Skip to main content
. 2022 Jul 16;2022:5529726. doi: 10.1155/2022/5529726

Table 2.

Detail of the architecture of U-Net.

Layers Architectures Output
Input Image (96 × 96) 96 × 96 × 1
conv1 2@Conv (3 × 3)/Relu padding = same 96 × 96 × 64
Max pooling stride = 2
conv2 2@Conv (3 × 3)/Relu padding = same 48 × 48 × 128
Max pooling stride = 2
conv3 2@Conv (3 × 3)/Relu padding = same 24 × 24 × 256
Max pooling stride = 2
conv4 2@Conv (3 × 3)/Relu padding = same 12 × 12 × 512
drop4 Dropout (p = 0.5)
Max pooling stride = 2
conv5 2@Conv (3 × 3)/Relu padding = same 6 × 6 × 1024
drop5 Dropout (p = 0.5)
up6 Upsampling conv (2 × 2)/Relu 12 × 12 × 512
Concatination [drop4, up6]
conv6 2@Conv (3 × 3)/Relu padding = same 12 × 12 × 512
up7 Upsampling conv (2 × 2)/Relu 24 × 24 × 256
Concatination [conv3, up7]
conv7 2@Conv (3 × 3)/Relu padding = same 24 × 24 × 256
up8 Up-sampling conv (2 × 2)/Relu 48 × 48 × 128
Concatination [conv2, up8]
conv8 2@Conv (3 × 3)/Relu padding = same 48 × 48 × 128
up9 Upsampling conv (2 × 2)/Relu 96 × 96 × 64
Concatination [conv1, up9]
conv9 2@Conv (3 × 3)/Relu padding = same 96 × 96 × 64
conv10 Conv (1 × 1) Sigmoid 96 × 96 × 1
Output Segmentation map 96 × 96 × 1