Table 2.
Detail of the architecture of U-Net.
Layers | Architectures | Output |
---|---|---|
Input | Image (96 × 96) | 96 × 96 × 1 |
conv1 | 2@Conv (3 × 3)/Relu padding = “same” | 96 × 96 × 64 |
Max pooling stride = 2 | ||
conv2 | 2@Conv (3 × 3)/Relu padding = “same” | 48 × 48 × 128 |
Max pooling stride = 2 | ||
conv3 | 2@Conv (3 × 3)/Relu padding = “same” | 24 × 24 × 256 |
Max pooling stride = 2 | ||
conv4 | 2@Conv (3 × 3)/Relu padding = “same” | 12 × 12 × 512 |
drop4 | Dropout (p = 0.5) | |
Max pooling stride = 2 | ||
conv5 | 2@Conv (3 × 3)/Relu padding = “same” | 6 × 6 × 1024 |
drop5 | Dropout (p = 0.5) | |
up6 | Upsampling conv (2 × 2)/Relu | 12 × 12 × 512 |
Concatination | [drop4, up6] | |
conv6 | 2@Conv (3 × 3)/Relu padding = “same” | 12 × 12 × 512 |
up7 | Upsampling conv (2 × 2)/Relu | 24 × 24 × 256 |
Concatination | [conv3, up7] | |
conv7 | 2@Conv (3 × 3)/Relu padding = “same” | 24 × 24 × 256 |
up8 | Up-sampling conv (2 × 2)/Relu | 48 × 48 × 128 |
Concatination | [conv2, up8] | |
conv8 | 2@Conv (3 × 3)/Relu padding = “same” | 48 × 48 × 128 |
up9 | Upsampling conv (2 × 2)/Relu | 96 × 96 × 64 |
Concatination | [conv1, up9] | |
conv9 | 2@Conv (3 × 3)/Relu padding = “same” | 96 × 96 × 64 |
conv10 | Conv (1 × 1) Sigmoid | 96 × 96 × 1 |
Output | Segmentation map | 96 × 96 × 1 |