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SUMMARY

Sparse additive modeling is a class of effective methods for performing high-dimensional nonparametric
regression. This article develops a sparse additive model focused on estimation of treatment effect modifi-
cation with simultaneous treatment effect-modifier selection. We propose a version of the sparse additive
model uniquely constrained to estimate the interaction effects between treatment and pretreatment covari-
ates, while leaving the main effects of the pretreatment covariates unspecified. The proposed regression
model can effectively identify treatment effect-modifiers that exhibit possibly nonlinear interactions with
the treatment variable that are relevant for making optimal treatment decisions. A set of simulation exper-
iments and an application to a dataset from a randomized clinical trial are presented to demonstrate the
method.
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1. INTRODUCTION

Identification of patient characteristics influencing treatment responses, which are often termed treatment
effect-modifiers or treatment effect-moderators, is a top research priority in precision medicine. In this
article, we develop a flexible yet simple and intuitive regression approach to identifying treatment effect-
modifiers from a potentially large number of pretreatment patient characteristics. In particular, we utilize
a sparse additive model (Ravikumar and others, 2009) to conduct effective treatment effect-modifier
selection.

The clinical motivation behind the development of a high-dimensional additive regression model
that can handle a large number of pretreatment covariates, specifically designed to model treatment
effect modification and variable selection, is a randomized clinical trial (Trivedi and others, 2016) for
treatment of major depressive disorder. A large number of baseline patient characterisitics were col-
lected from each participant prior to randomization and treatment allocation. The primary goal of this
study, and thus the goal of our proposed method, is to discover biosignatures of heterogeneous treat-
ment response, and to develop an individualized treatment rule (ITR; e.g., Qian and Murphy 2011;
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Zhao and others 2012; Laber and Zhao 2015; Kosorok and Laber 2019; Park and others 2020) for
future patients based on biosignatures of the heterogeneous treatment response, a key aspect of precision
medicine (e.g., Ashley 2015; Fernandes and others 2017, among others). In particular, discovering and
identifying which pretreatment patient characteristics influence treatment effects have the potential to
significantly enhance clinical reasoning in practice (see, e.g., Royston and Sauerbrei, 2008).

The major challenge in efficiently modeling treatment effect modification from a clinical trial study is
that variability due to treatment effect modification (i.e., the treatment-by-covariates interaction effects
on outcomes), that is essential for developing ITRs (Qian and Murphy, 2011), is typically dwarfed by
a relatively large degree of non-treatment-related variability (i.e., the main effects of the pretreatment
covariates on treatment outcomes). In particular, in regression, due to potential confounding between the
main effect of the covariates and the treatment-by-covariates interaction effect, misspecification of the
covariate main effect may significantly influence estimation of the treatment-by-covariates interaction
effect.

A simple and elegant linear model-based approach to modeling the treatment-by-covariates interactions,
termed the modified covariate (MC) method, that is robust against model misspecification of the covariates’
main effects was developed by Tian and others (2014). The method utilizes a simple parameterization and
bypasses the need to model the main effects of the covariates. See also Murphy (2003); Lu and others
(2011), Shi and others (2016), and Jeng and others (2018) for the similar linear model-based approaches
to estimating the treatment-by-covariates interactions. However, these approaches assume a stringent
linear model to specify the treatment-by-covariates interaction effects and are limited to the binary-valued
treatment variable case only. In this work, we extend the optimization framework of Tian and others (2014)
for modeling the treatment-by-covariates interactions using a more flexible regression setting based on
additive models (Hastie and Tibshirani, 1999) that can accommodate more than two treatment conditions,
while allowing an unspecified main effect of the covariates.Additionally, via an appropriate regularization,
the proposed approach simultaneously achieves treatment effect-modifier selection in estimation.

In Section 2, we introduce an additive model that has both the unspecified main effect of the covariates
and the treatment-by-covariates interaction effect additive components. Then, we develop an optimization
framework specifically targeting the interaction effect additive components of the model, with a sparsity-
inducing regularization parameter to encourage sparsity in the set of component functions. In Section 3,
we develop a coordinate decent algorithm to estimate the interaction effect part of the model and consider
an optimization strategy for ITRs. In Section 4, we illustrate the performance of the method in terms
of treatment effect-modifier selection and estimation of ITRs through simulation examples. Section 5
provides an illustrative application from a depression clinical trial, and the article concludes with discussion
in Section 6.

2. MODELS

Let A ∈ {1, . . . , L} denote a treatment variable assigned with associated probabilities (π1, . . . , πL),∑L
a=1 πa = 1, and πa > 0, and let X = (X1, . . . , Xp)

� ∈ R
p denote pretreatment covariates, inde-

pendent of A (as in the case of a randomized trial). If the treatment assignment depends on the covariates,
then the probabilities {πa}a∈{1,...,L} can be replaced by propensity scores {πa(X )}a∈{1,...,L} which would typ-
ically need to be estimated from data. We let Y (a) ∈ R (a = 1,…,L) be the potential outcome if the patient
received treatment A = a (a = 1, . . . , L); we only observe Y = Y (A), A and X . Throughout the article,
without loss of generality, we assume that a larger value of the treatment outcome Y is desirable, and that
E[Y |A = a] = 0 (a = 1, . . . , L), i.e., the main effect of A on the outcome is centered at 0; this is only to
suppress the treatment a-specific intercepts in regression models in order to simplify the exposition, and
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can be achieved by removing the treatment level a-specific means from Y ∈ R. We model the treatment
outcome Y by the following additive model:

E[Y |X , A = a] = μ∗(X )︸ ︷︷ ︸
X “main” effect

+
p∑

j=1

g∗
j,a(Xj)

︸ ︷︷ ︸
A-by-X interaction effect

(a = 1, . . . , L). (2.1)

In model (2.1), the first term μ∗(X ), which in fact will not need to be specified in our exposition, does
not depend on the treatment variable A and thus the A-by-X interaction effects are determined only
by the second component

∑p
j=1 g∗

j,A(Xj). In terms of modeling treatment effect modification, the term∑p
j=1 g∗

j,A(Xj) in (2.1) corresponds to the “signal” component, whereas the term μ∗(X ) corresponds to
a “nuisance” component. In particular, the optimal ITR, under model (2.1), can be shown to satisfy
Dopt(X ) = arg maxa∈{1,...,L}

∑p
j=1 g∗

j,a(Xj), which does not involve the term μ∗(X ). Therefore, the A-by-X
interaction effect term

∑p
j=1 g∗

j,a(Xj) shall be the primary estimation target of model (2.1).
In (2.1), for each individual covariate Xj, we utilize a treatment a-specific smooth g∗

j,a separately for
each treatment condition a ∈ {1, . . . , L}. However, it is useful to treat the set of treatment-specific smooths
for Xj as a single unit, i.e., a single component function g∗

j = {g∗
j,a}a∈{1,...,L}, for the purpose of treatment

effect-modifier variable selection.
In model (2.1), to separate μ∗(X ) from the component

∑p
j=1 g∗

j,a(Xj) and obtain an identifiable repre-
sentation, without loss of generality, we assume that the set of treatment a-specific smooths {g∗

j,a}a∈{1,...,L}
of the jth component function g∗

j,A(Xj) satisfies a condition (almost surely):

E[g∗
j,A(Xj)|Xj] =

L∑
a=1

πag∗
j,a(Xj) = 0 (j = 1, . . . , p). (2.2)

Condition (2.2) implies E
[ ∑p

j=1 g∗
j,A(Xj)|X

] = 0 and separates the A-by-X interaction effect component,∑p
j=1 g∗

j,a(Xj), from the X “main” effect component, μ∗(X ), in model (2.1). For model (2.1), we assume
an additive noise structure Y = E[Y |X , A]+ε, where ε is a zero-mean noise with a finite second moment.

Notation: For a single component j and general component functions gj = {gj,a}a∈{1,...,L}, we define the

L2 norm of gj as ‖gj‖ =
√

E
[
g2

j,A(Xj)
]
, where expectation is taken with respect to the joint distribution

of (A, Xj). For a set of random variables (A, Xj), let Hj = {gj | E[gj,A(Xj)] = 0, ‖gj‖ < ∞} with inner
product on the space defined as 〈gj, fj〉 = E[gj,A(Xj)fj,A(Xj)]. Sometimes we also write gj := gj,A(Xj) for
the notational simplicity.

Under model (2.1) subject to (2.2), the component functions {g∗
j , j = 1, . . . , p} associated with the

A-by-X interaction effect can be viewed as the solution to the constrained optimization:

{g∗
j } = argmin

{gj∈Hj }
E

[{
Y − μ∗(X ) −

p∑
j=1

gj,A(Xj)
}2

]

subject to E[gj,A(Xj)|Xj] = 0 (j = 1, . . . , p),

(2.3)

where μ∗(X ) is given from the assumed model (2.1) (and is considered as fixed in (2.3)). Since the
minimization in (2.3) is in terms of {gj ∈ Hj, j = 1, . . . , p}, the objective function part of the right-hand
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side of (2.3) can be reduced to:

arg min
{gj∈Hj }

E

[
Y 2 + { p∑

j=1

gj,A(Xj)
}2 − 2

{ p∑
j=1

gj,A(Xj)
}
Y + 2

{ p∑
j=1

gj,A(Xj)
}
μ∗(X )

]

= arg min
{gj∈Hj }

E

[
Y 2 + { p∑

j=1

gj,A(Xj)
}2 − 2

{ p∑
j=1

gj,A(Xj)
}
Y + 2μ∗(X )E

[ p∑
j=1

gj,A(Xj)|X
]]

= arg min
{gj∈Hj }

E

[
Y 2 + { p∑

j=1

gj,A(Xj)
}2 − 2

{ p∑
j=1

gj,A(Xj)
}
Y

]
,

where the second line is from an application of the iterated expectation rule conditioning on X and the
third line follows from the constraint E[gj,A(Xj)|Xj] = 0 (j = 1, . . . , p) on the right-hand side of (2.3).
Therefore, representation (2.3) can be simplified to:

{g∗
j } = argmin

{gj∈Hj }
E

[{
Y −

p∑
j=1

gj,A(Xj)
}2

]

subject to E[gj,A(Xj)|Xj] = 0 (j = 1, . . . , p),

(2.4)

Representation (2.4) of the component functions {g∗
j , j = 1, . . . , p} of the underlying model (2.1) is

particularly useful when the (high-dimensional) “nuisance” function μ∗ in (2.1) is complicated and prone
to specification error. Note,

E

[
μ∗(X )

p∑
j=1

gj,A

(
Xj

)] = E

[
μ∗(X )

p∑
j=1

E
[
gj,A

(
Xj

)|X ]] = 0, (2.5)

indicating that the component
∑p

j=1 gj,A

(
Xj

) ∈ H1 + · · · + Hp (subject to the identifiability constraint
E[gj,A(Xj)|Xj] = 0) is structured to be orthogonal to the X main effect μ∗(X ). This orthogonality property
is useful for estimating the additive model A-by-X interaction effect

∑p
j=1 g∗

j,A(Xj), in the presence of the
unspecified μ∗(X ) of model (2.1).

Under model (2.1), the potential treatment effect-modifiers among {Xj, j = 1, . . . , p} enter the model
only through the interaction effect term

∑p
j=1 g∗

j,A(Xj) that associates the treatment A to the treatment
outcome Y . Ravikumar and others (2009) proposed sparse additive modeling (SAM) for component
selection in high-dimensional additive models with a large p. As in SAM, to deal with a large p and to
achieve treatment effect-modifier selection, we impose sparsity on the set of component functions {g∗

j , j =
1, . . . , p} associated with the interaction effect term of model (2.1), under the often practical and reasonable
assumption that most covariates are irrelevant as treatment effect-modifiers. This sparsity structure on the
index set {j} for the nonzero component functions {g∗

j : g∗
j 	= 0} can be usefully incorporated into the

optimization-based criterion (2.4) in representing {g∗
j }:

{g∗
j } = argmin

{gj∈Hj }
E

[{
Y −

p∑
j=1

gj,A(Xj)
}2

]
+ λ

p∑
j=1

‖gj‖

subject to E[gj,A(Xj)|Xj] = 0 (j = 1, . . . , p),

(2.6)

for a sparsity-inducing parameter λ ≥ 0. The term
∑p

j=1‖gj‖ in (2.6) behaves like an L1 ball across different
components {gj, j = 1, . . . , p} to encourage sparsity in the set of component functions. For example, a
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large value of λ on the right-hand side of (2.6) will generate a sparse solution with many component
functions g∗

j on the left-hand side set exactly to zero.

3. ESTIMATION

3.1. Model estimation

For each j, the minimizer g∗
j of the optimization problem (2.6) has a component-wise closed-form

expression.

THEOREM 1 Given λ ≥ 0, the minimizer g∗
j ∈ Hj of (2.6) satisfies (almost surely):

g∗
j,A(Xj) =

[
1 − λ

‖fj‖
]

+
fj,A(Xj), (3.7)

where

fj,A(Xj) = E[Rj|Xj, A] − E[Rj|Xj], (3.8)

in which

Rj = Y −
∑
j′ 	=j

g∗
j′ ,A(Xj′) (3.9)

represents the jth partial residual. In (3.7), Z+ = max(0, Z) represents the positive part of Z .

Note that the fj,A(Xj) correspond to the projections of Rj onto Hj subject to the constraint in (2.6). The
proof of Theorem 1 is in the Supplementary Materials available at Biostatistics online.

The component-wise expression (3.7) for g∗
j suggests that we can employ a coordinate descent algo-

rithm (e.g., Tseng, 2001) to solve (2.6). Given a sparsity parameter λ ≥ 0, we can use a standard backfitting
algorithm used in fitting additive models (Hastie and Tibshirani, 1999) that fixes the set of current approx-
imates for g∗

j′ at all j′ 	= j, and obtains a new approximate of g∗
j by equation (3.7), and iterates through all

j until convergence. A sample version of the algorithm can be obtained by inserting sample estimates into
the population expressions (3.9), (3.8), and (3.7) for each coordinate j, which we briefly describe next.

Given data (Xij, Ai) (i = 1, . . . , n; j = 1, . . . , p), for each j, let R̂j = Y − ∑
j′ 	=j ĝ∗

j′ ,A(Xj′), corresponding
to the data-version of the jth partial residual Rj in (3.9), where ĝ∗

j′ represents a current estimate for g∗
j′ .

We estimate g∗
j in (3.7) in two steps: (i) estimate the function fj in (3.8); (ii) plug the estimate of fj into[

1 − λ

‖fj‖
]

+
in (3.7), to obtain the soft-thresholded estimate ĝ∗

j .

Although any linear smoothers can be utilized to obtain the estimators {ĝ∗
j } as described in Remark 1

at the end of this section, in this article, we shall focus on regression spline-type estimators which are
particularly simple and computationally efficient to implement. Specifically, for each j, the function gj ∈ Hj

on the right-hand side of (2.6) will be represented by:

gj,a(Xj) = � j(Xj)
�θ j,a (a = 1, . . . , L) (3.10)

for some prespecified dj-dimensional basis � j(·) ∈ R
dj (e.g., B-spline basis on evenly spaced knots on

a bounded range for Xj) and a set of unknown treatment a-specific basis coefficients {θ j,a ∈ R
dj }a∈{1,...,L}.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
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Given representation (3.10) for the component function gj, the constraint E[gj,A(Xj)|Xj] = 0 in (2.6) can
be simplified to E[θ j,A] = ∑L

a=1 πaθ j,a = 0. This constraint can be written succinctly in a matrix form as

π (j)θ j = 0, (3.11)

where θ j := (θ�
j,1, θ�

j,2, . . . , θ�
j,L)

� ∈ R
djL is the vectorized version of the basis coefficients {θ j,a}a∈{1,...,L} in

(3.10), and the dj × djL matrix π (j) :=
(
π1I dj ; π2I dj ; . . . ; πLI dj

)
where I dj denotes the dj × dj identity

matrix.
Let the n×dj matrices Dj,a (a = 1, . . . , L) denote the evaluation matrices of the basis function � j(·) on

Xij (i = 1, . . . , n) specific to the treatment A = a (a = 1, . . . , L), whose ith row is the 1×dj vector � j(Xij)
�

if Ai = a, and a row of zeros 0� if Ai 	= a. Then the column-wise concatenation of the design matrices
{Dj,a}a∈{1,...,L}, i.e., the n × djL matrix Dj = (Dj,1; Dj,2; . . . ; Dj,L), defines the model matrix associated with
the vectorized model coefficient θ j ∈ R

djL, vectorized across {θ j,a}a∈{1,...,L} in representation (3.10). Then,
we can represent the function gj,A(Xj) in (3.10), based on the sample data, by the length-n vector:

gj = Djθ j (3.12)

subject to the linear constraint (3.11).
The linear constraint (3.11) on θ j can be conveniently absorbed into the model matrix Dj in (3.12) by

reparametrization, as we describe next. We can find a djL × dj(L − 1) basis matrix Z (j), such that if we
set θ j = Z (j)θ̃ j for any arbitrary vector θ̃ j ∈ R

dj (L−1), then the vector θ j ∈ R
djL automatically satisfies

the constraint (3.11) π (j)θ j = 0. Such a basis matrix Z (j) can be constructed by a QR decomposition of
the matrix π (j)�. Then representation (3.12) can be reparametrized, in terms of the unconstrained vector
θ̃ j ∈ R

dj (L−1), by replacing Dj in (3.12) with the reparametrized model matrix D̃j = DjZ
(j):

gj = D̃j θ̃ j. (3.13)

Theorem 1 and Section 2 of Supplementary Materials available at Biostatistics online indicate that the
coordinate-wise minimizer g∗

j of (2.6) can be estimated based on the sample by

ĝ∗
j =

⎡
⎢⎣1 − λ√

1
n‖f̂ j‖2

⎤
⎥⎦

+

f̂ j, (3.14)

where

f̂ j = D̃j(D̃
�
j D̃j)

−1D̃
�
j R̂j (3.15)

in which R̂j = Y − ∑
j′ 	=j ĝ∗

j′ is the estimated jth partial residual vector. In (3.14), the norm ‖fj‖ of (3.7) is

estimated by the vector norm
√

1
n‖f̂ j‖2, and the shrinkage factor (s(λ)

j =)
[
1 − λ

‖fj‖
]

+
of (3.7) is estimated

by (ŝ(λ)
j =)

[
1 − λ√

1
n ‖f̂ j‖2

]
+

.

Based on the sample counterpart (3.14) of the coordinate-wise solution (3.7), a highly efficient coor-
dinate descent algorithm can be conducted to simultaneously estimate all the component functions

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
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{g∗
j , j = 1, . . . , p} in (2.6). At convergence of the coordinate descent, we have a basis coefficient estimate

associated with the representation (3.13),

ˆ̃
θ j = ŝ(λ)

j (D̃
�
j D̃j)

−1D̃
�
j R̂j (3.16)

which in turn implies an estimate

θ̂ j = (θ̂
�
j,1, θ̂

�
j,2, . . . , θ̂

�
j,L)

� = Z (j) ˆ̃θ j

for the basis coefficient associated with the representation (3.12). This gives an estimate of the treatment
a-specific function g∗

j,a(·) (a = 1, . . . , L) in model (2.1):

ĝ∗
j,a(·) = � j(·)�θ̂ j,a (a = 1, . . . , L) (3.17)

estimated within the class of functions (3.10) for a given tuning parameter λ, which controls the shrinkage
factor ŝ(λ)

j in (3.16). We summarize the computational procedure for the coordinate descent in Algorithm 1.

Algorithm 1 Coordinate descent

1: Input: Data X ∈ R
n × R

p, A ∈ R
n, Y ∈ R

n, and tuning parameter λ.
2: Output: Fitted functions {ĝ∗

j , j = 1, . . . , p}.
3: Initialize ĝ∗

j = 0 ∀j; pre-compute the smoother matrices D̃j(D̃
�
j D̃j)

−1D̃
�
j in (3.15) ∀j.

4: while until convergence of {ĝ∗
j , j = 1, . . . , p}, do iterate through j = 1, . . . , p:

5: Compute the partial residual R̂j = Y − ∑
j′ 	=j ĝ∗

j′

6: Compute f̂ j in (3.15); then compute the thresholded estimate ĝ∗
j in (3.14).

In Algorithm 1, the projection matrices D̃j(D̃
�
j D̃j)

−1D̃
�
j (j = 1, . . . , p) only need to be computed

once and therefore the coordinate descent can be performed efficiently. In (3.14), if the shrinkage factor

ŝ(λ)
j =

[
1 − λ

√
n

‖f̂ j‖

]
+

= 0, the associated jth covariate is absent from the model. The tuning parameter λ ≥ 0

for treatment effect-modifier selection can be chosen to minimize an estimate of the expected squared
error of the fitted models, E

[{Y − ∑p
j=1 ĝ∗

j,A(Xj)}2
]
, over a dense grid of λ’s, estimated, for example,

by cross-validation. Alternatively, one can utilize the network information criterion (Murata and Amari,
1994) which is a generalization of the Akaike information criterion in approximating the prediction error,
for the case where the true underling model, i.e., model (2.1), is not necessarily in the class of candidate
models. Throughout the article, λ is chosen to minimize 10-fold cross-validated prediction error of the
fitted models.

REMARK 1 For coordinate descent, any linear smoothers can be utilized to obtain the sample counterpart
(3.14) of the coordinate-wise solution (3.7), i.e., the method is not restricted to regression splines. To
estimate the function fj in (3.8), we can estimate the first term E[Rj|Xj, A = a] in (3.8), using a 1D
nonparametric smoother for each treatment level a ∈ {1, . . . , L} separately, based on the data (R̂ij, Xij)

(i ∈ {i : Ai = a}) corresponding to the data from the ath treatment condition; we can also estimate the
second term −E[Rj|Xj] in (3.8) based on the data (R̂ij, Xij)i∈{1,...,n} which corresponds to the set of data
from all treatment conditions, using a 1D nonparametric smoother. Adding these two estimates evaluated
at the n observed values of (Xij, Ai) (i = 1, . . . , n) gives an estimate f̂ j in (3.14). Then, we can compute
the associated estimate ĝ∗

j , which allows implementation of the coordinate descent in Algorithm 1.
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3.2. Individualized treatment rule estimation

For a single time decision point, an ITR, which we denote by D(X ) : R
p �→ {1, . . . , L}, maps an individual

with pretreatment characteristics X to one of the L available treatment options. One natural measure for
the effectiveness of an ITR D in precision medicine is the so-called “value” (V ) function (Murphy, 2005):

V (D) = E[E[Y |X , A = D(X )]], (3.18)

which is the expected treatment response under a given ITR D. The optimal ITR D, which we write as
Dopt, can be naturally defined to be the rule that maximizes the value V (D) (3.18). Such an optimal rule
Dopt satisfies:

Dopt(X ) = arg max
a∈{1,...,L}

E[Y |X , A = a]. (3.19)

Much work has been carried out to develop methods for estimating the optimal ITR (3.19) using data
from randomized clinical trials. Machine learning approaches to estimating (3.19) are often framed in the
context of a (weighted) classification problem (Zhang and others, 2012; Zhao and others, 2019), where the
functionDopt(X ) in (3.19) is regarded as the optimal classification rule given X for the treatment assignment
with respect to the objective function (3.18). These classification-based approaches to optimizing ITRs
include the outcome-weighted learning (OWL) (e.g., Zhao and others, 2012, 2015; Song and others, 2015;
Liu and others, 2018) based on support vector machines (SVMs), tree-based classification (e.g., Laber
and Zhao, 2015), and adaptive boosting (Kang and others, 2014), among others.

Under model (2.1), Dopt(X ) in (3.19) is: Dopt(X ) = arg maxa∈{1,...,L}
∑p

j=1 g∗
j,a(Xj), which can be esti-

mated by: D̂opt(X ) = arg maxa∈{1,...,L}
∑p

j=1 ĝ∗
j,a(Xj), where ĝ∗

j,a(·) is given in (3.17) at the convergence of
the Algorithm 1. This estimator can be viewed as a regression-based approach to estimating (3.19), that
approximates the conditional expectations E[Y |X , A = a] (a = 1, . . . , L) based on the additive model
(2.1), while maintaining robustness with respect to model misspecification of the “nuisance” function μ∗

in (2.1) via representation (2.6) for the “signal” components g∗
j . We illustrate the performance of this ITR

estimator D̂opt with respect to the value function (3.18), through a set of simulation studies in Section 4.2.

3.3. Feature selection and transformation for individualized treatment rules

Although machine learning approaches that attempt to directly maximize (3.18) without assuming some
specific structure on E[Y |X , A = a] (a = 1, . . . , L) (unlike most of the regression-based approaches)
are highly appealing, common machine learning approaches used in optimizing ITRs, including SVMs
utilized in the OWL, are often hard to scale to large datasets, due to their taxing computational time.
In particular, SVMs are viewed as “shallow” approaches (as opposed to a “deep” learning method that
utilizes a learning model with many representational layers) and successful applications of SVMs often
require first extracting useful representations for their input data manually or through some data-driven
feature transformation (a step called feature engineering) (see, e.g., Kuhn and Johnson, 2019) to have
more discriminatory power. Generally, selection and transformation of relevant features can increase the
performance, scale, and speed of a machine learning procedure.

As an added value, the proposed regression (2.6) based on model (2.1) provides a practical feature
selection and transformation learning technique for optimizing ITRs. The set of component functions
{g∗

j , j = 1, . . . , p} in (2.6) can be used to define data-driven feature transformation functions for the
original features {Xj, j = 1, . . . , p}. The resulting transformed features can be used as inputs to a machine
learning algorithm for optimizing ITRs and can lead to good results in practical situations.
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In particular, we note that for each j, the component function g∗
j in (2.6) is defined separately from the

Xj main effect function μ∗ in (2.1). Therefore, the corresponding transformed feature variable g∗
j,1(Xj),

which represents the jth feature Xj in the new space, highlights only the “signal” nonlinear effect of Xj

associated with the A-by-Xj interactions on their effects on the outcome that is relevant to estimating
Dopt, while excluding the Xj main effect that is irrelevant to the ITR development. This “de-noising”
procedure for each variable Xj can be very appealing, since irrelevant or partially relevant features can
negatively impact the performance of a machine learning algorithm. Moreover, a relatively large value
of the tuning parameter λ > 0 in (2.6) would imply a set of sparse component functions {g∗

j }, providing
a means of feature selection for ITRs. For the most common case of L = 2 (binary treatment), we have
g∗

j,2(Xj) = −π−1
2 π1g∗

j,1(Xj) implied by the constraint (2.2) that we impose, which is simply a scalar-scaling
of the function g∗

j,1(Xj); this implies that, for each j, the mapping Xj �→ g∗
j,1(Xj) specifies the feature

transformation of Xj. We demonstrate the utility of this feature selection/transformation, which we use as
an input to the OWL approach to optimizing ITRs, through a set of simulation studies in Section 4.2 and
a real data application in Section 5.

4. SIMULATION STUDY

4.1. Treatment effect-modifier selection performance

In this section, we will report simulation results illustrating the performance of the treatment effect-modifier
selection. The complexity of the model for studying the A-by-X interactions can be summarized in terms
of the size of the index set for the component functions {g∗

j , j = 1, . . . , p} that are not identically zero. We
can ascertain the performance of a treatment effect-modifier selection method in terms of these compo-
nent functions correctly or incorrectly estimated as nonzero. To generate the data, we use the following
model:

Y =
10∑

j=1

cos(Xj) + g∗
1,A(X1) + g∗

2,A(X2) + g∗
3,A(X3) + ε A ∈ {1, 2}, (4.20)

where Xj (j = 1, . . . , p), p ∈ {50, 200} are generated from independent Unif[−π/2, π/2], and the
treatment variable A ∈ {1, 2} is generated independently of X and the error term ε ∼ N (0, 0.52),
such that Pr(A = 1) = Pr(A = 2) = 1/2. We set g∗

1,A(X1) = (A − 1.5)X1, g∗
2,A(X2) = (A −

1.5)
{
I(X2≤1.3)0.05e(X2−1.3) + I(X2>1.3)e4(X2−1.3) − 1

}
and g∗

3,A(X3) = (A − 1.5)
{
2e−X 2

3 − 1
}
. The graphs

of these functions are displayed in Figure S.1 of Supplementary Materials available at Biostatistics
online.

Under model (4.20), there are only three true treatment effect-modifiers, X1, X2, and X3. The other p−3
covariates are “noise” covariates, that are not consequential for optimizing ITRs. Also, in (4.20), there
are 10 covariates Xj (j = 1, . . . , 10), among the p covariates, associated with the X main effects. Under
the setting (4.20), the contribution to the variance of the outcome from the X main effect component was
about 2.3 times greater than that from the A-by-X interaction effect component.

We consider two approaches to treatment effect-modifier selection: (i) the proposed additive regression
approach (2.6) that specifies a sparse set of functions {g∗

j , j = 1, . . . , p}, estimated via Algorithm 1, with
the dimension of the cubic B-spline basis � j in (3.10) set to be dj = 6 (j = 1, . . . , p); and (ii) the linear
regression (MC) approach of Tian and others (2014),

minimize
{βj∈R}

E

[{
Y −

p∑
j=1

(A − 1.5)Xjβj

}2
]

+ λ

p∑
j=1

|βj|, (4.21)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
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Fig. 1. The proportion of the three relevant covariates (i.e., X1, X2, and X3) correctly selected (the “true positives”; the
two gray panels), and the p − 3 irrelevant covariates (i.e., X4, X5, . . . , Xp) incorrectly selected (the “false positives”;
the two white panels), respectively (and ±1 standard deviation), as the sample size n varies from 100 to 1000, for
each p ∈ {50, 200}.

which specifies a sparse vector β∗ = (β∗
1 , . . . , β∗

p )� ∈ R
p. Given each simulated dataset, the tuning

parameter λ > 0 is chosen to minimize a 10-fold cross-validated prediction error.
Figure 1 summarizes the results of the treatment effect-modifier selection performance with respect

to the true/false positive rates (the left/right two panels, respectively), comparing the proposed additive
regression to the linear regression approach, which are reported as the averages (and ±1 standard devia-
tions) across the 200 simulation replications. Figure 1 illustrates that, for the both p = 50 and p = 200
cases, the proportion of the correctly selecting treatment effect-modifiers (i.e., the “true positive”; the
left two panels) of the additive regression method (the red solid curves) tends to 1, with n increasing
from n = 100 to n = 1000, while the proportion of incorrectly selecting treatment effect-modifiers (i.e.,
the “false positive”; the right two panels) tends to be bounded above by a small number. On the other
hand, the proportion of correctly selecting treatment effect-modifiers for the linear regression method (the
blue dotted curves) tends to be only around 0.5 for both choices of p. In Figure S.2 of Supplementary
Materials available at Biostatistics online, we further examine the true positive rates reported in Figure 1,
by separately displaying the true positive rates associated with selection of X1, X2, and X3 respectively.
The more flexible additive regression significantly outperforms the linear regression in terms of select-
ing the covariates X2 and X3, i.e., the ones that have the nonlinear interaction effects (see Figure S.1 of
Supplementary Materials available at Biostatistics online for the functions associated with the interaction
effects) with A, while the both methods perform at a similar level in selection of X1 which has a linear
interaction effect with A.

4.2. Individualized treatment rule estimation performance

In this subsection, we assess the optimal ITR estimation performance of the proposed method based on
simulations. We generate a vector of covariates X = (X1, . . . , Xp)

� ∈ R
p, p = 50 (a p = 100 case

is considered in Section S.5.1 of Supplementary Materials available at Biostatistics online) based on a
multivariate normal distribution with each component having the marginal distribution N (0, (π/2)2) with
the correlation between the components corr(Xj, Xk) = 0.1|j−k|. Responses were generated, for (i) “highly
nonlinear” A-by-X interactions:

Y = δ

5∑
j=1

sin(Xj) + 2(A − 1.5)
{

cos(X1) − cos(X2) + ξ sin(X1X2)
} + ε A ∈ {1, 2}, (4.22)

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
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and for (ii) “moderately nonlinear” A-by-X interactions:

Y = δ

5∑
j=1

sin(Xj) + 2(A − 1.5)
{ 2 exp(5X1)

1 + exp(5X1)
− 2 exp(5X2)

1 + exp(5X2)
+ ξ

X1X2

2

} + ε A ∈ {1, 2}, (4.23)

where the treatment variable A ∈ {1, 2} is generated independently from the covariates X and the error term
ε ∼ N (0, 0.52), such that Pr(A = 1) = Pr(A = 2) = 1/2. Models (4.22) and (4.23) are indexed by a pair
{δ, ξ}. First, the parameter δ ∈ {1, 2} controls the proportion of the variance of the response Y attributable
to the X “main” effect: δ = 1 corresponds to a moderate X main effect contribution; δ = 2 corresponds
to a large X main effect contribution. Estimation of the interaction effect becomes more difficult with a
larger δ. Second, the parameter ξ ∈ {0, 1} determines whether the A-by-X interaction effect term has an
exact additive regression structure (ξ = 0) or whether it deviates from an additive structure (ξ = 1). In
the case of ξ = 0, the proposed model (2.1) is correctly specified, whereas, for the case of ξ = 1, it is
misspecified. For each scenario, we consider the following four approaches to estimating the optimal ITR
Dopt in (3.19).

1. The proposed additive regression approach (2.6), estimated via Algorithm 1. The dimension of the
basis function � j in (3.10) is taken to be dj = 6 (j = 1, . . . , p). Given estimates {ĝ∗

j }, the estimate

of Dopt in (3.19) is D̂opt(X ) = arg maxa∈{1,...,L}
∑p

j=1 ĝ∗
j,a(Xj).

2. The linear regression (MC) approach (4.21) of Tian and others (2014), implemented through the
R-package glmnet, with the sparsity tuning parameter λ selected by minimizing a 10-fold cross-
validated prediction error. Given an estimate β̂

∗ = (β̂∗
1 , . . . , β̂∗

p )�, the corresponding estimate of

Dopt in (3.19) is D̂opt(X ) = arg maxa∈{1,...,L}
∑p

j=1(a − 1.5)Xjβ̂
∗
j .

3. The OWL method (Zhao and others, 2012) based on a Gaussian radial kernel, implemented in the
R-package DTRlearn, with a set of feature transformed (FT) covariates {ĝ∗

j,1(Xj), j = 1, . . . , p}
used as an input to the OWL method, in which the functions ĝ∗

j,1(·) (j = 1, . . . , p) are obtained
from the approach in 1. To improve the efficiency of the OWL, we employ the augmented OWL
approach of Liu and others (2018). The inverse bandwidth parameter σ 2

n and the tuning parameter
κ in Zhao and others (2012) are chosen from the grid of (0.01, 0.02, 0.04, . . . , 0.64, 1.28) and that
of (0.25, 0.5, 1, 2, 4) (the default setting of DTRlearn), respectively, based on a 5-fold cross-
validation.

4. The same (OWL) approach as in 3 but based on the original features {Xj, j = 1, . . . , p}.

For each simulation run, we estimate Dopt from each of the four methods based on a training set (of
size n ∈ {250, 500}), and for evaluation of these methods, we compute the value V (D̂opt) in (3.18) for
each estimate D̂opt, using a Monte Carlo approximation based on a random sample of size 103. Since
we know the true data generating model in simulation studies, the optimal Dopt can be determined for
each simulation run. Given each estimate D̂opt of Dopt, we report V (D̂opt) − V (Dopt), as the performance
measure of D̂opt. A larger value (i.e., a smaller difference from the optimal value) of the measure indicates
better performance.

In Figure 2, we present the boxplots, obtained from 100 simulation runs, of the normalized values
V (D̂opt) (normalized by the optimal values V (Dopt)) of the decision rules D̂opt estimated from the four
approaches, for each combination of n ∈ {250, 500}, ξ ∈ {0, 1} (corresponding to correctly specified or
misspecified additive interaction effect models, respectively) and δ ∈ {1, 2} (corresponding to moderate
or large main effects, respectively), for the highly nonlinear and moderately nonlinear A-by-X interaction
effect scenarios, in the top and bottom panels, respectively. The proposed additive regression clearly
outperforms the OWL (without feature transformation) method in all scenarios (both the top and bottom
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Fig. 2. Boxplots based on 100 simulation runs, comparing the four approaches to estimating Dopt, given each scenario
indexed by ξ ∈ {0, 1}, δ ∈ {1, 2}, and n ∈ {250, 500}, for the highly nonlinear A-by-X interaction effect case in the
top panels, and the moderately nonlinear A-by-X interaction effect case in the bottom panels. The dotted horizontal
line represents the optimal value corresponding to Dopt.

panels) and also the linear regression approach in all of the highly nonlinear A-by-X interaction effect
scenarios (the top panels). For the moderately nonlinear A-by-X interaction effect scenarios (the bottom
panels), when ξ = 0, all the methods except the OWL perform at a near-optimal level. On the other
hand, when ξ = 1 (i.e., when the underlying A-by-X interaction effect model deviates from the additive
structure), the more flexible additive model significantly outperforms the linear model. We have also
considered a linear A-by-X interaction effect case in Section S.5.2 of Supplementary Materials available
at Biostatistics online, in which the linear regression outperforms the additive regression, but only slightly,
whereas if the underlying model deviates from the exact linear structure and n = 500, the more flexible
additive regression tends to outperform the linear model. This suggests that, in the absence of prior
knowledge about the form of the interaction effect, employing the proposed additive regression is more
suitable for optimizing ITRs than the linear regression. Comparing the two OWL methods (OWL (FT) and
OWL), Figure 2 illustrates that the feature transformation based on the estimated component functions
{ĝ∗

j , j = 1, . . . , p} provides a considerable benefit in their performance. This suggests the utility of the
proposed model (2.1) as a potential feature transformation and selection tool for a machine learning
algorithm for optimizing ITRs. In Figure 2, comparing the cases with δ = 2 to those with δ = 1, the
increased magnitude of the main effect generally dampens the performance of all approaches, as the
“noise” variability in the data generation model increases.

5. APPLICATION TO DATA FROM A DEPRESSION CLINICAL TRIAL

In this section, we illustrate the utility of the proposed additive regression for estimating treatment effect
modification and optimizing individualized treatment rules, using data from a depression clinical trial

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxaa032#supplementary-data
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study, comparing an antidepressant and placebo for treating major depressive disorder (Trivedi and others,
2016). The goal of the study is to identify baseline characteristics that are associated with differential
response to the antidepressant versus placebo and to use those characteristics to guide treatment decisions
when a patient presents for treatment.

Study participants (a total of n = 166 participants) were randomized to either placebo (A = 1; n1 = 88)
or an antidepressant (sertraline) (A = 2; n2 = 78). Subjects were monitored for 8 weeks after initiation
of treatment, and the primary endpoint of interest was the Hamilton Rating Scale for Depression (HRSD)
score at week 8. The outcome Y was taken to be the improvement in symptoms severity from baseline
to week 8, taken as the difference, i.e., we take: week 0 HRSD score–week 8 HRSD score. (Larger
values of the outcome Y are considered desirable.) The study collected baseline patient clinical data,
prior to treatment assignment. These pretreatment clinical data X = (X1, X2, . . . , X13)

� ∈ R
13 include:

X1 = Age at evaluation; X2 = Severity of depressive symptoms measured by the HRSD at baseline;
X3 = Logarithm of duration (in month) of the current major depressive episode; and X4 = Age of
onset of the first major depressive episode. In addition to these standard clinical assessments, patients
underwent neuropsychiatric testing at baseline to assess psychomotor slowing, working memory, reaction
time (RT), and cognitive control (e.g., post-error recovery), as these behavioral characteristics are believed
to correspond to biological phenotypes related to response to antidepressants (Petkova and others, 2017)
and are considered as potential modifiers of the treatment effect. These neuropsychiatric baseline test
measures include: X5 = (A not B) RT-negative; X6 = (A not B) RT-non-negative; X7 =(A not B) RT-all;
X8 = (A not B) RT-total correct; X9 = Median choice RT; X10 = Word fluency; X11 = Flanker accuracy;
X12 = Flanker RT; X13 = Post-conflict adjustment.

The proposed approach (2.6) to estimating the A-by-X interaction effect part
∑p

j=1 g∗
j,A(Xj) of model

(2.1), estimated via Algorithm 1, simultaneously selected 3 pretreatment covariates as treatment effect-
modifiers: X1 (“Age at evaluation”), X10 (“Word fluency test”), and X11 (“Flanker accuracy test”). The top
panels in Figure 3 illustrate the estimated non-zero component functions {ĝ∗

j 	= 0, j = 1, . . . , 13} (i.e., the
component functions corresponding to the selected covariates X1, X10, and X11) and the associated partial
residuals. The linear regression approach (4.21) to estimating the A-by-X interactions selected a single
covariate, X11, as a treatment effect-modifier.

Note, in the binary (i.e., L = 2) treatment case, any ITR D(X ) partitions the domain of X , R
p, into

two regions: R1 = {x ∈ R
p : D(x) = 1} and R2 = {x ∈ R

p : D(x) = 2}. Let β̂0,a (a = 1, 2) represent
the treatment a-specific intercept estimates. Then the proposed estimator D̂opt(X ) = arg maxa∈{1,2}

{
β̂0,a +∑p

j=1 ĝ∗
j,a(Xj)

}
, is equivalent to:

D̂opt(X ) = I

[
β̂0,2 − β̂0,1 +

p∑
j=1

{
ĝ∗

j,2(Xj) − ĝ∗
j,1(Xj)

}
> 0

]
+ 1. (5.24)

In this dataset, β̂0,1 = 6.34 (corresponding to the placebo) and β̂0,2 = 7.5 (corresponding to the drug).
The optimal treatment region in the X1, X10, X11 space, implied by the ITR (5.24), is illustrated in Figure 4,
where we have utilized 40 × 40 × 40 equally spaced grid points (i.e., 40 for each axis) for visualization
of the regions R1 and R2.

For an alternative way of visualizing the ITR (5.24), let us define a 1D index h(X ) = ∑p
j=1 ĝ∗

j,1(Xj).
By the constraint (2.2), we have the relationship

∑p
j=1 ĝ∗

j,2(Xj) = −π̂−1
2 π̂1

{ ∑p
j=1 ĝ∗

j,1(Xj)
}
. Therefore, the

term
∑p

j=1

{
ĝ∗

j,2(Xj) − ĝ∗
j,1(Xj)

}
in the decision rule (5.24) can be reparametrized, with respect to h(X ), as

(−π̂−1
2 π̂1 − 1)h(X ). In this dataset, π̂1 = 0.53 and π̂2 = 0.47, and thus the ITR (5.24) can be re-written

as: D̂opt(X ) = I
[
1.16 − 2.12h(X ) > 0

] + 1; this ITR indicates that, for a patient with pretreatment
characteristics x, if h(x) < 0.55 (≈ 1.16/2.12), then he/she would be recommended the active drug



Sparse additive models for interactions 425

20 30 40 50 60

−
20

−
10

0
10

20

Age at evaluation

P
ar

tia
l r

es
id

ua
l

10 20 30 40 50 60 70

−
20

−
10

0
10

20

Word fluency test

−0.1 0.1 0.2 0.3 0.4 0.5 0.6

−
20

−
10

0
10

20

Flanker accuracy test

Sertraline group
Placebo group

−
10

0
10

20
30

Index  h(X)

Im
pr

ov
em

en
t

in
 s

ym
pt

om
s

Sertaline group
Placebo group

−1 0 0.55 1 2

Fig. 3. The top panels: Scatterplots of partial residuals vs. the covariates associated with estimated non-zero compo-
nent functions {ĝ∗

j 	= 0} for placebo (blue circles) and the active drug (red triangles) treated participants; for each
panel, the blue dashed curve represents ĝ∗

j,1(·), corresponding to the placebo (a = 1), and the red solid curve represents
ĝ∗

j,2(·), corresponding to the active drug (a = 2). The bottom panel: A scatterplot of the treatment response y versus
the index h(x) = ∑p

j=1 ĝ∗
j,1(xj), for the drug (red triangles) and the placebo (blue circles) groups; the blue dashed line

is y = β̂0,1 + h(x) and the red solid line is y = β̂0,2 − π̂−1
2 π̂1h(x); a gray dashed vertical line indicates the threshold

value h(x) = 0.55 associated with the ITR D̂opt(x).
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Fig. 4. The decision regions R1 (corresponding to the placebo, dark blue) and R2 (corresponding to the active drug,
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Fig. 5. Boxplots of the estimated values of the treatment rules D̂opt estimated from 6 approaches, obtained from 500
randomly split testing sets. Higher values are preferred.

(a = 2) and the placebo (a = 1), otherwise. For example, for a patient with x1 = 40, x10 = 50, and
x11 = 0.4, the index h(x) = 1.01 > 0.55 (see the bottom panel in Figure 3 for a visualization) and thus
the patient would be recommended the placebo.

To evaluate the performance of the ITRs (D̂opt) obtained from the four different approaches described
in Section 4.2, we randomly split the data into a training set and a testing set (of size ñ) using a ratio of
5 to 1, replicated 500 times, each time computing an ITR D̂opt based on the training set, then estimating
its value V (D̂opt) in (3.18) by an inverse probability weighted estimator (Murphy, 2005): V̂ (D̂opt) =∑ñ

i=1 YiI(Ai=D̂opt(X i))
/
∑ñ

i=1 I(Ai=D̂opt(X i))
, computed based on the testing set of size ñ. For comparison, we

also include two naïve rules: treating all patients with placebo (“All PBO”) and treating all patients with
the active drug (“All DRUG”), each regardless of the individual patient’s characteristics X . The resulting
boxplots obtained from the 500 random splits are illustrated in Figure 5. A larger value of the measure
indicates better performance.

The results in Figure 5 demonstrate that the proposed additive regression approach, which allows non-
linear flexibility in developing ITRs, tends to outperform the linear regression approach, in terms of the
estimated value. The additive regression approach also shows some superiority over the method OWL
(without feature transformation). In comparison to the OWL methods, the proposed additive regression, in
addition to its superior computational efficiency, provides a means of simultaneously selecting treatment
effect-modifiers and allows a visualization for the heterogeneous effects attributable to each estimated
treatment effect-modifier as in Figure 3, which is an appealing feature in practice. Moreover, the esti-
mated component functions {ĝ∗

j , j = 1, . . . , p} of the proposed regression provide an effective means of
performing feature transformation for {Xj, j = 1, . . . , p}. As in Section 4.2, the FT OWL approach appears
to have a considerable improvement over the OWL that bases on the original untransformed covariates.

6. DISCUSSION

In this article, we have developed a sparse additive model, via a structural constraint, specifically geared
to identify and model treatment effect-modifiers. The approach utilizes an efficient back-fitting algorithm
for model estimation and variable selection. The proposed sparse additive model for treatment effect
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modification extends existing linear model-based regression methods by providing nonlinear flexibility to
modeling treatment-by-covariate interactions. Encouraged by our simulation results and the application,
future work will investigate the asymptotic properties related to treatment effect-modifier selection and
estimation consistency, in addition to developing hypothesis testing procedures for treatment-by-covariates
interaction effects.

Modern advances in biotechnology, using measures of brain structure and function obtained from
neuroimaging modalities (e.g., magnetic resonance imaging (MRI), functional MRI, and electroen-
cephalography), show the promise of discovering potential biomarkers for heterogeneous treatment effects.
These high-dimensional data modalities are often in the form of curves or images and can be viewed as
functional data (e.g., Ramsay and Silverman, 1997). Future work will also extend the additive model
approach to the context of functional additive regression (e.g., Fan and others, 2014, 2015). The goal of
these extensions will be to handle a large number of functional-valued covariates while achieving simul-
taneous variable selection, which will extend current functional linear model-based methods for precision
medicine (McKeague and Qian, 2014; Ciarleglio and others, 2015, 2018) to a more flexible functional
regression setting, as well as to longitudinally observed functional data (e.g., Park and Lee 2019).

7. SOFTWARE

R-package samTEMsel (Sparse Additive Models for Treatment Effect-Modifier Selection) con-
tains R-codes to perform the methods proposed in the article, and is publicly available on GitHub
(github.com/syhyunpark/samTEMsel).

SUPPLEMENTARY MATERIALS

Supplementary material is available at http://biostatistics.oxfordjournals.org
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