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IFN‑γ enhances the efficacy of mesenchymal 
stromal cell‑derived exosomes via miR‑21 
in myocardial infarction rats
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Abstract 

Background:  Mesenchymal stromal cells (MSCs) activated with IFN-γ elicit stronger physical effects. Exosomes (Exos) 
secreted from MSCs show protective effects against myocardial injury. This study aimed to determine whether Exos 
derived from IFN-γ-treated MSCs exhibit more potent cardioprotective function and the underlying mechanisms.

Methods:  H9c2 cells or human umbilical vein endothelial cells (HUVECs) were treated with Exos isolated from MSCs 
(Ctrl-Exo) or IFN-γ-primed MSCs (IFN-γ-Exo) under oxygen and glucose deprivation (OGD) conditions in vitro and 
in vivo in an infarcted rat heart. RNA sequencing was used to identify differentially expressed functional transcription 
factors (TFs). Quantitative reverse transcription-PCR (qPCR) was used to confirm the upregulated TFs and miRNA in 
IFN-γ-primed MSCs. Dual-luciferase reporter gene assay was used to analyze the transcriptional regulation of miRNAs 
by STAT1. The target of miR-21-5p (miR-21) was determined by luciferase reporter assays and qPCR. The function of 
BTG2 was verified in vitro under OGD conditions.

Result:  IFN-γ-Exo accelerated migration and tube-like structure formation and prevented OGD-induced apoptosis 
in H9c2. Similarly, IFN-γ-Exo treatment caused a decrease in fibrosis, reduced cardiomyocyte apoptosis, and improved 
cardiac function compared to Ctrl-Exo treatment. MiR-21 was significantly upregulated in IFN-γ-primed MSCs and 
IFN-γ-Exo. STAT1 transcriptionally induced miR-21 expression. Up-regulated miR-21 could inhibit BTG anti-proliferation 
factor 2 (BTG2) expressions. BTG2 promoted H9c2 cell apoptosis and reversed the protective effects of miR-21 under 
OGD conditions.

Conclusion:  IFN-γ-Exo showed enhanced therapeutic efficacy against acute MI, possibly by promoting angiogenesis 
and reducing apoptosis by upregulating miR-21, which directly targeted BTG2.
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Introduction
IFN-γ, which is produced by activated T cells and natu-
ral killer (NK) cells, plays a key role in maintaining innate 
and adaptive immune responses [1]. It is a cytokine that 
can promote immunomodulation and has been widely 
studied for its anti-cancer activity [2]. After interacting 
with recipient cells through the IFN-γ receptor (IFNGR), 
IFN-γ  activates downstream signal transduction path-
ways and transcriptionally stimulates the expression of 
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various genes involved in immune regulation and other 
biological activities [3]. Mesenchymal stromal cells 
(MSCs) activated with IFN-γ elicit strong immunomodu-
latory effects via the upregulation of immunoactive fac-
tors [4, 5].

MSCs are stromal cells capable of self-renewal and 
multi-lineage differentiation ability [6] and have been 
used in regenerative therapy for cardiovascular diseases 
[7]. The therapeutic effects of MSCs are mainly parac-
rine and are mediated by Exos [8] Exos are 50–200  nm 
vesicles secreted into the extracellular space and shuttle 
a variety of microRNA (miRNA), long non-coding RNA 
(lncRNA), and proteins to modulate cell–cell commu-
nication [9]. MSC-derived Exos have been used to treat 
ischemic heart disease, inhibit cell apoptosis, promote 
angiogenesis, and regulate macrophage polarization [10, 
11].

Exos derived from modified MSCs exhibit more pow-
erful protective effects. Wang et  al. showed that com-
pared with Exos derived from normoxic conditions, Exos 
derived from hypoxic conditions exerted stronger inhi-
bition of cell death through miR-125b [12]. Adiponectin 
stimulates the release of Exos to enhance the MSC-medi-
ated treatment of heart failure in mice [13]. Recently, we 
showed that hypoxia induction and macrophage migra-
tion inhibitory (MIF) modification could improve the 
therapeutic effects of MSC-derived exosomes in myocar-
dial infarction (MI) by inhibiting apoptosis and promot-
ing angiogenesis [14]. IFN-γ treatment can enhance the 
therapeutic effect of MSCs [15]. However, whether Exos 
derived from MSCs stimulated by IFN-γ have stronger 
protective effects against MI than do Exos from untreated 
MSCs remains unknown.

Ctrl-Exo and IFN-γ-Exo were extracted to treat H9c2 
and HUVECs cells under OGD conditions and rat MI 
models to determine their therapeutic effects and poten-
tial mechanisms. We found that IFN-γ treatment could 
improve the anti-apoptotic ability and angiogenesis of 
Exos derived from MSCs to preserve heart function. 
This was partly mediated by the increased expression of 
cardioprotective miRNA-21 after IFN-γ treatment. Exo-
mediated delivery of miRNAs from MSCs under various 
treatment conditions could prove an effective alternative 
for MI treatment.

Materials and methods
Cell culture
Human umbilical MSCs (purchased from the Clini-
cal Center of Reproductive Medicine of Nanjing Medi-
cal University) were cultured in α-minimal essential 
medium (α-MEM) containing 10% fetal bovine serum 
(FBS). MSCs were exposed to control or 50 ng/ml IFN-γ 
(300-02, Peprotech, USA) conditions for 48 h. H9c2 and 

HUVECswere cultured in Dulbecco’s Modified Eagle’s 
Medium (DMEM) containing 10% FBS. All media and 
reagents used for cell culture were purchased from Gibco 
(8121231, Carlsbad, USA). For normal culture, cells were 
incubated at 37 °C, 21% O2, and 5% CO2. Under oxygen 
and glucose deprivation conditions, cells were cultured 
under 1% O2, 5% CO2, 94% N2, and serum deprivation 
conditions.

Exosome extraction and characterization
MSCs (1 × 106) were cultured to 70% confluence and 
treated with 6  ml of exosome-free FBS (10099141C, 
Gibco, USA) for 2 d. The cell culture medium (6 ml) was 
collected in a 15-ml centrifuge tube and centrifuged at 
1500×g for 30  min to remove the cells and debris. The 
processed supernatant was transferred to another 15 ml 
centrifuge tube containing 2 ml RiboTM exosome extrac-
tion reagent (for cell culture medium, C10130-2, Ribobio, 
China). These mixtures were incubated overnight at 4 °C 
and centrifuged at 2000×g for 30  min. The supernatant 
was discarded, and the exosomal pellet was resuspended 
in 100 μl PBS.

Exosomal surface markers were detected using west-
ern blotting with anti-TSG101, CD63, and CD81 anti-
bodies (14497, 25682, 66866, Abcam, UK). Transmission 
electron microscopy (TEM) was used to observe the 
appearance of Exos. The Exos were fixed with 1% gluta-
raldehyde and coated with 1% phosphotungstic acid on 
a copper mesh. JEM-2100 transmission electron micro-
scope (JEOL, Tokyo, Japan) was used to observe the sam-
ple. Nanoparticle tracking analysis (NTA) was applied to 
analyze the size and distribution of Exos. We recorded 
and tracked the Brownian motion of Exos in PBS (Carls-
bad, California). The particle size distribution data were 
obtained using a Stoke-U.S. A ZetaView PMX 110 system 
(Particle Metrix, Germany) was used for NTA.

Exosomes uptake assay
To demonstrate the uptake of Exos by H9c2 cells and 
HUVEC, Exos were labeled with DiI (red fluorescent dye, 
C1036, Beyotime, China) and co-cultured with recipient 
cells at 37  °C for 6 or 24 h, washed with PBS, and fixed 
with 4% paraformaldehyde for 20  min. The nuclei were 
stained with 6-diamino-2-phenylindole (DAPI) (0.5 g/ml, 
C1005, Beyotime, China) for 10 min, and observed using 
a confocal microscope.

Apoptosis assays
H9c2 cells were seeded in 1 × 105/6-well tissue culture 
plates overnight and treated with the different Exos or 
PBS before OGD. The cells were washed with PBS and 
stained with Annexin V fluorescein isothiocyanate and 
propidium iodide apoptosis kit (40302ES20, YEASEN, 
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China). Flowjo Software version 10.0 (Tree Star, USA) 
was used to analyze apoptotic cells. TdT-mediated dUTP 
Gap End Labeling (TUNEL) Apoptosis Detection Kit 
(Roche, USA) was also used to detect cell or tissue apop-
tosis according to the manufacturer’s instructions. The 
formula for calculating the percentage of apoptotic nuclei 
was the total number of nuclei divided by the total num-
ber of TUNEL-positive nuclei.

Migration assay
HUVECs were cultured in a 6-well plate, and the conflu-
ent layer was scraped with the tip of a P200 pipette. The 
cells were washed and incubated with 100 µg/well of dif-
ferent Exos. Images were taken before and 6 and 12  h 
after incubation, and Image J software (NIH) was used to 
determine the reduction ratio of the scratch area.

Tube formation assay
HUVECs were treated with PBS or different Exos, washed 
with PBS, and seeded (30,000 cells/well) in 96-well plates 
coated with growth factor reduced Matrigel (354234, 
Corning, United States). After 6 h, capillary-like tube for-
mation was observed and photographed. Tube length and 
number of branches were analyzed with Image J software 
(NIH).

Quantitative real‑time PCR (qRT‑PCR)
The total cellular and exosomal RNA was extracted 
using Trizol reagent (Life Technologies, USA) according 
to the manufacturer’s instructions [14]. A stem-loop-
specific primer method was used to measure miR-21-5p 
expression, as described previously [16]. The sequences 
of primers used in the study are shown in Additional 
file  2: Table  S1. The relative expression was calculated 
using the following equation: relative gene expres-
sion = 2−(ΔCtsample − ΔCtcontrol). All samples were measured 
in triplicate.

Transfection experiment
Transfection of miR-21-5p mimics (50  nmol/L) and 
negative control miRNA (50–100  nmol/L) synthesized 
by Guangzhou Ribobio into H9c2 cells was carried out 
using riboFECT™ CP Reagent (C11062-1, Ribobio, 
China) according to the manufacturer’s instructions. 
The full-length BTG2 sequence and empty vector as 
negative control were inserted into a pcDNA 3.1 plasmid 
(GenePharma, China) to transfect H9c2 cells using Lipo-
fectamine 2000 (Invitrogen, USA) according to the man-
ufacturer’s instructions. STAT1 siRNA (Additional file 2: 
Table  S2) and negative control FAM manufactured by 
Suzhou GenePharma were delivered into MSCs by using 
Lipofectamine 2000. qRT-PCR was performed to deter-
mine transfection efficacy. At 48  h after transfection, 

different groups of cells were harvested for subsequent 
experiments.

Western blot
Protein extraction and western blot (WB) analysis were 
performed as previously described [14]. Briefly, cells 
were washed with PBS and lysed with lysis buffer on 
ice for 20  min. The total cell protein concentration was 
detected using the BCA Protein Assay Kit. The total pro-
tein (20  μg) was separated using SDS-PAGE (Invitro-
gen) and transferred to a PVDF membrane (Roche). The 
membrane was blocked with 5% bovine serum albumin 
(0.1%) in TBS-Tween and incubated against the required 
antibody.

The primary antibodies Bax (5023, Cell Signaling Tech-
nology, USA), Bcl2 (ab196495, Abcam, USA), cleaved 
caspase-3 (29034, Signalway Antibody, USA), BTG2 
(A9848, ABclonal), GAPDH (5174, Cell Signaling Tech-
nology), TSG101 (14497, Proteintech, United States), 
CD63 (25682, Proteintech), CD81 (66866, Proteintech), 
and horseradish peroxidase-conjugated secondary anti-
body (Santa Cruz) were used. Bands were visualized 
using enhanced chemiluminescence reagents and ana-
lyzed using a gel documentation system (Bio-Rad Gel 
Doc1000 and Multi-Analyst version 1.1).

Ethics statements
Our animal study protocol conforms to the Guide for the 
Care and Use of Laboratory Animals [National Institutes 
of Health, (NIH) Bethesda, MD, USA] and was approved 
by the Institutional Animal Care and Use Committee of 
the Nanjing Medical University for Laboratory Animal 
Medicine (IACUC-2005043).

MI model, histological analysis, and immunofluorescence 
staining
Eight-week-old male Sprague–Dawley (SD) rats obtained 
from the experimental animal center of Nanjing Medi-
cal University were randomly divided into 4 groups: 
sham operation group (Sham group, n = 6), PBS injec-
tion group (MI+PBS group, n = 6), Ctrl-Exo injection 
group (MI+Ctrl-Exo group, n = 6), and IFN-γ-Exo injec-
tion group (MI+IFN-γ-Exo group, n = 6). As previ-
ously described [14], the left anterior descending artery 
(LAD) was ligated, and Exos (50 µL, 1 µg/µL) or PBS was 
injected around the infarct area in rats. All surgeries and 
subsequent analyses were blinded for intervention. Echo-
cardiography (Vevo 3100) was performed to determine 
the left ventricular ejection fraction (LVEF) and left ven-
tricular short-axis shortening rate (LVFS) after 2 w and 4 
w.
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The rats were sacrificed by cervical dislocation. 
Inflammatory cell infiltration were evaluated by CD68 
immunofluorescence staining at 3 days post-MI. Apop-
tosis was detected by TUNEL staining (Roche, USA) at 
3  days post-MI. Masson’s trichrome staining was used 
to evaluate fibrosis and collagen area, CD31 immu-
nofluorescence staining was applied  to observe the 
distribution of microvessels 4 weeks after MI. The pri-
mary antibodies used were anti-CD31 (ab7388; British 
Abcam) and anti-CD68 (ab283654; British Abcam). 
DAPI was used for nuclear counterstaining. The images 
were further analyzed using a fluorescence microscope 
(Zeiss, Germany) and Image J software (NIH).

Statistical analysis
Continuous variables and categorical variables were 
described as mean ± SEM and percentages, respec-
tively. Independent-Sample T-test was used to compare 
continuous variables between the two groups. One-way 
Analysis of variance (ANOVA) was used for compari-
son of three or more groups. All statistical tests were 
performed using GraphPad Prism software version 8.0, 
and P < 0.05 was considered statistically significant.

Results
Characterization of control and IFN‑γ‑primed MSC‑derived 
Exos
Exosomes were isolated from supernatant from control 
MSCs and 50 ng/ml IFN-γ-primed MSCs and identified 
using TEM. Ctrl-Exo and IFN-γ-Exo were typical lipid 
bilayer membrane encapsulated nanoparticles with a 
diameter between 30 and 150 nm (Fig. 1A). The marker 
proteins TSG101, CD81, and CD63 were expressed in 
both groups (Fig.  1B). As shown in Fig.  1C, the peak 
diameters of Exos were 123.4 nm and 116.2 nm in the 
Ctrl-Exo and IFN-γ-Exo groups, respectively. NTA 
analysis showed that IFN-γ treatment could increase 
the number of Exos secreted by MSCs. Similarly, 
IFN-γ increased the protein concentration in the Exo 
suspension.

The Exos labeled with DiI dye were co-cultured with 
HUVEC and H9c2 cells for 6  h and 24  h respectively. 
Confocal microscopy showed DiI-labeled Exos around 
the nucleus within 6  h, and most of the Exos were 
absorbed within 24  h (Fig.  1D, E). Thus, both control 
MSCs and IFN-γ-primed MSCs could secrete Exos with 
common vesicle characteristics, and these Exos could be 
absorbed by H9c2 cells and HUVEC in a time-dependent 
manner in vitro.

Pro‑angiogenesis and anti‑apoptotic effects of IFN‑γ‑Exo 
in vitro
TUNEL staining and flow cytometry showed that the 
percentage of apoptotic H9c2 cells were significantly 
lower in the OGD+IFN-γ-Exo group than in the OGD 
and OGD+Ctrl-Exo groups (Fig.  2A, B). Figure  2C 
showed that the apoptosis-related proteins Bax and 
cleaved-caspase-3 were significantly reduced in the 
OGD+IFN-γ-Exo group, while the anti-apoptotic pro-
tein Bcl2 was increased compared with the OGD and 
OGD+Ctrl-Exo groups. Angiogenesis and migration 
rate of HUVECs significantly increased in the IFN-γ-
Exo group compared with control and Ctrl-Exo groups 
(Fig.  2D, E). Similar to H9c2 cells, IFN-γ-Exo could 
better inhibit OGD-induced apoptosis compared with 
Ctrl-Exo in HUVEC. These results suggested that IFN-
γ-Exo confers superior protective effects on H9c2 and 
HUVECs compared to Ctrl-Exo in vitro.

IFN‑γ‑Exo exerted stronger cardioprotection 
against myocardial damage than Ctrl‑Exo in vivo
The AMI rat model was used to determine the cardiopro-
tective effects of MSC-derived Exos. Ctrl-Exo, IFN-γ-Exo 
(100  µl, 1  µg/µl), or 100  µl PBS were intramyocardially 
injected at the time of surgery (Fig. 3A). DiI-labeled Exo 
was intramyocardially injected and colocalized with car-
diomyocytes 6  h after injection, suggesting an efficient 
in vivo uptake of the Exos by heart tissue (Fig. 3B). LVEF 
and LVFS in 4-weeks’ echocardiography were signifi-
cantly improved in the MI+IFN-γ-Exo group compared 
with those in the MI+PBS and MI+Ctrl-Exo groups, 
while the 2-weeks’ result showed no difference between 
the MI+IFN-γ-Exo and MI+Ctrl-Exo groups (Fig.  3C). 
Quantification of the infarct area suggested that IFN-
γ-Exo could maximize the reduction of the fibrotic scar 
area after MI (Fig. 3D). Thus, IFN-γ-Exo has better thera-
peutic effects against myocardial ischemia and hypoxia 
injury compared with Ctrl-Exo.

IFN‑γ‑Exo inhibits inflammatory cell infiltration 
and promotes angiogenesis and cardiomyocyte survival 
in vivo
CD68 staining showed that the degree of inflammatory 
cell infiltration in the MI+IFN-γ-Exo group was lower 
than that of the MI+Ctrl-Exo and MI+PBS groups 
(Fig. 4A). TUNEL analysis showed that the proportion of 
apoptotic cells significantly decreased in the MI+IFN-γ-
Exo group compared with the MI+PBS and MI+Ctrl-Exo 
groups (Fig. 4B). CD31 staining showed that the number 
of regenerative blood vessels in the MI+IFN-γ-Exo group 
was significantly higher than that in the other two groups 
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(Fig. 4C). Thus, we found that IFN-γ-Exo could exert bet-
ter protective effects on the myocardium after ischemia 
and hypoxia injury.

IFN‑γ‑Exo attenuates OGD‑induced injury in H9c2 cells 
by upregulating miR‑21 expression
We compared the expression of five putative miRNA 
in control and IFN-γ-primed MSCs and found (Addi-
tional file  1: Fig. S1A) that miR-21 was the most 

significantly elevated miRNA in IFN-γ-primed MSCs 
compared with the control ones (Fig. 5A). Further, we 
found that miR-21 was significantly enriched in IFN-
γ-Exo compared with Ctrl-Exo (Fig. 5B). Similarly, the 
expression level of miR-21 in border myocardial tissue 
from IFN-γ-Exo group was higher than Ctrl-Exo group 
(Fig. 5C). To determine the role of miR-21 in regulat-
ing apoptosis, miR‑21 mimics and negative control 
(NC) were transfected into H9c2 cells before exposure 
to OGD. Moreover, western blot analysis confirmed 

Fig. 1  Characterization of Exos derived from MSCs. A Cup-shaped morphology of purified Ctrl-Exo and IFN-γ-Exo assessed by TEM. B 
Representative images of western blot showing the exosomal protein markers in Ctrl-Exo and IFN-γ-Exo groups. C The particle size distribution and 
particle concentration were analyzed by nanoparticle tracking analysis (n = 3). Confocal images showed that red fluorescence of dye DiI labeled 
Exos were endocytosed by HUVECs D and H9c2 E 6 and 24 h after incubation. Scale bar = 20 μm
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that the protective effect of miR-21 against OGD-
induced injury relied on the upregulation of Bcl2 and 
downregulation of Bax and cleaved-caspase-3 (Addi-
tional file 1: Fig. S1B).

STAT1 activator promoted miR‑21 expression 
in IFN‑γ‑primed MSCs
To determine whether transcription factors (TF) were 
involved in the transcriptional regulation of miR-21, we 

Fig. 2  IFN-γ-Exo exhibited better protective effects on HUVECs and H9c2 cardiomyocytes than Ctrl-Exo in vitro. A TUNEL analysis for H9c2 cells 
(n = 3). Green, TUNEL-positive nuclei; blue, DAPI-stained nuclei. Scale bars = 50 μm. B Flow cytometric analysis (n = 3). C Western blot analyzed Bax, 
Bcl2, and cleaved-caspase-3 protein levels in hypoxic and ischemic H9c2 cells incubated with PBS, Ctrl-Exo and IFN-γ-Exo. Relative protein levels are 
presented as the average expression normalized to β-Tubulin (n = 3). D Migration was monitored for 6 and 12 h after scratching in HUVECs cultured 
with PBS, Ctrl-Exo and IFN-γ-Exo (n = 3). E Tube formation of HUVECs incubated with PBS, Ctrl-Exo, and IFN-γ-Exo (n = 3). F TUNEL analysis for 
HUVECs (n = 3). Green, TUNEL-positive nuclei; blue, DAPI-stained nuclei. Scale bars = 50 μm. Data are presented as mean ± SEM. Statistical analysis 
was performed with one-way ANOVA followed by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001, NS not significant
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used Illumina HiSeq 2500 high-throughput sequencing 
for mRNA expression profiling of control and IFN-γ-
primed MSCs to identify the functional TFs in IFN-γ-
primed MSCs. With a two  fold change and P < 0.05 as 
the threshold cutoff, we identified 55 significantly dif-
ferentially expressed TFs, of which 37 were upregu-
lated in IFN-γ-primed MSCs (Fig.  5D). Next, we used 
the TransmiR v2.0 database [17] (http://​www.​cuilab.​
cn/​trans​mir) to predict the TFs that might regulate 
miR-21 (Fig. 5E) and then crossed with the upregulated 
expressed TFs to finally get 3 potential ones (STAT1, 
STAT2, and FOXC1) (Fig. 5F). Of these, consistent with 
sequencing results, STAT1 was the most significantly 

increased in IFN-γ-primed MSCs compared with con-
trol MSCs verified by qPCR (Fig. 5G).

Consistent with previous reports [18, 19], we found 
that STAT1 was induced by IFN-γ in MSCs and cel-
lular miR-21 was significantly upregulated. Further, 
the IFN-γ induction of miR-21 was abolished follow-
ing STAT1 downregulation (Fig.  5H). In addition, we 
cloned the wild-type fragment miR-21 promoter into 
the upstream region of the luciferase reporter gene 
(pGL3-basic) to obtain pGL3-miR-21 WT and found 
that pGL3-miR-21 WT was activated by STAT1 over-
expression. These results suggested potential transcrip-
tional regulation of miR-21 by STAT1 (Fig. 5I).

Fig. 3  IFN-γ-Exo effectively preserved cardiac function in rats with MI in vivo. A The flowchart of experimental design in vivo. B DiI-labeled Exos 
were injected into the infarcted heart of rats for 6 h (50 μg Exos per rat). Representative images of post-MI heart sections stained with DiI-labeled 
Exos (red), cTNT(green), and DAPI (blue), Scale bar = 20 μm. C Representative echocardiographic images showed heart function among the 
different groups on the 14th and 28th day following MI and quantitative analysis of left ventricular ejection fraction (LVEF) and left ventricular 
fraction shortening (LVFS) among the different groups (n = 6 for the sham group, n = 5 for MI+PBS group, n = 6 for MI+Ctrl-Exo group, n = 6 
for MI+IFN-γ-Exo group). D Masson’s trichrome stained myocardial sections on the 28th day following MI in rats treated with PBS, Ctrl-Exo, and 
IFN-γ-Exo. Scar tissue and viable myocardium were identified in blue and red, respectively (n = 4). Data were presented as mean ± SEM. Statistical 
analysis was performed with one-way ANOVA followed by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001

http://www.cuilab.cn/transmir
http://www.cuilab.cn/transmir
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BTG2 is a target gene of miR‑21 and promotes H9c2 cell 
apoptosis under OGD
Using TargetScan and miRDB, BTG2 was identified as a 
potential target for miR‑21 (Fig. 6A). Luciferase reporter 
assays confirmed the association between miR-21 and 
BTG2: the luciferase activity of BTG2-wt in miR-21 
transfected cells was significantly inhibited, while that 
of the BTG2-mut remained unchanged (Fig.  6B). Fur-
thermore, the mRNA and protein levels of BTG2 were 
significantly decreased in the miR-21 mimics groups 
(Fig. 6C, D). In vivo experiments showed that both IFN-
γ-Exo and Ctrl-Exo could down-regulate the expression 
of BTG2 in myocardial tissue after infarction, and IFN-
γ-Exo had a better inhibitory effect (Additional file 1: Fig. 
S1C–D). After co-incubating the exosomes derived from 
IFN-γ-primed MSCs (IFN-γ-Exo) and IFN-γ-primed + si-
STAT1-MSCs (si-IFN-γ-Exo) with H9c2, qPCR results 

showed that the expression of BTG2 decreased in the 
IFN-γ-Exo group, but the decrease in the si-IFN-γ-Exo 
group was not as obvious as in IFN-γ-Exo group (Fig. 6E). 
Thus, there is a negative regulatory relationship between 
miR-21 and BTG2.

Subsequently, BTG2 was overexpressed to determine 
its effect on H9c2 cell apoptosis under OGD conditions. 
As indicated in Fig. 7a, western blot analysis showed that 
BTG2 was successfully overexpressed in H9c2 cells via 
transfection with BTG2 plasmid. Further experiments 
revealed that apoptosis induced by OGD was further 
aggravated by BTG2 overexpression. The expression of 
Bax and cleaved-caspase-3 protein increased signifi-
cantly in the BTG2 group, while the expression of Bcl2 
protein decreased (Fig. 7A). The same trend was verified 
by TUNEL staining and flow cytometry; the incidence 

Fig. 4  IFN-γ-Exos were better at inhibiting apoptosis or promoting angiogenesis than IFN-γ-Exo in vivo. (A) Representative fluorescence images of 
macrophages in the border zone of ischemic hearts stained with CD68 (red) and α-actinin (green) (3 random fields per anima). (B) Representative 
photographs showing the TUNEL-positive cells (green) in the heart tissue (red) among the different groups. Quantitative analysis of the apoptotic 
rate at the border zone in CMs and non-CMs among the different groups (3 random fields per animal). (C) Representative fluorescence images of 
blood vessels in the border zone of ischemic hearts stained with CD31 (red) and α-actinin (green) (3 random fields per animal). Data are presented 
as mean ± SEM. Statistical analysis was performed with one-way ANOVA followed by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001
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Fig. 5  miR-21 was a key component in IFN-γ-Exo-induced cardioprotection. Quantitative real-time PCR (qRT-PCR) analysis of miR-21 level in control 
and IFN-γ-primed MSCs (A) and Exos (B) (n = 3). C Quantitative real-time PCR (qRT-PCR) analysis of miR-21 level among groups at 3 days post-MI. 
(n = 6) (D) Heat map based on mRNAs sequence values (red represents high expression and the green represents low expression) between control 
and IFN-γ-primed MSCs. E Bioinformatic analysis network of the transcription factors interacting with the promoter of miR‐21. The yellow circle 
represents hsa‐miR‐21, and the blue and red circles represent transcription factors. F STAT1, STAT2, and FOXC1 were present in both up-regulated 
transcription factors and bioinformatics prediction analysis results. G qRT-PCR analysis of STAT1 level in MSCs treated with control and IFN-γ (n = 3). 
H qRT-PCR analysis of miR-21-5p level in MSCs treated with control, IFN-γ, IFN-γ + si-STAT1 (n = 3). I Luciferase reporter assay was used to detect the 
miR-21 promoter-reporter activity in 293T cells transfected with vector or STAT1 (n = 3). Data were presented as mean ± SEM. Statistical analysis was 
performed with one-way ANOVA followed by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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of apoptosis in the BTG2 group was significantly higher 
than that in the ctrl (OGD) and vector groups (Fig.  7B, 
C).

To elucidate the functional relationship between miR-
21 and BTG2, we studied the effect of miR-21 mimics and 
BTG2 plasmid on H9C2 under OGD conditions. Consist-
ent with the previous findings [20], ischemia and hypoxia 
increase the expression of Bax and cleaved-caspase-3 and 
also the expression of BTG2, which is inhibited by miR-
21 mimics. However, the anti-apoptotic effect of miR-21 
on H9C2 cells under OGD conditions was abrogated by 

BTG2 overexpression (Fig.  7D). These results indicated 
that the overexpression of BTG2 reverses the protective 
effect of miR-21 on OGD-treated H9c2 cells.

Discussion
In this study, we found that compared with Ctrl-
Exo, IFN-γ-Exo accelerated migration and tube-
like structure formation, and protected H9c2 from 
OGD-induced apoptosis. IFN-γ-Exo treatment also 
reduced fibrosis size and cardiomyocytes apoptosis 
and improved recovery in cardiac function. Further, 

Fig. 6  MiR-21 directly targeted BTG2 in H9c2 cells. A Predicted miR-21 target sequence in BTG2-3′ UTRs. Target sequences of BTG2-3′ UTRs were 
mutated. B Luciferase assay of 293T cells transfected with BTG2-3′ UTR-WT or BTG2-3′ UTR-Mut reporter together with mimics NC or miR-21-5p 
mimics (n = 3). C qRT-PCR analysis of BTG2 level in H9C2 cells treated with mimics NC and miR-21-5p mimics (n = 3). D Western blot analyzed BTG2 
protein levels in H9c2 cells treated with control, mimics NC and miR-21-5p mimics. Relative protein levels were presented as the average expression 
normalized to β-Tubulin (n = 3). E qRT-PCR analysis of BTG2 level in H9c2 cells treated with IFN-γ-Exo and si-IFN-γ-Exo (n = 3). Data were presented 
as mean ± SEM. Statistical analysis was performed with one-way ANOVA followed by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; 
****P < 0.0001

(See figure on next page.)
Fig. 7  Overexpression of BTG2 aggravated OGD-induced injury damage and reversed the protective effect of miR-21. A Western blot analyzed 
Bax, Bcl2, and cleaved-caspase-3 protein levels in hypoxic and ischemic H9c2 cells treated with PBS, vector and BTG2. Relative protein levels were 
presented as the average expression normalized to GAPDH (n = 3) and TUNEL analysis (n = 3) B Green, TUNEL-positive nuclei; blue, DAPI-stained 
nuclei. Scale bars = 50 μm. And flow cytometric analysis (n = 3) (C). D H9c2 cells treated with control, OGD, OGD  + miR-21 mimics and 
OGD  + miR-21 mimics + BTG2. Relative Bax, Bcl2, and cleaved-caspase-3 protein levels among different groups were presented as the average 
expression normalized to β-Tubulin (n = 3). Data were presented as mean ± SEM. Statistical analysis was performed with one-way ANOVA followed 
by Bonferroni’s correction. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001
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Fig. 7  (See legend on previous page.)
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IFN-γ-Exo attenuates OGD-induced injury in H9c2 
cells by upregulating miR‑21 expression stimulated by 
STAT1, which directly targets BTG2 (Fig. 8).

There is growing evidence that Exos released from 
MSCs can protect ischemic cardiomyocytes from 
death, improve ventricular remodeling, and preserve 
heart function [21]. The improvement of the therapeu-
tic effects of Exos is therefore of great interest. There 
have been several studies on modification methods 
that can reinforce or improve the therapeutic effect 
of MSC-derived Exos. Hypoxia-treated MSC-derived 
Exos exhibit more effective cardioprotection medi-
ated by UCA1 and miR-125b [12, 16]. Genetic modi-
fication could also enhance the treatment of heart 
disease by adjusting the expression of various miRNA. 
Exos secreted by MSCs overexpressing GATA-4 retain 
a large amount of anti-apoptotic miRNA for cardio-
protection [22]. Exos derived from MSCs modified by 
MIF could be used to treat acute MI by limiting apop-
tosis and promoting angiogenesis [14]. Some drugs 
and cytokines that improve the characteristics of stem 
cells have also been identified. Atorvastatin as  a com-
mon clinical lipid-lowering drug increases the thera-
peutic effect by up-regulating the expression of H19 
[23]. IFN-γ, an immune-related cytokine, mediates 
enhanced immunomodulation efficacy in MSC-derived 
Exos and therefore has better efficacy in the treatment 
of colitis. Our research showed that Exos derived from 
IFN-γ-primed MSCs have better anti-apoptosis and 
angiogenesis effects compared with the control group 
in cardiomyocytes under OGD conditions and MI rat 
models. These results indicated that IFN-γ treatment 
could be used to improve the therapeutic effect of 
exosomes derived from MSCs.

Minimizing the loss of myocardial cells and restoring 
the microcirculation in the marginal zone of the infarc-
tion are common strategies for the treatment of MI [24]. 
miR-21 is a typical cardioprotective miRNA, which has 
therapeutic effects such as anti-apoptosis, anti-fibro-
sis, and inhibiting inflammation [25]. Subsequently, to 
explore the mechanism of miR-21 upregulation, we used 
RNA sequencing to identify the transcription factors that 
were upregulated after IFN-γ treatment and selected 
STAT1 as the factor that may regulate the expression of 
miR-21. STAT3 can stimulate the expression of miR-21 
by binding to the promoter region [26, 27]. As an impor-
tant member of the signal transduction and transcription 
activator protein family, STAT1 has a similar structure 
and function as STAT3 [28]. Our results revealed that 
STAT1 induced by IFN-γ could upregulate miR-21 
expression by binding to the promoter region.

The angiogenesis effect of miR-21 has been extensively 
studied. We further explored the anti-apoptotic effect of 
miR-21 under ischemia and hypoxia [29, 30]. BTG2 (BTG 
anti-proliferation factor 2) is the first gene found in the 
BTG/TOB gene family and exerts a tumor suppressor 
effect in various cancers [31]. Down-regulation of BTG2 
by miR-21 can protect cardiomyocytes from doxorubicin 
treatment [32]. Functional studies have shown that over-
expression of BTG2 can exacerbate H9c2 cell apoptosis 
under ischemic and hypoxic conditions. Moreover, BTG2 
reversed the protective effect of miR-21 on hypoxia-
induced injury in H9c2 cells. BTG2 was found to be up-
regulated under OGD conditions, which suggests that 
BTG2 plays an important role in myocardial infarction. 
Notably, we employed transfection reagents to transiently 
regulate the expression of target genes. This method can-
not achieve long-term effect, so the use of adenovirus 
transfection will make the results more stable.

Fig. 8  Exosomal miR-21 derived from IFN-γ-primed MSCs improved cardiac function after infarction by promoting angiogenesis and inhibiting 
apoptosis
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Apart from miR-21, MSC-derived exosomes also 
deliver a wide spectrum of miRNAs that might mediate 
cardioprotective effects. We found that the expression of 
miR-126 also increased in IFN-Exo. MiR-126 carried by 
exosomes promotes angiogenesis and attenuates apop-
tosis in vivo [33]. In addition, recent studies have shown 
that miRNAs, proteins and mitochondria encapsulated 
by exosomes could also exert cardioprotective effects 
[34]. The therapeutic efficacy of IFN-Exo is likely medi-
ated by a combination of multiple factors, which merit 
further study.

The present study has some limitations. First and 
foremost, due to a limited budget, we did not perform 
miRNA sequence exosomes between Ctrl-Exo and IFN-
Exo. It is recommended that gene sequencing can com-
prehensively reveal the miRNA and lncRNA profile of 
IFN-Exo. Although miR-21 mainly mediates the cardio-
protective effect of IFN-Exo, there are still other miRNA 
interactions. Therefore, the miRNA sequence of IFN-Exo 
can better elucidate the cardioprotective efficacy. Second, 
although intramyocardial injection is an effective method 
of delivering therapeutic components accurately to the 
target, it might cause myocardial injury and fluid leakage. 
Chemical or genetic modification of extracellular vesi-
cles to improve myocardial targeting may be a promising 
solution.

Conclusion
In this study, we have shown that Exos derived from 
control and IFN-γ-primed MSCs attenuate myocardial 
injury. IFN-γ-Exo showed superior therapeutic efficacy, 
which was mainly mediated by increased expression of 
miR-21-5p. Our findings provide insight into the mecha-
nism underlying the anti-apoptotic and angiogenic effects 
of MSC-derived Exos and suggest a potential strategy to 
treat ischemic heart disease.
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