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Moderate alcohol consumption and lipoprotein subfractions:
a systematic review of intervention and observational studies

Trine L. Wilkens , Kaare Tranæs, Jane N. Eriksen, and Lars O. Dragsted

Context: Moderate alcohol consumption is associated with decreased risk of car-
diovascular disease (CVD) and improvement in cardiovascular risk markers, includ-
ing lipoproteins and lipoprotein subfractions. Objective: To systematically review
the relationship between moderate alcohol intake, lipoprotein subfractions, and
related mechanisms. Data sources: Following PRISMA, all human and ex vivo
studies with an alcohol intake up to 60 g/d were included from 8 databases. Data
extraction: A total of 17 478 studies were screened, and data were extracted from
37 intervention and 77 observational studies. Results: Alcohol intake was positively
associated with all HDL subfractions. A few studies found lower levels of small
LDLs, increased average LDL particle size, and nonlinear relationships to apolipo-
protein B–containing lipoproteins. Cholesterol efflux capacity and paraoxonase ac-
tivity were consistently increased. Several studies had unclear or high risk of bias,
and heterogeneous laboratory methods restricted comparability between studies.
Conclusions: Up to 60 g/d alcohol can cause changes in lipoprotein subfractions
and related mechanisms that could influence cardiovascular health.
Systematic Review Registration: PROSPERO registration no. 98955

INTRODUCTION

Cardiovascular disease (CVD) is the leading cause of

morbidity and mortality worldwide.1 In observational
studies, regular moderate consumption of alcohol

(ethanol) has long been linked to a reduced risk of
CVD, especially coronary heart disease (CHD).2 A J- or

U-shaped relationship between alcohol intake and inci-
dence of CVD and type 2 diabetes has been reported in

several studies.2–4 This association is mainly seen in
middle-aged men and postmenopausal women,4,5 with

a relative risk for CVD among moderate drinkers vs
non-drinkers of approximately 0.80.2,6,7 The lowest risk

has been observed at intakes between 2.5 g and 14.9 g of
alcohol a day (� 1 drink/d) for most CVD outcomes

spanning both sexes. However, the risk of CHD might
also be reduced at higher intakes.2,5 In some analyses,

the lowest risk is observed at intakes of 1–2 drinks per
day for men and 0.5–1 drink per day for women, which

is sometimes termed “light-to-moderate drinking.”8

This definition is supported by the National Institute of

Alcohol Abuse and Alcoholism9 and is in concordance
with the maximum recommended intake level in most

countries.10

Data from observational studies show that the type

of alcoholic beverage appears to be less critical,
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indicating that ethanol itself has biological activity.11–13

A recent meta-analysis reported similar protective
effects of beer and wine consumption but not of spi-

rits.14 This discrepancy could be related to a higher fre-
quency of binge drinking in people who drink spirits

rather than beer and wine.14 The effect of alcohol on
high-density lipoprotein (HDL) cholesterol, proposed
as a group-level alcohol intake biomarker,15 does not

seem to differ according to beverage type.16

The underlying, potentially protective mechanisms

of alcohol intake have not been fully elucidated.17

Among the effects of moderate alcohol consumption are

changes in circulating lipoproteins,17 which have been
associated with reduced risk of CHD in both clinical and

observational studies.18 An overview of the effect of mod-
erate alcohol consumption on the overall classes of lipo-

proteins and related apolipoproteins as reported in
published studies, is provided in Table 1.17,19–23

Lipoproteins are a heterogeneous group of lipid-
carrying particles in the blood that differ in size, den-

sity, composition, metabolism, and biological activity.
Within each overall class of lipoprotein, there are sev-

eral subfractions.24 Findings from some studies suggest
the relationship between lipoproteins and CVD risk dif-

fers according to the distribution of subclasses.25–27

Depending on the method, subfractions are classified

according to various characteristics, including density,
charge, apolipoprotein composition, and particle num-

ber.28 This heterogeneity makes interpretation of the re-
lationship between CVD and subfractions troublesome.

There is currently no universally accepted definition
of lipoprotein subfractions (LPSFs), and comparability

between studies is complicated by the use of different
methodologies for separating and measuring these struc-

tures. These methodologies include analytical ultracentri-
fugation, gradient gel electrophoresis, nuclear magnetic

resonance (NMR), and ion mobility (IM) spectrometry.24

An expert group recently suggested a uniform nomencla-

ture for the HDL subfractions that includes definitions of
subfractions measured as particle number and size, but
characterization by cholesterol content or apolipoprotein

composition is not included.29

Knowledge about the effect of moderate alcohol

consumption on the LPSFs could give more insight into
the mechanisms involved and provide hypotheses for a

potential causal role of alcohol consumption in CVD.
Studies of LPSFs are not included in the most recent

meta-analysis, which covered the effect of alcohol on 13
biological markers related to CVD risk.17 Current nar-

rative reviews describing the relationship between alco-
hol intake and lipoproteins with atherosclerosis provide

only a few comments on LPSFs.22,23,27,30,31

Nevertheless, several observational studies and

short-term intervention trials have investigated the

effect of alcohol consumption on LPSFs in both youn-

ger and older populations.32–36 A thorough systematic
overview of these effects, including the mechanisms by

which alcohol potentially alters the LPSFs, has not been
published previously, to our knowledge. The primary

aim of this systematic review, therefore, was to investi-
gate the influence of moderate alcohol consumption
and regular intakes up to 60 g/d on LPSF changes and

related mechanisms, and secondarily, whether changes
were influenced by study design or health status.

METHODS

Review protocol and registration

This systematic review was conducted in accordance

with established Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA)37,38

and reported in the PROSPERO database before the
systematic search (registration no. 98955).

Eligibility criteria

English-language studies published in peer-reviewed

journals were included and assessed for eligibility
according to predefined PICOTS criteria (Table 2).

Studies investigating oral alcohol intakes� 60 g/d in
human adults were included. A broad interval of alco-

hol intake was chosen to avoid excluding studies in
which “moderate” intake was up to 60 g/d. The compar-

ator intervention included no or low alcohol intake.
There were no restrictions on diet or medication, but

comparable background diets and medication protocols
in the intervention and control groups were required.

Studies in patients with cancer, genetic lipid disorders,
or kidney, pancreatic, and liver diseases, were excluded.

Studies in people with alcoholism or heavy drinkers
(>60 g/d) were also ineligible.

Eligible outcomes included all types of LPSFs re-
lated to the overall classes of lipoproteins: LDL, HDL,
chylomicrons, very-low-density lipoprotein (VLDL),

and intermediate-density lipoprotein. The LPSF defini-
tions described in the individual studies were used. All

these definitions are listed in Table S6 in the Supporting
Information online. In addition, outcomes related to

the mechanisms by which alcohol could modulate any
LPSF were included. Studies with LPSFs defined

according to apolipoprotein content were also eligible,
but overall classes of lipoproteins and apolipoproteins

were excluded. Quantitative changes in the LPSFs were
the primary outcome, and related mechanisms were the

secondary outcome. All types of human study designs
longer than 3 days and investigating the effect of the ex-

posure or intervention were included.
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Despite being part of the initial aim and search strat-

egy (Supplementary Methods in the Supporting
Information online), we chose to exclude studies in which

overall levels of apolipoproteins were investigated, in addi-
tion to animal, cell, and postprandial studies, because of

the vast number of additional articles. This decision was
made prior to data extraction and before the authors had

any knowledge about the study outcomes.

Literature search strategy

A comprehensive systematic literature search was per-
formed in April 2018 of 8 bibliographic databases

(Figure 1) according to the predefined eligibility criteria.
The search was updated in March 2021, spanning 2018

through March 2021. An email alert was created in the

central databases, continuously informing the researchers

of recent publications according to the search criteria. In
addition, we screened the ClinicalTrials.gov database

(www.clinicaltrials.gov) for unpublished literature. The
search terms were constructed in blocks and related to ex-

posure (alcohol consumption) and outcomes (LPSFs and
mechanisms). Hand searching of reference lists in the in-

cluded reviews was also performed. The complete search
strategy is provided in the Supplementary Methods in the

Supporting Information online. The process was verified
by an experienced health sciences research librarian and

agreed upon by all 4 authors.

Study selection

The study selection was performed in 2 phases after

duplicates had been removed in Endnote X8.239 and

Table 1 Results from meta-analyses of the effect of moderate alcohol intake on the overall classes of lipoproteins and
associated apolipoproteins
Lipoprotein Huang et al19,a Brien et al17,b Rimm et al20,c Spaggiari et al 21,d Hannuksela et al 22,23,e

VLDL-TG – – – – $ or "
TGf $g $ " $ $ or "
HDL-C " " " " "
LDL-C # $ $ $ $ or #
Lp(a)h – $ $ – #
ApoA-I " " " " "
ApoA-II – – – – "
ApoBh – – $ – $ or #
TC $ $ – " –
VLDL-C – – – – $
IDL-C – – – – $
aMeta-analysis of intervention studies: no diagnosed CVD, diabetes, or alcohol dependence; � 30 g/d alcohol (n¼ 2 with 0.19–0.81 g/
kg/d and 0.75 g/kg/d) for� 7 d; TC: n¼ 17, HDL-C: n¼ 22, apoA-I: n¼ 11, LDL-C: n¼ 17, TG: n¼ 22.
bMeta-analysis of intervention studies: No diagnosed CVD and no heavy drinking; � 90 g/d alcohol for� 7 d; LDL-C and TGs nonsignifi-
cantly reduced; TGs increased at > 60 g/d; TC: n¼ 26, HDL-C: n¼ 33, apoA-I: n¼ 16, LDL-C: n¼ 24, TG: n¼ 31.
cMeta-analysis of intervention studies: no diagnosed CHD, diabetes, or alcohol dependence; <100 g/d alcohol for� 7 d (predicted
mean change after 30 g/d used in analysis); HDL-C level increased by 0.103 mmol/L per 30 g of alcohol consumed per day; Lp(a)
(n¼ 4) nonsignificantly decreased; HDL-C: n¼ 25 (36 data records), apoA-I: 24 data records. ApoB and LDL-C analyses not specified.
dMeta-analysis of beer consumption in controlled intervention studies: Healthy, overweight, high cardiovascular risk, hypertension, or
healthy; � 41 g/d beer intake; acute studies (n¼ 5) and� 3 wk; TC: n¼ 14, HDL-C: n¼ 18, apoA-I: n¼ 5, LDL-C: n¼ 12.
eResults from 2 extensive narrative reviews with different study designs. No dose definition available. ApoB might only be reduced at
higher intakes.
fA review reports a J-shaped relationship to alcohol intake, nadir at intakes of 10–20 g/d (�1–2 drinks).238

g!: unchanged, ": increased, #: reduced, –: not investigated.
hInvestigated in few studies only.
Abbreviations: Apo, apolipoprotein; C, cholesterol concentration; CVD, cardiovascular disease; HDL, high-density lipoprotein; IDL, inter-
mediate-density lipoprotein; LDL, low-density lipoprotein; Lp(a), lipoprotein(a); VLDL, very-low-density lipoprotein; TC, total cholesterol;
TG, triglycerides.

Table 2 PICOTS criteria for eligibility of studies
Criterion Description

Population Human adults� 18 years of age, including healthy people and those at high risk of
cardiovascular disease (eg, people with type 2 diabetes, hyperlipidemia, increased waist
circumference, increased fasting blood glucose or reduced glucose tolerance, atherosclerosis,
hypertension, metabolic syndrome. Individuals taking lipid-lowering drugs were eligible.

Intervention/exposure Oral consumption of ethanol � 60 g/d. Comparable background diet and medication
use in compared groups

Comparison No or low alcohol intake
Outcomes Quantitative changes in lipoprotein subfractions and related physiological mechanisms
Timing Any intervention or exposure period > 3 days, any follow-up period
Study design All types of designs in humans
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Covidence.40 Three independent researchers (T.L.W.,
J.N.E., and K.T.) screened all identified articles for eligi-
bility on the basis of titles and abstracts. Articles that

met the inclusion criteria, or articles with uncertain eli-
gibility, were included for full-text screening. In the sec-

ond phase, screening of articles at the full-text level was
undertaken independently by 2 researchers (T.L.W. and

K.T.). Any lack of consensus between the authors was
settled by a third author (either J.N.E. or L.O.D.) until

consensus was reached. Contact by a single email to
study authors was made in case of missing or incom-

plete data.

Data collection and items

Two independent researchers (T.L.W. and K.T.) per-
formed data extraction, and all 4 authors discussed any

disagreements. A data extraction form was piloted on
the different study designs before data collection. The

following data were extracted: first author; publication

year; country; sample size and dropouts; age distribu-
tion; sex distribution; health status; study design; alco-
hol intervention or exposure; laboratory measurements;

statistical analyses of LPSFs and covariates; and LPSFs
outcomes, including direction of the results. Missing

data were retrieved via a single email to the authors; we
state in the accompanying tables if data proved

inaccessible.

Bias risk assessment

The methodological quality of the included articles was
assessed independently by 2 researchers (T.L.W. and

K.T.). Disagreements were discussed with the remain-
ing authors (J.N.E. and L.O.D.). Assessment was per-

formed at study level and according to the specific
study design. For randomized controlled trials (RCTs),

The Cochrane Collaboration tool for assessing the risk
of bias was used.41 The Risk of Bias Assessment tool for

Nonrandomized Studies (RoBANS)42 was used for

263
Cochrane Library

3125
BIOSIS (1969-)

3164
WoS (1900-)

1193
Ovid (1910-)

CAB abstracts
Food Science and Technology 

3626
Embase (1947-)

4262
PubMed (1946-)

1845
Google Scholar 

17 478
imported to Endnote

12 551
imported to 
Covidence 

135
included for data 

extraction

114
Included in the final 
systematic review: 

37 intervention studies and 
77 observational studies

9400
for title/abstract 

screening

579
for full-text
screening

3151
duplicates
removed

4927
duplicates
removed

8821
irrelevant references 

462
excluded, reasons:

Review 34
Animal/cell study:  91
Apolipoproteins only 118
Duplicate study: 83
Wrong intervention: 56
Wrong/missing outcome: 31
Wrong population: 5
Wrong comparator: 7
Wrong publication type: 34
Not English language: 3

5 
from email alerts

4
from contacts with experts 

(1 review)

9
from screening of reference
lists (1 review)

21
excluded, reasons:

Meal study: 8
Results reported in another article: 3
Dose too high: 3
No lipoprotein subfractions measured: 2
Wrong lipoprotein subfraction definition: 1
Full text not available in English 1
No separate effect of alcohol was analyzed 1
No analyses on moderate alcohol intake: 1
No results on lipoprotein subfractions 1

46*
Intervention studies 

reported:
Lipoprotein subfractions : 28
Mechanisms: 18

81*
Observational studies 

reported:
Lipoprotein subfractions : 64
Mechanisms: 17

Figure 1 Flowchart of the systematic literature process. *Some articles include outcomes related to both lipoprotein subfractions and
mechanisms (n 5 13) and are reported twice in this review. Thus, 114 individual papers were included, but 127 data sets were reported.
Abbreviations: EMBASE, Excerpta Medica Database; WoF, Web of Science.
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nonrandomized investigations, and the JBI Critical

Appraisal Checklist for Analytical Cross-Sectional
Studies43 was used for cross-sectional studies. Blinding,

by default, was scored as high risk of bias in all inter-
vention studies, because this is not believed to be

feasible for alcohol consumption.44,45 Similarly, self-
reported alcohol intake was classified as high risk of
bias in observational studies because self-reported alco-

hol intake is regarded an inaccurate methodology, com-
pared with objective biomarkers.46

Data synthesis and analysis

Alcohol intake in grams per day was used and recalcu-

lated from grams or ounces per week, when necessary.
Amounts reported in grams per kilogram body weight

were recalculated on the basis of a standard person
weight of 70 kg. Frequency measures were not con-

verted. In observational studies, the alcohol intake was
classified into levels and handled as categorical or con-

tinuous variables. The lowest alcohol-intake group was
often used as the reference group, except in studies us-

ing multivariate analysis. It was impossible to delimit
the alcohol intake to exactly� 60 g/d, because of the

group classifications and the corresponding statistical
analyses in the included observational studies. The indi-

vidual LPSFs were not extracted in absolute values; in-
stead they are described with arrows. Vertical arrows

indicate significant increases or decreases (P< 0.05 or
significance level used by the study). Horizontal arrows

indicate nonsignificant effects. Arrows in brackets indi-
cate trends defined by the review authors (P range,

> 0.05 to � 0.1). Outcomes were preferably based on
both sexes, but results of each sex separately were in-
cluded if a combined outcome was not available.

Presumed multiple reports from the same study are
reported individually but listed after each other in the

final table. NMR- and IM lipoprotein outcomes are pro-
vided in particle number concentration, abbreviated -P.

RESULTS

Study selection

The number of articles retrieved from the individual

databases is shown in Figure 1. A total of 17 478 articles
were identified. After removing duplicates, and title and

abstract screening was conducted, 579 articles were ini-
tially included for full-text screening. The interrater

agreement at this stage was moderate (j¼ 0.59).
Additional articles were retrieved from various sources

(Figure 1). Hence, 597 papers were screened at the full-
text level, where the interrater agreement was high

(j¼ 0.82), and a total of 114 articles were included.

These were 37 intervention studies and 77 observational

studies, totaling 20 510 and 104 773 participants,
respectively.

The characteristics of the included studies are out-
lined in Tables S1–S4 in the Supporting Information

online. The vast number of citations in this review re-
duce readability; therefore, the reader is directed to
Table S5 in the Supporting Information online, which

lists specific statements supported by multiple articles
included in this review, with the appropriate references.

Table 3,35,36,47–70 Table 4,33,71–123 Table 5,13,32,124–131 and
Table 616,49,50,52,53,59–62,64,84,104,112,114,132–152 provide an

overview of the outcomes from each study based on the
distinct types of LPSFs, as illustrated in Figure 2.

Study characteristics and participants

Results from the individual LPSF studies are shown in
Tables S1 and S2 in the Supporting Information online.

LPSF outcomes were measured in 28 intervention
studies, shared among 14 RCTs, 3 nonrandomized tri-

als,52,56,62 9 nonrandomized studies with sequential
crossover, and 2 Mendelian randomization studies

(MRSs).66,67 We included 64 observational LPSF stud-
ies, the majority of which were cross-sectional. Würtz et

al126 performed a cross-sectional analysis but also cap-
tured metabolic changes at a 6-year follow-up examina-

tion. In addition, 2 cohort studies102,118 and 4 case-
control studies were included. In all case-control studies

and 1 cohort study,102 the alcohol data extracted were
from cross-sectional analyses. Last, 1 RCT study is listed

among the observational studies, because the only avail-
able data on alcohol and LPSFs were cross-sectional

and from baseline.131 Multiple reports from the same
study were identified; these redundant entries are com-

bined in Table S2 in the Supporting Information online
as Kee et al107 and Marques-Vidal et al108; Luc et al154

and Marques-Vidal et al (2001)109; Onat et al (2003)105

and Onat et al (2009)102; and Rossouw et al90 and

Steenkamp et al.76

Intervention studies: characteristics. The intervention
studies with LPSF outcomes were published between

1983 and 2017, and study size varied between 5 and 112
participants (Table S1 in the Supporting Information

online). The 2 MRSs with 8,400–10,900 participants are
listed with the intervention studies. Overall, the age of

the participants ranged between 18 and 75 years, and
the majority of studies included healthy participants

only. Three studies included women only48,51,57 and 17
studies included only men. The shortest duration of the

alcohol interventions was 10 days; the longest was
6 months. Alcohol was provided in amounts from 12.6

to 60 g/d, but the majority of studies provided 20–
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40 g/d and lasted for at least 2 weeks. The type of alco-
hol consumed varied among studies. Several different

laboratory techniques for LPSF analyses were used.
Depending on the characterization metric, techniques

for separation and quantification included different pre-
cipitation techniques, immunogenic assays, radiolabel-

ing, ultracentrifugation techniques, chromatography
methods, and more recent technologies such as NMR

or IM.
Of the 28 intervention studies with LPSF outcomes,

compliance information was found in 10 studies. This
information was based on self-reports in 6 studies, on

self-reports and blood biomarkers in 3 studies,35,44,55

and on a blood biomarker alone in 1 study.60 Alcohol
was served at the study site in 3 studies.56,59,62

Compliance was only explicitly described in 1 of these
studies,59 but compliance appears to have been closely

monitored in the remaining 2 studies. In general, the
studies reported good compliance with the alcohol

intervention.

Observational studies: characteristics. The 64 observa-
tional studies investigating LPSF outcomes were pub-

lished from 1981 to 2021, and number of participants
ranged from 25 to 9778 (Table S2 in the Supporting

Information online). Participants’ age ranged from 18

C. Apolipoprotein

E. Particle shape

B. Size and number

A. Size or mobility

F. Cholesterol content D. Total mass

Free cholesterol

Apolipoprotein

Phospholipid monolayer

Esterified cholesterol

Triglyceride

Figure 2. Lipoprotein subfractions included in this review. Lipoprotein subfractions are classified differently depending on the method of
assessment. Some of the different types of lipoproteins subfractions included in this review are illustrated here. (A) Subfractions defined
according to size or mobility with, for example, gel electrophoresis (eg, low-density lipoprotein [LDL]-I through LDL-IVB). (B) Subfractions de-
fined according to size and particle number per unit volume, measured by nuclear magnetic resonance or ion mobility (eg, small, medium,
and large HDL particle number concentration). (C) Subfractions defined by their apolipoprotein content (eg, apoA-I, apoA-II, or apoC-III) with
immunoelectrophoresis (eg, LpA-I:A-II, LpC-III:B, or HDL with apoC-III). (D) Subfractions of distinct densities defined by their total mass of each
subfraction with, for example, analytical ultracentrifugation or ultracentrifugation followed by enzymatic assays (eg, HDL2-TM, HDL3-TM). (E)
Subfractions defined by their shape (spherical or discoidal) with 2-dimensional immunoelectrophoresis (eg, pre-b-HDL). (F) Subfractions of dis-
tinct densities defined by their cholesterol cargo; the density measured with ultracentrifugation and the cholesterol content in each subfrac-
tion measured with, for example, enzymatic assays (eg, HDL2-C, HDL3-C, VLDL1-C). (Adapted from Camont et al159 and Rizzo et al.28

Illustrations by graphic designer Susanne Riber, www.susanneriber.dk)
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to 85 years. Five studies included only women, and 23

studies included only men. The observational studies
include 1 IM study129 and 9 NMR studies. The period

of self-reported alcohol exposure was highly diverse
across studies, with a maximum of 1-year recall.

However, exact duration was not consistently reported
in all the articles. The results represent alcohol per se,
because no specific type of alcohol was investigated in

any study. Healthy populations were included in most
studies. A range of laboratory methods was used, in-

cluding enzyme-linked immunosorbent assay, immu-
noaffinity chromatography, immunoelectrophoresis,

IM, or NMR.

Outcomes related to each LPSF

HDL subfractions: intervention studies. Measured sub-
fractions of HDL included HDL2 and HDL3. The cho-

lesterol content of HDL2, HDL2-C, was measured in 19
intervention studies, and increased HDL2-C levels were

found in 9 studies, whereas no change was reported in 9
studies. A decrease was shown in a single study in

which the effects of alcohol restriction were compared
with moderate intake (Table 3 and Table S1 in the

Supporting Information online).55 The reported
increases in HDL2-C concentration ranged from 0.039

to 0.155 mmol/L, with a median of 0.06 mmol/L.
Studies that showed increasing concentrations of

HDL2-C had a median of 45 participants (range, 20–10
893), whereas the median was 25 participants (range,

10–60) in the remaining studies. Increasing HDL2-C
levels were shown in studies of both low (range, 13.5–

19 g/d)36,69 and higher (range, 45–50 g/d)35,64 amounts
of alcohol intake, but no effects on HDL2-C were

reported in other studies with alcohol intakes of 45–
60 g/d.47,53,54 Increases were observed in studies of

shorter duration (2–4 wk) and studies with moderate
duration (6–12 wk).35,57,69 The majority of studies

reporting increased HDL2-C levels were RCTs or MRSs.
Studies of women only57 or men only35,64,68 reported
increased concentrations of HDL2-C.

HDL3-C was measured in the same 19 studies as
HDL2-C. Increased concentrations were found in

8 studies, and no effect was found in 9 studies.
Decreased levels were reported in 2 studies,50,55 1 of

which investigated alcohol restriction.55 HDL3-C was
increased in the range of 0.049–0.132 mmol/L, with a

median increase of 0.078 mmol/L. The median popula-
tion size of the studies finding positive effects was 45.6

(range, 10–8364), whereas the median population was
36 (range, 12–10 893) in the studies with nonsignificant

results. Alcohol doses > 30 g/d were provided in 7 of
the studies in which increased HDL3-C concentrations

were reported; none of the studies providing amounts

< 30 g/d reported any increases. Increased HDL3-C

level was reported in studies of 2–4 weeks’ and studies
of 6–12 weeks’ duration.35,57 The 9 studies in which

researchers reported finding increased HDL3-C concen-
trations included 1 study of women only57 and 6 studies

of men only, and 5 of the studies were RCTs or MRSs.
Total mass concentrations of HDL2 and HDL3

were measured in 6 studies; increased levels of HDL3

were reported in 2 of these (Table 3).53,58 The LpA-I
and LpA-I:A-II subfractions were investigated in 7 stud-

ies (Table 3). Increased levels of LpA-I and LpA-I:A-II
were found in 4 and 5 studies, respectively, whereas no

change was found in 350,60,61 and 2 studies,50,61 respec-
tively. The increases ranged from 0.03 to 0.04 g/L (me-

dian, 0.035 g/L) for LpA-I, and from 0.03 to 0.248 g/L
(median, 0.05 g/L) for LpA-I:A-II. The respective me-

dian population size was 34 (range, 10–56) and 12
(range, 5–20) for significant and nonsignificant results,

respectively, for increased LpA-I. The corresponding,
respective median population sizes for LpA-I:A-II were

24 (range, 5–56) and 17 (range, 14–20). Positive results
were primarily found in studies with a randomized,

controlled design.
Two intervention studies measured HDL subfrac-

tions and HDL size by NMR, with no effects reported
for alcohol doses of 15 g/d or � 30 g/d (Table 3).44,62

Low compliance was reported in 1 of these studies.44 A
third study showed increased HDL size measured with

gradient gel electrophoresis after a dose of 30 g/d.57

Overall, most intervention studies found increased

levels of all types of HDL subfractions independent of
analytical method, dose, and study duration. These

findings were supported by 2 MRSs.66,67 A limited
number of studies included participants with disease;

therefore, stratification by disease status was not possi-
ble. Most of the study populations were healthy, though

participants with high CVD risk were included in 2
studes,44,70 and participants with mixed health status

were included in 1 study, with 9% having diabetes.67

HDL subfractions: observational studies. HDL2-C was

measured in 36 studies, 21 of which reported that
higher alcohol intake was associated with higher

HDL2-C levels. No associations were found in 14 stud-
ies, and a negative association was found in 1 study

(Tables 4 and 5).96 Sch€afer et al97 found positive associa-
tions of alcohol intake with higher HDL2a-C and

HDL2b-C levels. The median population size was 1032
(range, 32–9778) in studies with increasing concentra-

tions of the HDL subfractions with alcohol intake, and
246 (range, 32–1386) in the studies that found no asso-

ciations. Of the 5 studies conducted with women, a pos-
itive association between alcohol intake and HDL2-C

concentration was found in 1 study,121 whereas higher
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HDL2-C levels were found in 7 of the 12 studies con-

ducted with men.
HDL3-C concentration was measured in 37 studies,

of which 27 reported positive associations with alcohol
intake, and 10 studies found no associations (Tables 4

and 5). The median population size was 932 (range, 30–
9778) in studies with positive associations between alco-
hol intake and HDL3-C, and 290 (range, 32–2044) in

studies with no change in HDL3-C. Four of the 5 studies
with women only and 8 of the 24 studies with men only

reported significant results for HDL3-C relative to alco-
hol intake.

Two studies investigated the total mass of HDL2a–2b

and HDL3–3c, but the findings were inconsistent

(Table 4).98,99 In contrast, LpA-I was measured in 10 studies
and positive associations between alcohol intake and LpA-I

levels were found in 4. No relationships were found in 5
studies, and a negative association was found in 1 study

(Table 4).116 The studies that found positive associations be-
tween alcohol intake and LpA-I levels had a median size of

395 (range, 100–6729), compared with a median size of 409
(range, 25–8357) in the studies with nonsignificant results.

LpA-I:A-II was examined in 8 studies, 5 of which reported
positive associations with alcohol intake, and no relation-

ships were reported in 3 studies.107,111,113 The median pop-
ulation size was 344 (range, 46–8357) and 409 (range, 175–

536) in the significant and nonsignificant studies, respec-
tively. All except 2 LpA-I and LpA-I:A-II studies111,113 were

conducted with men only.
HDL subfractions were defined by the apolipopro-

tein C-III (apoC-III) content in 4 studies (Table 4 and
Table S2 in the Supporting Information online). Koch

et al103 found that greater amount of alcohol intake was
associated with higher levels of apolipoprotein A-I

(apoA-I) in HDL without apoC-III, but not with apoA-I
HDL containing apoC-III. Positive associations with

HDL cholesterol with and without apoC-III were
reported in the study by Jensen et al,101 in which 50% of

participants had CHD. Onat et al found positive corre-
lations with both apoC-III in HDL and non-HDL in
men but not in women in 1 study,105 and positive asso-

ciations with apoC-III in HDL in men, and men and
women combined, in another study.102

HDL subfractions characterized by size and particle
numbers were available from 1 IM study129 and 9 NMR

studies involving 233–9778 volunteers (Table 5 and
Table S2 in the Supporting Information online).

Alcohol intake was associated with increases in all types
of HDL subfractions. Nonsignificant associations were

found only for a few individual outcomes, and 2
studies reported negative associations between alcohol

intake and small HDL-P.124,131 The study by Millar et
al127 was the only study with contrasting results; they

reported a negative association of alcohol intake with

most HDL subfractions. Overall, with increased alcohol

intake, the increase in the medium and larger HDL-P
occurred more frequently than the increase in the

smaller HDL-P, and increased average HDL particle
size was reported in 5 studies. Total HDL-P were mea-

sured in 3 studies, all of which found increased levels
with moderate alcohol intake.32,124,125

Sex-specific analyses were performed in 4 NMR

studies. Minor differences between men and women
were reported in some of these studies. However,

women often had a lower average alcohol intake than
did men.32,125,129 Mukamal et al124 found no substantial

differences in HDL subfractions between men and
women. Du et al13 found no interaction with sex, and

Würtz et al126 found similar results for men and
women.

In summary, alcohol intake was associated with in-
creased levels of almost all types of HDL subfractions

(Tables 4 and 5). The evidence for HDL subfractions
characterized by total mass or apoC-III content was

sparse (Table 4). Populations of mixed health status
were included in 18 studies, and participants with dysli-

pidemia73 and hypertension85 were included in 2
(Tables S1 and S2 in the Supporting Information on-

line). A health status description was missing in 12 of
the included studies. No pattern between disease status

and outcomes was found.

LDL subfractions: intervention and observational studies.
LDL subfractions were investigated relative to alcohol

intake in 2 intervention studies44,63 and 2 MRSs66,67

(Table 3). No effect on any NMR-measured LPSFs was

found in a 6-month RCT with presumed low compli-
ance regarding alcohol intake.44 An increased ratio of

LDL-C to apolipoprotein B (apoB) was found in the
other study, implying an increase in LDL size with

moderate alcohol intake.63 One of the 2 MRSs found
decreased levels of large, buoyant LDL cholesterol in

Japanese men and women and increases in small, dense
LDL cholesterol (sdLDL-C) in men.66 In that study, the
aldehyde dehydrogenase 2*1 allele was used as a proxy

for alcohol consumption in men but not in women. The
other MRS found a trend toward decreased sdLDL-C in

both men and women, using 5 different single-
nucleotide polymorphisms on different alcohol dehy-

drogenase genes as exposure markers.67

LDL subfractions were included in 6 observational

studies, excluding NMR and IM studies (Table 4). No
consistent pattern was observed, but one study found a

positive association between alcohol intake and large
LDLs155 in men,117 and another study found a decrease

in sdLDL-C in association with alcohol intake.33 A
trend toward decreased LDL particle size was found in

a third study.118 Five studies investigated LPSFs, defined
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by apolipoprotein E108,109,119 or apoC-III102,105,108 con-

tent, but reported inconsistent results. Results from
8 NMR and IM studies were heterogeneous (Table 5);

associations in opposite directions and nonsignificant
or even nonlinear relationships were reported relative

to alcohol intake. Mukamal et al124 found a U-shaped
association of alcohol intake with total LDL-P, with a
different pattern depending on the particle size. The

concentration of large LDL-P was highest in consumers
of� 1 drink/wk, and that of small LDL-P was lowest in

consumers of 7–13 drinks/wk. The net result was in-
creased average LDL size. The LDL-C measure did not

capture the shift in the distribution of LDL subfractions.
Generally, the associations were similar in men and

women, but stronger in women. Würtz et al126 reported
complex relationships to apoB-carrying lipoproteins.

Most of these associations had a U-shaped pattern in
the first segment of the slopes up to 100 g/wk and lowest

lipoprotein levels at � 50 g/wk (7 g/d). The decreasing
limb of these curves was generally steeper in women

than in men.

VLDL subfractions: intervention and observational
studies. VLDL subfractions were only measured in 1 in-

tervention study, which found no effect of alcohol at a
dose of 20 g/for 2 weeks or 35 g/d for 1 week

(Table 3).65 Inconsistent results were found in 7 obser-
vational NMR studies. Positive and negative associa-

tions of alcohol intake with all types of VLDL
subfractions and VLDL size were found, but positive

associations were reported most frequently (Table 5).
Positive associations of alcohol intake with medium and

large VLDL-P plus average VLDL particle size was ob-
served in the largest NMR study by Würtz et al126

(N¼ 9778). The relationship to medium VLDL was
nonlinear, with a U-shaped curve at alcohol intakes be-

tween 0 and 100 g/wk. In partial agreement with this,
Mukamal et al124 reported a quadratic or U-shaped rela-

tionship of alcohol intake to large VLDL-P and larger
average VLDL particle size, but inverse associations
with small, medium, and total VLDL-P. Consumers of

1–13 drinks/wk had the lowest level of large VLDL-P,
and the decreased total number of VLDL-P was driven

by reduced levels of medium and small VLDL-P.

Mechanisms. Results from individual studies investigat-
ing potential mechanisms for the relationship between

alcohol intake and LPSFs are presented in Tables S3
and S4 in the Supporting Information online, and a

summary is provided in Table 6. Most intervention and
observational studies examined cholesterol ester trans-

fer protein (CETP), hepatic lipase, lecithin-cholesterol
acyltransferase (LCAT), phospholipid transfer protein

(PLTP), and lipoprotein-associated phospholipase A2

(Lp-PLA2). No consistent relationships with alcohol in-

take were found for any of these. Results were more ro-
bust for cholesterol efflux capacity (CEC) and

paraoxonase (PON). CEC was increased with alcohol
intake in 9 studies, whereas 2 studies found no

change.61,114 A positive association with the cholesterol
efflux regulatory protein, ATP-binding cassette trans-
porter A1 (ABCA1) was reported in 1 study.136 PON ac-

tivity and PON mass were increased in 6 studies, and
no change was found in 3.16,148,152 Three studies found

increased levels lipoprotein lipase (LPL) activity and
mass with alcohol intake,52,62,142 whereas no such

changes were reported in 3 other studies.53,64,140

Bias risk assessment of individual studies

Bias risk assessment results for all the included studies
are shown in Figures S1–S6 in the Supporting

Information online. Several of the RCTs with LPSF out-
comes were older and inadequately reported, and none

of the studies were of high quality in terms of bias risk
(Figure S1 in the Supporting Information online). For

example, randomization procedures were not described
adequately in any of the included RCTs, resulting in

unclear risk of selection bias. Likewise, several studies
had unclear or high risk of reporting bias caused by a

lack of consistency between planned and reported out-
comes. Because of the nature of alcohol interventions,

the risk of performance bias is high in all RCTs. Last, all
RCTs had unclear or high risk of other bias due to

shortcomings such as unidentified carryover effects in
cross-over studies57,60; baseline imbalances55; potential

selection bias due to insufficient description of partici-
pant recruitment36,60,64; or potential confounding from

changes in body weight, physical activity, smoking sta-
tus, or dietary intake. The background diet was only

fully controlled in 4 studies and partially in 1.59 In the
remaining studies, participants were asked not to

change their dietary intakes.
The different nonrandomized investigations

(Figure S2 in the Supporting Information online) were

a mix of (1) non-RCTs with a crossover or parallel de-
sign, (2) nonrandomized studies with sequential cross-

over, (3) case-control studies, and (4) cohort
studies.102,118 Most of these studies had unclear or high

risk of selection bias due to inadequate description or
selection of participants, compromising external valid-

ity, or insufficient consideration or handling of poten-
tial confounders, compromising internal validity. A

priori, all the studies were assessed with high risk of
performance bias due to inadequate possibilities for

blinding for the drinking of alcohol. In contrast, the
risk of detection bias was consistently considered low

due to the objective nature of lipoprotein outcomes.
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Only a few studies had unclear risk of attrition bias or

unclear or high risk of reporting bias. Overall, only 2 of
the randomized studies were of high quality regarding

bias risk.101,115

Overall, many observational studies were assessed

to have lower risk of bias, including the most recently
published NMR studies. However, some of these studies
were older and did not follow current reporting stand-

ards (Figure S3 in the Supporting Information online).
The descriptions of eligibility criteria and study popula-

tions were generally insufficient. Alcohol exposure was
measured via self-report and scored with high risk of

bias on the validity and reliability of the exposure vari-
able. In contrast, all studies except 169 identified poten-

tial confounders and adjusted for them in their
analyses. In a few included studies, researchers per-

formed inappropriate statistical analyses or did not de-
scribe them. The LPSFs were generally measured

reliably (ie, with laboratory methods found reliable
when the study was conducted), but some included

studies did not specify the laboratory method
used.81,100,120

No obvious systematic patterns relating risk of bias
with study outcomes in any study designs were ob-

served. Only a few studies had low risk of bias, and
these appeared more frequently among the more recent

observational studies.

DISCUSSION

To our knowledge, this systematic review is the first to
examine LPSFs after moderate alcohol intake. Most in-

tervention studies provided alcohol in an amount of
20–40 g/d for at least 2 weeks, even though the limit for

eligibility was set to� 60 g/d. The reviewed articles ex-
plored several different LPSFs, mainly characterized

according to total size and mobility; size and number;
apolipoprotein content; total mass; shape; or cholesterol
content and size (Figure 2). Alcohol in amounts up to

60 g/d was related to increased levels of almost all HDL
subfractions measured, independent of the analytical

approach. Results on LDL subfractions were sparse, es-
pecially from intervention studies. However, a few ob-

servational studies and MRSs found reduced levels of
sdLDL-C, increased average LDL size, and U-shaped or

other nonlinear relationships for alcohol intake and
apoB-containing lipoproteins. Mechanistic studies show

a pretty clear pattern of increased CEC and PON activi-
ties across all study designs. Because these was an insuf-

ficient number of relevant studies, it was impossible to
fulfill the aim of analyzing data according to disease

status.

Comparison with other studies

High-density lipoproteins. The overall classes of lipopro-
teins were not included in the search strategy because

they have been covered in 3 previous meta-analyses of
intervention studies summarizing the effect of moderate

drinking on several biological markers of CVD risk
(Table 2). These meta-analyses mainly included healthy

individuals, and the dose of alcohol provided was up to
100 g in some of the included studies.17,20 They all

reported increased levels of HDL-C and apoA-I
(Table 2), in concordance with findings in several non-

systematic reviews.22,23,27,30 On the basis of these
results, we hypothesized that the increase in HDL could

be explained by a more robust increase in some types of
HDL subfractions than in others. Most studies in the

present review do not support this hypothesis, because
an increase with moderate alcohol intake is commonly

reported for all the HDL subfractions. That said, in-
creased levels of HDL3-C were reported more fre-
quently than for the larger HDL2-C, especially in

observational studies (Tables 3–5).
On the other hand, increases in medium and larger

HDL-P compared with the smaller HDL-P occurred
more often in the NMR and IM studies (Table 5).

Würtz et al126 found more pronounced associations of
alcohol intake and the medium and small HDLs in the

largest NMR study, underlining that there are no con-
sistent differences between the effects of moderate alco-

hol intake on the different HDL subfractions. Similarly,
no clear distinction was found for LpA-I compared

with LpA-I:A-II, and the reported effect sizes of HDL2-
C and HDL3-C do not differ substantially. These find-

ings are further corroborated by Hannuksela et al22 in
their narrative review, whereas Brinton et al27 reported

more significant increases in HDL3 compared with
HDL2. In neither of these reviews was the evidence

gathered systematically, and the definition of moderate
alcohol intake was not clear in these reports, which

undermines the weight of their conclusions.

Low-density lipoproteins. The LDL subfractions have not
been included in previous meta-analyses of moderate

drinking, and results on total LDL-C are inconsis-
tent.17,19,20 No effect on LDL-C was found in 2 of these

meta-analyses,17,20 whereas Huang et al19 showed de-
creased levels in a meta-analysis of studies with alcohol

doses up to only 30 g/d. The inconclusive findings on to-
tal LDL could be due to opposing changes in small and

large LDL subfractions or to nonlinear dose-response
relationships masking physiologically relevant findings.

The evidence is sparse in the present review, but some
studies indicate decreased levels of smaller LDLs,33,67,124

increased levels of lbLDL,117,124 and an increase in
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overall LDL particle size (Tables 3–5). 63,124,129 However,

this pattern needs further substantiation. In addition,
standardization of subfraction classification is required,

because a direct comparison of different types of smaller
LDLs, such as sdLDL-C33,67 and small LDL-P124 is trou-

blesome. Results on LDL subfractions were not included
in 2 narrative reviews, but the authors reported de-
creased or unchanged total mass of LDL or total LDL-C

with moderate drinking.22,27 No clear definition of types
of LDL particles, alcohol dose, or duration of alcohol in-

take was made in these reviews, which complicates direct
comparison. It has been suggested that changes in LDL

particles seem to vary more with population, sex, and
drinking pattern than changes in HDL particles.27

Despite the original aim, too few studies investigating
LDL subspecies were included to allow for stratified anal-

yses on population characteristics.

Very-low-density lipoproteins. Results on VLDL sub-
fractions come primarily from NMR studies and are

sparse and inconsistent (Table 5). VLDL was not in-
cluded in the meta-analyses of alcohol intervention

studies.17,19,20 Under normal circumstances, VLDL
particles carry most of the plasma triglycerides (TGs)

in their core,156 and larger VLDL particles generally
contain more TG.157 Overall TG levels were

unchanged after moderate alcohol intake in 2 meta-
analyses of intervention studies.17,19 In contrast, in-

creased TG levels were shown with alcohol intake in
an older meta-analysis (Table 2).20 Brien et al17

reported increased TG levels only when alcohol intake
exceeded 60 g/d. Likewise, in 1 included observational

study, the authors found decreased levels of all VLDL
subfractions and overall TG levels in drinkers of 7–13

drinks/wk compared with abstainers.124 Results from
2 of the largest observational NMR studies found posi-

tive or U-shaped associations of alcohol with medium
or large VLDLs.124,126 Taken together, TG levels could

be unaltered or decreased after moderate alcohol con-
sumption and increased at higher intakes. A decreased

TG level would be in line with the well-known inverse
relationship between TG levels and HDL-C.158

However, if the HDL-C level increases in a linear
manner with alcohol consumption,20 and the relation-

ship to TG is U-shaped, there is no longer concor-
dance with the inverse-relationship hypothesis. Effects

on VLDL subfractions need further examination.
Even though U-shaped patterns with alcohol intake
were observed, results were inconsistent.

Clinical implications

HDL and CVD. HDL subfractions not classified solely

by their dynamic cholesterol content and mechanistic

or functional outcomes of HDL have been suggested as

potential biomarkers for assessing cardiovascular
risk.159,160 Traditionally, HDL-C has been used in car-

diovascular risk equations.161 The inverse association
between HDL-C and CHD is well known162 and has

been ascribed to the significant role of HDL in reverse
cholesterol transport.159 In recent years, the causal role
of HDL-C in the development of atherosclerosis has

been questioned.163 Several clinical drug trials have
shown no or negative effects on CVD outcomes despite

increased HDL-C levels,164,165 and an MRS did not
prove a causal relationship between HDL-C and myo-

cardial infarction.166 In addition, the association of
HDL-C with all-cause mortality and CVD has been

shown to be J-shaped, with a minimum in risk at 54–
58 mg/dL and 68–71 mg/dL, respectively,167 and the re-

lationship between alcohol and HDL-C is linear.20 High
levels of dysfunctional HDL-C may even increase the

risk of CVD.168 When investigating the potential bene-
ficial effects of moderate drinking on cardiovascular

health, it would seem, therefore, too simplistic to in-
clude HDL-C exclusively.160 Several antiatherogenic

roles of HDL that are not captured by measuring the
cholesterol content have also been described. These in-

clude anti-inflammatory, vasodilatory, and antioxida-
tive functions, and they may be subfraction specific.159

Examining the effect of alcohol on HDL subfractions,
therefore, is relevant.

In this review, it was not confirmed that increases
in the small rather than the large HDLs could explain a

potential cardiovascular benefit of moderate drinking.
Some studies found that HDL3-C is more frequently in-

creased than HDL2-C, but increases in the medium and
large HDL-P were reported more often in other studies.

In addition, increased HDL size was reported by several
studies (Tables 3 and 5) Authors of a previous nonsys-

tematic literature review concluded that HDL2-C and
HDL3-C did not significantly improve risk prediction

over HDL-C but also pointed to the inadequacy of cho-
lesterol measurements to sufficiently identify HDL het-
erogeneity and CVD risk.25 Several larger, secondary

analyses examining the relationship between the differ-
ent types of HDL subfractions and CVD risk have been

conducted.169–174 With 1 exception,172 their results in-
dicate stronger inverse associations of CVD with

smaller HDL subfractions, such as HDL3-C and small
HDL-P, compared with larger HDL subfractions and

overall HDL-C. That said, only a few of these analyses
were adjusted for apoB.170 Findings relating to the role

of LpA-I and LpA-I:A-II in CVD risk are less convinc-
ing,29,110,175 and these subfractions were not included in

a proposed new nomenclature of HDL subfractions.29

Authors of a narrative review suggested a more benefi-

cial role of smaller HDLs and refer to their importance
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in CEC and their antioxidant, anti-inflammatory, and

antithrombotic actions.159 However, the clinical rele-
vance of specific HDL subfractions still needs to be

determined.159

LDL and CVD. LDL-C has been firmly established as a
causal factor for atherosclerosis and CVD, with con-
vincing evidence from genetic studies, prospective epi-

demiological studies, MRSs, and RCTs of LDL-lowering
therapies.176 The alcohol-induced change in LDL sub-

fractions is much less clear than for the HDL subfrac-
tions. Still, some evidence for reduced levels of smaller

LDL, increased levels of larger LDL, and increases in
overall LDL particle size was seen. Whether LDL sub-

fractions are better predictors of risk than LDL-C is de-
batable.24 Small LDLs enter the arterial wall more

easily177 and bind more avidly to arterial wall macro-
phages and proteoglycans and glycosaminoglycans.178

They have a lower affinity for the LDL receptor, causing
longer residence time.179 Overall, the majority of studies

have associated smaller LDL with higher CVD risk,24,180

compared with larger LDL.181,182 A recent narrative re-

view found independent associations to CVD clinical
outcomes for small LDL subfractions and LDL-P,180 de-

spite minor inconsistencies between studies. Smaller
LDLs do often coexist with higher TG levels and lower

levels of HDL-C (the atherogenic lipid triad), however,
so disentangling an independent effect of small LDLs is

difficult.24

Quantification of LDL subfractions may strengthen

our understanding of the association between moderate
alcohol intake and CVD, but improved risk predictions

compared with standard lipid measurements have yet
to be made.180 Several studies reported elevated levels of

sdLDL in disorders such as diabetes and metabolic syn-
drome,183 which are metabolic states with a high preva-

lence of the atherogenic lipid triad.184 Several alcohol
studies have shown inverse associations between mod-

erate alcohol intake and metabolic syndrome,185 glyce-
mic markers,186 and diabetes.3,187 These results
strengthen the hypothesis that moderate alcohol intake

could have beneficial health effects partially due to
changes in lipoproteins such as smaller LDLs. That said,

a cause-and-effect relationship is still missing.
In this review, interesting post hoc results on over-

all apoB levels were also observed. All lipoprotein par-
ticles carrying apoB, and the cholesterol content within

them, play a central role in atherosclerosis.177,188 ApoB
has been proposed as a better marker of atherogenic

risk than HDL-C and LDL-C,189 and apoB measure-
ments are now included in clinical guidelines.18,190

LDL-P can be used as a surrogate for apoB under nor-
mal circumstances.189 One of the included NMR studies

found a negative association of alcohol with apoB,13

and another study showed a U-shaped relationship,

with a nadir at intakes between 50 and 100 /wk.126

Total LDL-P was inversely related to alcohol consump-

tion in a quadratic pattern in another study, with the
lowest level at 1–6 drinks/wk.124 Conversely, older in-

tervention studies have found unchanged apoB levels,20

but results on apoB were not included in the 2 most re-
cent meta-analysis of intervention studies (Table 2).17,19

These results might have clinical implications for mod-
erate alcohol intake and should be investigated further.

VLDL and CVD. Large and total VLDL-P have been as-

sociated with insulin resistance,191,192 and increased
large VLDL-P levels have been positively associated

with markers of CVD severity in smaller cohorts.193,194

A higher concentration of large VLDL-P is also associ-

ated with a decrease in small LDL-P levels and an over-
all increase in the number of LDL particles, changes

that are important for CVD risk.192 Equally, all VLDL-P
measured by NMR and a higher average VLDL particle

size were positively associated with a higher risk of inci-
dence of CVD in the Women’s Health Study.172

Positive associations to all types of VLDL subfractions
and increased VLDL size were seen here (Table 5), im-

plying a potential downside of moderate drinking. At
the same time, nonlinear results were found in some

observational NMR studies. A positive association to
large VLDL-P and a U-shaped relationship to medium

VLDL-P was found in 1 study,126 and Mukamal et al124

found a quadratic or U-shaped relationship to large

VLDL-P. As for the TGs described previously in the
present review, these results could indicate either de-

creased or unchanged VLDL subfractions after moder-
ate alcohol intake with increased levels at higher

intakes, though this is speculative. Mukamal et al124 also
found negative associations to small, medium, and total

VLDL-P, which could be beneficial (Table 5), but the
changes in VLDL subfractions after moderate drinking,

and the clinical relevance, still have to be clarified.

Apolipoprotein C-III. ApoC-III resides on lipoproteins

like HDL, LDL, and VLDL,195 and stimulates athero-
genesis directly via mechanisms such as recruitment of

monocytes and activation of endothelial cells.196 In this
review, results on HDL with and without apoC-III were

limited and inconsistent, but alcohol intake was posi-
tively associated with HDL lacking apoC-III in 2 studies

(Table 4). 101,103 On the other hand, 3 studies found
higher levels of HDL containing apoC-III.101,102,105

These studies included diverse population types and dif-
ferent laboratory procedures for HDL subclassification,

making direct comparison troublesome. One of the
studies classified the HDL subfractions by cholesterol

content101 (Table S2 in the Supporting Information
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online). Another study that was excluded from this re-

view because the analysis included people with alcohol-
ism also reported increasing levels of non-apoB

lipoproteins (HDLs) containing apoC-III, termed LpC-
III, with higher levels of alcohol intake (P� 0.001).197

The clinical impact of apoC-III in HDL on CVD
risk is not fully clarified. However, analyses from the
Nurses’ Health Study and the Health Professionals

Follow-up Study showed that HDL-C lacking apoC-III
was inversely associated with CHD risk, and HDL-C

containing apoC-III was directly associated with CHD
risk. The results remained significant after adjustment

for TGs and apoB.101 These results were confirmed in
another analysis of 4 different cohorts.198 When resid-

ing on apoB-containing lipoproteins, apoC-III modu-
lates TG metabolism through delayed TG lipolysis and

inhibited catabolism of TG-rich lipoproteins.199 In the
present review, 3 observational studies investigated

apoB-containing lipoproteins containing apoC-III and
found positive associations105 or nonsignificant

results102,108 with alcohol intake (non-HDL plus apoC-
III and LpC-III:B) (Table 4). A study not included here

found more or less similar levels of apoC-III in apoB-
containing lipoproteins (LpC-III:B) even though the

levels were significant in the overall analysis of variance.
In summary, the evidence is limited, and the influence

of moderate alcohol intake on apoC-III levels should be
addressed in future studies.

Biological mechanisms

The metabolism of lipids and lipoproteins is complex,

and only a limited number of regulating factors have
been examined after moderate alcohol intake.200 The

primary proteins and enzymes involved (ie, LCAT,
CETP, PLTP, LPL, and hepatic lipase)22 were systemati-

cally included in this review (Table 6). No evident in-
crease in LCAT was observed after moderate alcohol

intake. LCAT is responsible for the maturation of the
HDLs. After activation by apoA-I, and in cooperation
with the ABCA1 transporter, LCAT converts free cho-

lesterol from blood or tissues into cholesteryl esters,
making them ready for storage in the core of lipopro-

teins.201 The small, discoidal pre-b-HDL is the primary
substrate for LCAT, an enzymes that catalyzes the con-

version and maturation of small HDLs into larger,
spherical HDLs. On this basis, it has been postulated

that LCAT is a critical enzyme in reverse cholesterol
transport, where cholesterol is removed from the pe-

riphery and transported back to the liver.201

Another regulatory protein in this pathway is

CETP. CETP transfers cholesteryl esters from HDL to
apoB-containing lipoproteins in exchange for TGs.202

Inhibition of CETP can increase HDL-C levels165 and

would be a plausible mechanism for how moderate

drinking could increase HDL levels. However, this is
not supported by findings of the present review

(Table 6). PLTP is also unchanged after moderate drink-
ing in studies from the present review. PLTP is another

member of the lipid transfer protein family and medi-
ates the exchange of phospholipids and other lipids be-
tween lipoproteins.203 PLTP mediates the transfer of

phospholipids from apoB-containing lipoproteins to
HDL, and PLTP deficiency reduces HDL-C levels. In

addition, PLTP might also have a role in macrophage
cell cholesterol efflux, although results from animal

studies have been conflicting.203

Likewise, the literature on moderate alcohol intake

and LPL activity or mass is conflicting (Table 6). LPL
hydrolyses TG in chylomicrons and VLDL and plays an

essential role in TG metabolism.200 In the present re-
view, we found evidence for increasing or unchanged

LPL activity, which is concordant with decreased or
unchanged TG levels, respectively.17,124 A previous nar-

rative review reported increased LPL in heavy drinkers
and unchanged or increased levels in moderate

drinkers.22 At excessive alcohol intakes, TG synthesis
may exceed LPL activity, whereas this might be more or

less outbalanced in moderate drinkers.204 The same re-
view found unchanged or reduced hepatic lipase activity

after moderate alcohol intake.22 Hepatic lipase is a lipo-
lytic enzyme that catalyzes the hydrolysis of TGs and

phospholipids in IDL, LDL, and HDL, leading to
smaller particles.200 Hepatic lipase also stimulates he-

patic uptake of cholesteryl esters from larger HDLs,
thereby converting them to smaller HDL particles that

can potentially take up more cholesterol from other
cells.205 This review demonstrates increased levels of

smaller HDLs after alcohol intake, which could theoret-
ically be explained by increased hepatic lipase activity,

but the current evidence does not confirm this
(Table 6).

Because the initial step in HDL synthesis requires
its main structural component, apoA-I, increased flux
of apoA-I could explain the increased HDL levels. An

increased apoA-I transport rate was only found in 1 of
the studies reviewed here (Table 6).62 More convincing

results have been noted for CEC, the initial step in re-
verse cholesterol transport, and a measure of HDL func-

tion.206 Moderate alcohol intake consistently induced
increased CEC, which was shown for doses of 15–40 g/d

in the intervention studies (Table 6). The increase in
CEC could explain the concomitant increase in HDL-C

and HDL-C subfractions after moderate drinking.
However, the metabolic fate of cholesterol after removal

from the arterial wall is complex.200 The role of CEC
has been reviewed in detail elsewhere.159 Briefly, small

and larger HDLs are probably capable of promoting
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CEC, depending on the efflux regulatory protein:

ABCA1, ATP-binding cassette transporter G1, or scav-
enger receptor class B type 1.159 For example, smaller

HDLs, such as apoA-I and pre-b-HDL, are inducers of
CEC via interaction with ABCA1, and both of these are

increased after moderate alcohol intake.17,19,20,59

Adiponectin, which is also increased with moderate
alcohol intake,17 upregulates ABCA1 expression and

thus facilitates apoA-I–mediated CEC.207 In addition,
the phospholipid content of HDL has been associated

with the capacity of HDL to promote CEC.206

Compositional changes in HDL are beyond the scope of

this review. However, it is worth noting that some of
the included studies found increased phospholipid con-

tent of the HDL molecule after moderate alcohol in-
take.33,97,134,208 Thus, specific particle characteristics of

the HDL subfraction, stimulated by moderate drinking,
could potentially be inducers of cholesterol efflux.

The methods for CEC estimation have several limi-
tations because ex vivo experiments may not entirely re-

semble a living organism.206 However, in theory, CEC
may be a more relevant marker than HDL-C for removal

of cholesterol from macrophages, and it has been sug-
gested to be the key pathway by which HDL reduces the

cholesterol content of the arterial wall and thus prevents
atherosclerosis.159 CEC has also been inversely associated

with CVD risk in several studies, independent of HDL-C
and apoA-I.138,206 However, measurement of CEC says

little about the fate of the cholesterol molecules following
efflux from macrophages or other cells. Nonetheless, the

potential cardioprotective effects of moderate drinking
might involve stimulation of the initial step in reverse

cholesterol transport. This function may be more rele-
vant than the overall abundance of HDL-C.

Antiatherogenic effects of HDLs may not only be
attributable to the reverse cholesterol pathway, because

antioxidant effects have also been described.159 In this
context, the esterase enzyme PON may be important.

PON is attached to HDL and protects LDL and HDL
from oxidative damage.209 PON activity or mass was
consistently increased in the reviewed studies and could

be among the mechanisms underlying the reduced
CVD risk in moderate drinkers. Its clinical relevance is

still questionable, but a negative association with CVD
risk has been shown.210 Furthermore, PON has been

suggested to be a stimulator of CEC.211 Another enzyme
attached to both LDL and HDL is Lp-PLA2. Lp-PLA2

has been suggested to be an inflammatory marker that
contributes to atherogenesis by increasing inflamma-

tory processes in the arterial intima,212 and Lp-PLA2

has independently been associated with CHD and ische-

mic stroke.213 Unlike PON, Lp-PLA2 is unchanged,
according to the results reviewed here, but the evidence

is limited.

Limitations of the study

This review presents an LPSF perspective of the rela-

tionship between moderate drinking and CVD, and
other biological markers and mechanisms besides lipo-

proteins may be equally important.17 In addition, our
results apply primarily to healthy men and women aged

18–85 years, whereas the assumed beneficial effect of
moderate drinking generally concerns middle-aged

individuals.5

Furthermore, the upper limit of� 60 g/d of alcohol

is high compared with current recommendations for al-
cohol intake.10 This limit was set to avoid excluding im-

portant studies using this threshold as moderate alcohol
intake and because some studies used > 1 alcohol dose

or increasing doses. Higher doses than 60 g/d have also
been included in other meta-analyses investigating

moderate alcohol intake.17,20 The cutoff was also set as a
compromise between the available evidence and the na-

dir of the U-shaped risk estimate; 1 of the most recent
meta-analyses showed higher all-cause mortality risk

compared with abstaining only when the alcohol dose
exceeded 60 g/d.2 On the other hand, it is acknowledged

that such drinking limits may have changed over the
years. The broad definition could have compromised
our comparisons between the intervention studies, but

most studies provided 20–40 g/d alcohol (Tables S1 and
S4 in the Supporting Information online).

In the PICOTS criteria, the comparator interven-
tion is defined as “no” or “low” alcohol intake. Three

RCTs with alcohol intakes in the comparators groups
> 0 g/d were included because these studies did not use

the control group in their analyses but analyzed the
results according to a before-and-after design.35,55,64 In

addition, the reference groups in few observational
studies were defined as individuals drinking a range of

alcohol amounts, including 0 g/d, but with upper limits
of 5 g/d,97 10 g/d,92,96 22 g/d,113 or 28 g/d.85 Removing

these studies from our analyses did not change our
overall conclusions. Of note, many observational studies

used regression analyses without reference groups and
thus did not include any comparator group. In addition,

several observational studies exceeded 60 g/d because of
the use of regression analyses without dose restriction.

This review does not include potential differential
effects of specific beverage types, and data from the ma-

jority of the observational studies did not allow for such
an analysis. Ethanol per se has been suggested to be the

element primarily responsible for the potential benefits
of moderate intakes.11,12 However, a recent, large obser-

vational analysis of spirits drinkers suggested no causal
relationship between moderate drinking and CVD.214

Besides the type of beverage, drinking pattern is also
crucial because of the toxic effects of higher doses of
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alcohol.215 Regular drinking vs binge drinking was not

examined in this review and was not part of the aim.
The included studies also defined the LPSFs differ-

ently, complicating comparability (Table S6 in the
Supporting Information online). For example, LpA-I is

found in both the HDL2 and HDL3 density range, and
LpA-I:A-II is mainly found in the HDL3 density
range.216 The investigated LPSFs were categorized

(Figure 2), but definitions still differ between analytical
methods.99,124 Even definitions of LPSFs in studies us-

ing the same methodology varied.13,124 This variation
also involved HDL definitions, and some studies48,58,70

used a broader density range than the more commonly
used range of 1.063–1.210 g/mL.159

The analytical methods for LPSF measurements
have limitations, too. Ultracentrifugation has been the

gold standard, although outcomes are operator depen-
dent and the procedures time consuming.217,218 In addi-

tion, ultracentrifugation may cause loss of
apolipoproteins and redistribution of subspecies due to

buffer components and shear force.218,219 Compared
with precipitation, losses of apoA-I are assumed to be

higher by ultracentrifugation.220 Other laboratory
methods focus on particle number concentrations based

on size and density, such as NMR and IM. The lipopro-
tein particle number concentration has been suggested

as a better measure of risk than the cholesterol cargo,221

and clinical studies have indicated that HDL-P may

provide more information of CVD status than HDL-
C.222 NMR lipoprotein analyses are less labor-intensive,

high-throughput measurements.223 Ultracentrifugation
is often used for calibration of the NMR spectral model,

so the method basically predicts what would be mea-
sured by ultracentrifugation, improving comparability

between these methods.223 Overall, standardization of
the different NMR methods, including using a standard,

unique reference material, is needed.224

Discrepancies between NMR and IM measure-

ments have also been found. NMR studies in healthy
cohorts have predicted an average HDL particle con-
centration of approximately 32–34 lmol/L,225,226

whereas IM studies have reported average levels of ap-
proximately 5–6 lmol/L.227,228 Such differences are

critical for the validity and comparability of the parti-
cle number measurements as a clinical metric.

Although these differences indicate that comparison of
absolute quantities is compromised in this review, a

comparability study showed that the positive associa-
tion between sdLDLs and coronary artery stenosis was

consistently found by 4 independent methods (ie,
NMR, IM, gradient gel electrophoresis, and vertical

auto profile), although the correlations among the
methods varied significantly.181 Taken together, differ-

ences between laboratory methods and their

limitations may explain some of the inconsistency in

results between studies and underline the need for
standardization.

Another limitation is the high frequency of unclear
or high risk of bias in eligible studies, particularly in the

intervention studies and trials. More specifically, older
studies had short descriptions of the applied methods
and results, complicating their interpretation.

Compliance was not often measured, and suitable bio-
markers of alcohol intake still need to be implemented.

Compliance was not even discussed in several interven-
tion studies, and only a few studies reported control of

diet, physical activity, body weight, or smoking habits.
Furthermore, not all the crossover studies examined

carryover effects. Last, it is impossible to judge to what
extent results were influenced by study size and power,

because none of the studies reported any power calcula-
tions for LPSFs.

Although the observational studies generally had
lower bias risk, they were prone to intentional and

unintentional recall bias due to self-reported alcohol in-
take. Also, the definition of a standard drink differed

among studies. Therefore, data on alcohol intake were
extracted in grams per day or week. Furthermore, non-

linear relationships between alcohol intake and LPSFs
were only directly explored in 3 observational stud-

ies.13,32,124 It has also been suggested that LPSF analyses
should be adjusted for other LPSFs and overall classes

of lipoproteins due to collinearity,24 which was gener-
ally not practiced.

The included MRSs also had limitations. Even
though MRSs are assumed to be less prone to con-

founding and reverse causation than conventional epi-
demiologic studies, such limitations may exist.229 For

example, the instrumental variables used in the 2
MRSs66,67 included here, alcohol dehydrogenase and al-

dehyde dehydrogenase, could potentially directly influ-
ence the outcome, because the enzymes are involved in

the metabolism of alcohol. In Japanese men that the al-
dehyde dehydrogenase 2 variant is related to reduced al-
cohol intake and lower body weight, a potential

consequence of lower calorie intake from alcohol.230 No
bias-risk assessment tool specific to MRSs is available;

thus, the results of these studies may be biased.

Future perspectives

High-quality RCTs that target LPSFs, apoB, and apoB-
containing lipoproteins after moderate alcohol intake

are needed. Studies should include individuals at ele-
vated risk of CVD, because lipoprotein structure and

function may change in disease states.168 Studies inves-
tigating mechanisms within these types of populations

are few. From the reviewed studies, a daily alcohol
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intake of 20 g/d might be sufficient to cause changes in

LPSFs, though few studies showed changes in specific
subfractions at lower intake levels (Table S1 in the

Supporting Information online). In recent years, obser-
vational studies questioning any safe level of drinking

have been published.231,232 Intervention studies, there-
fore, should aim for low amounts of alcohol, preferably
no more than 1 drink/d (10–15 g/d). Standardization of

laboratory methods to ease comparison within and be-
tween methodologies is needed,233 and consensus

nomenclatures for all LPSFs are crucial.
HDL and its subspecies may still be of interest in

cardiovascular research, even if HDL-C is not casually
related to atherosclerotic CVD.234 Focus has shifted

from the HDL-C hypothesis to an HDL function hy-
pothesis. Among the HDL functions of interest are

mechanisms related to reverse cholesterol transport.160

Studies tracking cholesterol from macrophages to he-

patic uptake and onward to fecal excretion have been
conducted in animals but need confirmation in

humans.235 Furthermore, “omics” analyses of the HDL
lipidome and proteome may support future CVD diag-

nostics and provide more information on the composi-
tion of a broader range of subpopulations.168,236

LPSFs may eventually be included as cardiovascular
biomarkers in risk prediction models relevant for mod-

erate drinkers. A recently developed diabetes risk index
comprises several NMR-measured LPSFs and has been

associated with insulin resistance and increased risk of
developing type 2 diabetes.237 Such risk markers will

likely expand to other diseases soon.

CONCLUSIONS

Alcohol in doses from 12–60 g/d is related to higher lev-
els of all types of HDL subfractions, independent of

study design. Effects on total HDL-C, therefore, seem
unrelated to any specific subfraction. The influence of

moderate drinking on LDL and VLDL subfractions is
still speculative; however, some observational studies
found nonlinear associations of alcohol intake with po-

tential beneficial associations in the moderate drinking
range. A few studies of different designs found reduced

levels of small LDLs, higher levels of large LDLs, and in-
creased LDL particle size. Moderate alcohol intake con-

sistently increases CEC and PON activity, both of which
have been associated with reduced CVD risk and with

HDL’s antiatherosclerotic functions. More research is
needed to study effects in women and in people with dia-

betes and other cardiometabolic conditions. At present,
evidence is lacking on the influence of moderate drink-

ing on functional metrics of HDL, apoB-containing lipo-
proteins, and subfractions classified by their content of

essential apolipoproteins, such as apoC-III.
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