Fig. 3). Class I involves only missense 
mutations of Val600. Classes II and III are more diverse as they comprise more positions and mutation types 
(missense, insertion, deletion and insertion-deletion, and gene fusions) and few positions can even lead to a class 
II or III depending on the variant (BRAF p.G469A is a class II mutation, while BRAF p.G469E is a class III one 
e.g.).4,5. At this day and based on the SPHN/SPO, ClinVar6, LOVD7 and JAX-clinical Knowledgebase8 databases, 
373 BRAF mutations were reported, including 76 pathogenic ones (gain or loss of function). 52 of them are 
situated in the kinase domain. Classes II and III are centered on the active site, especially, around the chelating 
region of the phosphate tail with Mg2+. Of note, there are two exceptions to these observations: positions Glu549 
and Glu586 (Fig. 3). These two outsiders probably participate in an unknown mechanism with another partner. 
We therefore removed them from our data set, which led to a total of 50 characterized mutations in the kinase 
domain: 26 for class II and 24 for class III (SI Table 1, Fig. 4).

Figure 3.   Mapping classes of known mutations in the kinase domain. The residues whose mutation leads to 
a known mutation class are represented in ball and stick. The one for which the mutation leads to the class I 
is colored in red, those leading to class II and class III are colored in orange and blue, respectively. The sites 
of mutations that can be a class II or III depending on the variant are colored in purple. The BRAF kinase is 
represented in light gray and transparent ribbons to facilitate the visualization (pdb code: 6pp9) 12.

Figure 4.   Position of the selected BRAF classes II and III mutations in a schematic representation of the BRAF 
kinase sequence. Crucial regions P-loop, C-helix and activation loop are colored in green, magenta and blue, 
respectively.
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To build our predictive model, we made a selection of potential predictors, based on physicochemical and 
structural properties. We used the physicochemical features from the AAindex database, which gathers a lot of 
physicochemical and biochemical matrices representing the similarity of amino acids9. We retrieved and made 
a selection of 57 features based on specific criteria: size, volume, charge, hydrophobicity, hydrophilicity, polarity 
of a residue and its propensities to be buried or reside in a structured region (α-helix, β-sheet, coil) (SI Table 2). 
For each of these criteria, the corresponding features scales were normalized. To reduce the number of normal-
ized features, we merged these data into two vectors of features per residue: one dedicated to the structural 
information (24 features), like for instance the propensity to be in a helix, and one for the other physicochemical 
parameters (33 features). Then, for each mutant, we calculated the city block similarity distance between the 
wild-type and the mutant residues, which reduces the number of features from 57 to 2. To complete the structural 
data, we focused on the 90 experimental 3D structures of the BRAF kinase publicly available from the PDB10 to 
extract relevant information. When a kinase mutant position is resolved in a structure, we: (i) checked whether 
it is in a structured region (α-helix, β-sheet, coil); ii) calculated the normalized B-factor as it reflects the flex-
ibility of the position; (iii) calculated the solvent accessible surface area (SASA) of the side chains based on the 
CHARMM force field11. Of note, the two glycine hydrogens were designated as a side chain to consider glycine 
exposed to the solvent in the SASA calculation. Structural analysis of the classes II and III mutations show that 
they surround the phosphate tail binding area of the ligand. To take this finding into account, we selected 11 
BRAF kinase structures co-crystallized with the Mg2+ and phosphoaminophosphonic acid-adenylate ester (ANP), 
an analog of the ATP (PDB codes: 6pp912, 6v2w, 7m0t, 7m0u, 7m0v, 7m0w, 7m0x, 7m0y, 7m0z13). The aim of 
this selection is to stay close to the native active site conformation. As ATP would be immediately hydrolyzed 
in the kinase binding site, ANP is an ideal analog because an amine function in the phosphate tail prevents any 
catalytic reaction. Then, we selected key atoms: Mg2+, and the three phosphate atoms of the ligand (Pα, Pβ, Pγ) 
(Fig. 5). For each of the 7 BRAF kinase structures selected, we used FoldX software14 to build the mutant and 
wild-type structures, for which the wild-type residue is resolved in the corresponding structure. FoldX is an 
efficient software for predicting changes in free energy of folding upon mutations, whose predictive efficiency 
has been trained on an important set of mutations15. The predicted energetic perturbation (∆∆Gfold) induced 
by the mutant is calculated and added to the feature set. For the next steps, we used both wild-type and mutant 
structures built by FoldX for the analysis. We preferred the new wild-type version of the initial one as FoldX 
repositioned the side chains of the residues around the positions of interest to remove potential constraints. For 
each mutant and wild-type position, the Euclidian distance between the coordinates of each heavy atom and 
the key selected ones (Mg2+ and ANP phosphorus atoms) is calculated and the shortest is kept (Fig. 5). Then, for 
each couple of distances calculated (ex: distances of wild-type vs. Mg2+ and mutant vs. Mg2+), we calculated the 
corresponding absolute difference, which leads to four values for each mutation (SI Table 3).

We ended with a total of 18 features, 16 extracted from the experimental structures (listed in SI Table 3) 
and 2 condensed ones from the physicochemical data, for 50 mutations. Such a ratio between data points and 
features could lead to overfitted machine learning models that could compromise the quality of the results16. As 
we cannot increase the data set size to overcome this problem, we concentrated on simple predictive models, 
reducing the number of used features. Different algorithms were tested, like k-nearest neighbors, multiple layer 
perceptron, support vector machines, decision trees and logistic regression. After testing and analyzing results, 
the logistic regression model was found to provide the best compromise between predictive ability and low 
likelihood of being overfitted (data not shown). Indeed, as the output of the model (class II or class III) can be 
encoded as a binary number, logistic regression is an approach of choice for this kind of prediction exercise. We 
tried several combinations from the list of 18 features generated and reduced their number while optimizing 
the accuracy of our model and analyzing their corresponding coefficients (SI Table 4). We started by modifying 
specific functional parameters, like the solver (newton-cg, lbfgs, sag, saga), the maximum of iteration limit (1000, 
5000, 10,000) and the weight class option (None, balanced), all while testing the different physicochemical and 
structural features (Table 2). The maximum number of iterations required to converge highly depends on the 
solver used. For example, the feature combination mentioned in Table 1, entry 1 converges in 17 steps when 
using newton-cg as a solver whereas it requires 4882 steps with saga one. Consequently, we choose to use high 
limits for the maximum number of iterations to ensure that models always converge properly. We noticed that 
the physicochemical feature can be removed as it does not improve the accuracy of the models tested and the 
coefficient values were very close to zero compared to other ones, whereas structural based features seem to have 
an important role in the efficiency of the tested models. We ended with a selection of five models, which show the 
highest accuracy of 90% with the newton-cg solver, a maximum of iterations of 1000 and no weight class option. 
We ran the process 1000 times with their optimized parameters, plus 10 cross-validation (CV) steps. The means 
of the accuracy score resulting from the training and the CV steps were calculated and used to rank the different 
models. The overall execution process is described in the “Material and Methods” section. A mean accuracy of 
90% was obtained for the five models. Mean CV scores were comprised between 84 and 88% (Table 1, entries 
1–5). The best selected features only include structural ones: mutant energetic perturbations (∆∆Gfold), SASA, 
distances between the Mg2+ and the wild-type and mutated residues, and distances between the wild-type residues 
and the ANP Pα and Pγ. The best model presents a mean CV accuracy of 88% with the following parameters 
(Table 1, entry 1): SASA, structural environment (struct), the distances between the wild-type residue and the 
atoms Pα and Pγ of the ANP (WT-dPα and WT-dPγ, respectively). The logistic coefficients of this predictive 
model are presented in Fig. 6A with the corresponding equation involving the selected parameters. As expected, 
the plot of predictive results shows a sigmoid shape (Fig. 6B). Most of the data points are found on the plateaus of 
the sigmoid curve, illustrating the quality of the prediction. Of note, some of the 50 data points are superimposed 
on this graph, which hides some of them.

To ensure the reliability of our model we tested it on randomized data, performing a so-called y-randomiza-
tion process, where the real experimental outcome is systematically replaced by a new random one. To perform 
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this, we ran 100 times the overall process using the selected features from the final model on an y-randomized 
dataset (i.e., the class attributions is randomized). A mean accuracy of 48% was obtained. No value reached the 
one of the real model, as the randomized accuracy values range from 22 to 74% (Fig. 7). These results confirm 
the reliability of our model.

Materials and methods
Known mutations and their corresponding classes were retrieved from the literature4–8. All scripts were written 
in Python3.

For this study, we created a list of 73 features. 57 of them are physiochemical and structural properties, 
retrieved from the AAindex database, that were classified in two categories: the structural and physicochemical 

Table 1.   Best predictive models. Description of the parameters used and their corresponding accuracies. The 
databases or tools used to build the parameters are given in brackets. The red rectangles indicate the mainly used 
features. WT wild-type, MT mutant, CV cross-validation.

Table 2.   Functional parameters tested for the logistic regression approach model optimization.

LogisticRegression functional parameters Options

class_weight Balanced, None

solver newton-cg, lbfgs, sag, saga

max_iter 1000, 5000, 10,000

Figure 5.   Key atoms and distances. (A) Representation of the key atoms selected for distance calculations, 
which are the Mg2+, and Pα, Pβ and Pγ from the ANP; (B) Example of the distance calculation between heavy 
atoms of Leu485 and Mg2+. The shortest distance, which will be used in our predictive model, is the one between 
atoms CG1 and Mg2+. ANP and Leu485 are represented in gray ball and stick, the Mg2+ in a green sphere and 
the protein in ribbons (pdb code: 6pp9) 12.
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properties which are respectively composed of 24 and 33 features (for more details, please see SI Table 2). The 
range of values was normalized for each feature. Then, we created two vectors of features, one containing the 24 
structural features and another one the 33 physicochemical features. The 16 features based on structural analysis 
were obtained from BRAF experimental X-ray structures retrieved from the PDB. To have data from structures 
that have a binding site environment close to the one in the presence of the natural substrate ATP, we selected 11 
BRAF structures co-crystallized in presence of Mg2+ and ANP, which is a non-hydrolyzable analog of ATP (PDB 
codes: 6pp912, 6v2w, 7m0t, 7m0u, 7m0v, 7m0w, 7m0x, 7m0y, 7m0z13). The phosphate atoms of the phosphate 
tail of ANP are mentioned as Pα, Pβ and Pγ.

Scipy, which is a python library, was used for similarity distance calculations18. CHARMM 36 all hydrogen 
force field was used for the SASA calculations with the top_all22 and par_all22 files, for topology and parameter 
files respectively11. FoldX version 5 was used with the command line PositionScan to generate the structures and 
to calculate the predictive energetic perturbation of the mutant compared to the wild-type structure14. It starts 
with the mutation of the desired residue into alanine and detects neighbors before mutating it again into itself. 
The same steps are applied to the selected neighbors which allows a side chain optimization around the position 
of interest and to build the wild-type reference structure. Then, this latter is mutated into the target, the mutant 
structure is built and the energetic predictive perturbation is calculated (∆∆G = ∆Gmutant − ∆Gwild-type) in kcal/

Figure 6.   Logistic regression model results. (A) Coefficients obtained for the best predictive model and the 
logistic regression equation of the model; (B) Of note, several points superimpose themselves which gives the 
impression of having fewer points.

Figure 7.   Randomized process results. Mean accuracy boxplot resulting from the accurracies obtained by the 
y-randomized process.
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mol. FoldX generated two models: one of the wild-type and one of the mutant in which it rearranged the side 
chain positions. To stay coherent with the predictive mutant models, we used the wild-type structures generated 
by FoldX v.5 for the Euclidean distance’s measures.

Scikit-learn Python was used for the machine learning steps. It integrates a wide range of machine learning 
algorithms for medium scale supervised and unsupervised tasks17. From the sklearn.linear_model, we imported 
the LogisticRegression module for the logistic regression approach. To select the most appropriate models, several 
functional parameters were tested using the GridSearchCV module imported from sklearn.model_selection 
which allows an exhaustive search over specified parameter values. We chose to tune classical parameters like 
the class_weight, the solver which is the algorithm used for the optimization and the max_iter for the maximum 
number of iterations taken for the solver to converge (Table 2).

The complete data set was randomly split in training and test sets in the respective following proportions of 
80% and 20%. The models were trained on the training set and tested on the testing set. Of note, because of a low 
amount of data available, we decided to use them all to create the training and testing sets, without generating 
an external one. To face this limitation, the training process to get the models was built to test their robustness 
to ensure the quality of our results. A first accuracy score was calculated on the given test data and labels. When 
this score was higher than 80%, the corresponding models were kept and 10 CV steps were made. Then the 
mean CV score was calculated and compared to the previous accuracy score, to verify that no drop in accuracy 
was observed in CV. This process was run 1000 times and the averages of the performed accuracies, with and 
without CV, were calculated, like the average of the parameter coefficients of the logistic regression equation. 
Table 1 presents the top five models obtained using this workflow.

To perform and test the y-randomization process, the labels (i.e., class information) were randomized using 
the Python module random. Then, based on the best features obtained from the best model, the overall process 
was ran 100 times. The mean accuracies obtained were plot into a boxplot using Python matplotlib library.

Conclusions
BRAF is a well-known onco-driver gene of the MAP kinase signaling pathway. Non-synonymous mutations 
within the BRAF gene can be classified as class I, II or III depending on their effect on the BRAF kinase activity. 
Most of the mutations occur in the kinase domain and so far, class I mutations exclusively involved missense 
mutations of Val600. We focused on the known missense mutations of classes II and III detected in the kinase 
domain to develop a tool that allows the prediction of the potential class of missense mutations detected in the 
BRAF kinase domain. Using a logistic model trained with a wise parameter and feature selection and known 
mutation class data retrieved from the literature, we developed an efficient and robust model capable of pre-
dicting with high mean accuracy scores of 90% and 88%, based on the validation set and cross-validating steps 
respectively, if a suspicious missense mutation impacting a position other than Val600 could be a class II or III. 
Because of the limited experimental data regarding mutation class available, we could not test our model on an 
external data set, that would have not been used during the training of our models. However, the overall process 
was built to minimize as much as possible any overfitting effects. In the future, we hope that new experimentally 
determined BRAF mutations of known classes will become available to test our model externally.

As comprehensive genomic profiling of patients’ tumor samples is increasingly being used in clinical routine, 
it is likely that more uncharacterized BRAF gene mutations will be detected in the future. A definite assign-
ment to a given mutational class will involve biochemical testing of dimerization of RAF molecules, the MAPK 
signaling output and possibly also how these can be influenced by application of tyrosine kinase inhibitors of 
BRAF and MEK. Those are extensive in vitro experiments, which in clinical routine are often times not feasible, 
particularly not at a turnaround time, which would be necessary to support clinical decision-making regard-
ing therapeutic options. Our prediction algorithm will therefore provide a valuable tool to bioinformaticians, 
molecular pathologists and clinicians to get an initial idea of the potential biochemical class of the detected 
mutation and to issue a therapy suggestion for patients presenting with new uncharacterized BRAF gene muta-
tions in their tumor specimens.
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